Difference between revisions of "Complexification of a Lie group"
(Fixing mangled last sentence) |
m |
||
Line 10: | Line 10: | ||
Not every real Lie group has a complexification. In particular, a connected semi-simple Lie group has a complexification if and only if $G$ is linear, that is, is isomorphic to a subgroup of some group $\GL(n,\C)$. For example, the universal covering of the group of real second-order matrices with determinant 1 does not have a complexification. On the other hand, every compact Lie group has a complexification. | Not every real Lie group has a complexification. In particular, a connected semi-simple Lie group has a complexification if and only if $G$ is linear, that is, is isomorphic to a subgroup of some group $\GL(n,\C)$. For example, the universal covering of the group of real second-order matrices with determinant 1 does not have a complexification. On the other hand, every compact Lie group has a complexification. | ||
− | The non-existence of complexifications for certain real Lie groups inspired the introduction of the more general notion of a universal complexification $(\tilde G,\tau)$ of a real Lie group $G$. Here $\tilde G$ is a complex Lie group and $\tau : G\to \tilde G$ is a real-analytic homomorphism such that for every complex Lie group $H$ and every real-analytic homomorphism $\alpha : G\to H$ there exists a unique complex-analytic homomorphism $\beta : \tilde G\to H$ such that $\alpha=\beta\circ \tau$. The universal complexification of a Lie group always exists and is uniquely defined {{Cite|Bo}}. Uniqueness means that if $(\tilde G',\tau')$ is another universal complexification of $G$, then there is a natural isomorphism $\lambda : \tilde G\to \tilde G'$ | + | The non-existence of complexifications for certain real Lie groups inspired the introduction of the more general notion of a universal complexification $(\tilde G,\tau)$ of a real Lie group $G$. Here $\tilde G$ is a complex Lie group and $\tau : G\to \tilde G$ is a real-analytic homomorphism such that for every complex Lie group $H$ and every real-analytic homomorphism $\alpha : G\to H$ there exists a unique complex-analytic homomorphism $\beta : \tilde G\to H$ such that $\alpha=\beta\circ \tau$. The universal complexification of a Lie group always exists and is uniquely defined {{Cite|Bo}}. Uniqueness means that if $(\tilde G',\tau')$ is another universal complexification of $G$, then there is a natural isomorphism $\lambda : \tilde G\to \tilde G'$ such that $\lambda\circ\tau = \tau'$. In general, $\dim_\C\;\tilde G \le \dim_\R G$, but if $G$ is simply connected, then $\dim_\C \tilde G = \dim_\R G$ and the kernel of $\tau$ is discrete. |
See also | See also |
Latest revision as of 15:05, 13 April 2024
2020 Mathematics Subject Classification: Primary: 22E [MSN][ZBL]
The complexification of a Lie group $G$ over $\R$ is a complex Lie group $G_\C$ containing $G$ as a real Lie subgroup such that the Lie algebra $\def\fg{ {\mathfrak g}}\fg$ of $G$ is a real form of the Lie algebra $\fg_\C$ of $G_\C$ (see Complexification of a Lie algebra). One then says that the group $G$ is a real form of the Lie group $G_\C$. For example, the group $\def\U{ {\rm U}}\U(n)$ of all unitary matrices of order $n$ is a real form of the group $\def\GL{ {\rm GL}}\GL(n,\C)$ of all non-singular matrices of order $n$ with complex entries.
There is a one-to-one correspondence between the complex-analytic linear representations of a connected simply-connected complex Lie group $G_\C$ and the real-analytic representations of its connected real form $G$, under which irreducible representations correspond to each other. This correspondence is set up in the following way: If $\rho$ is an (irreducible) finite-dimensional complex-analytic representation of $G_\C$, then the restriction of $\rho$ to $G$ is an (irreducible) real-analytic representation of $G$.
Not every real Lie group has a complexification. In particular, a connected semi-simple Lie group has a complexification if and only if $G$ is linear, that is, is isomorphic to a subgroup of some group $\GL(n,\C)$. For example, the universal covering of the group of real second-order matrices with determinant 1 does not have a complexification. On the other hand, every compact Lie group has a complexification.
The non-existence of complexifications for certain real Lie groups inspired the introduction of the more general notion of a universal complexification $(\tilde G,\tau)$ of a real Lie group $G$. Here $\tilde G$ is a complex Lie group and $\tau : G\to \tilde G$ is a real-analytic homomorphism such that for every complex Lie group $H$ and every real-analytic homomorphism $\alpha : G\to H$ there exists a unique complex-analytic homomorphism $\beta : \tilde G\to H$ such that $\alpha=\beta\circ \tau$. The universal complexification of a Lie group always exists and is uniquely defined [Bo]. Uniqueness means that if $(\tilde G',\tau')$ is another universal complexification of $G$, then there is a natural isomorphism $\lambda : \tilde G\to \tilde G'$ such that $\lambda\circ\tau = \tau'$. In general, $\dim_\C\;\tilde G \le \dim_\R G$, but if $G$ is simply connected, then $\dim_\C \tilde G = \dim_\R G$ and the kernel of $\tau$ is discrete.
See also Form of an algebraic group.
References
[Bo] | N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras", Addison-Wesley (1975) (Translated from French) MR0682756 Zbl 0319.17002 |
[Na] | M.A. Naimark, "Theory of group representations", Springer (1982) (Translated from Russian) MR0793377 Zbl 0484.22018 |
[Zh] | D.P. Zhelobenko, "Compact Lie groups and their representations", Amer. Math. Soc. (1973) (Translated from Russian) MR0473097 MR0473098 Zbl 0228.22013 |
Complexification of a Lie group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complexification_of_a_Lie_group&oldid=55708