Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/72"
m (→List) |
Rui Martins (talk | contribs) |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007034.png ; $= \ | + | 1. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007034.png ; $= \langle x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i + 1} } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \rangle.$ ; confidence 0.208 |
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027015.png ; $R _ { n } [ f ]$ ; confidence 0.208 | 2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027015.png ; $R _ { n } [ f ]$ ; confidence 0.208 | ||
− | 3. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012093.png ; $w _ { i } ^ { ( t + 1 ) } = E ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n$ ; confidence 0.208 | + | 3. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012093.png ; $w _ { i } ^ { ( t + 1 ) } = \mathsf{E} ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n,$ ; confidence 0.208 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006029.png ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C | + | 4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006029.png ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C ; A = B \bigcap C } m _ { E _ { 1 } } ( B ) .m _ { E _ { 2 } } ( C )$ ; confidence 0.208 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208 | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; ${\bf Z} _ { i j }$ ; confidence 0.208 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $ | + | 6. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $G$ ; confidence 0.208 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040054.png ; $ | + | 7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040054.png ; $\odot$ ; confidence 0.208 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110930/b11093018.png ; $Z _ { | + | 8. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110930/b11093018.png ; $Z _ { p }$ ; confidence 0.208 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020168.png ; $\ | + | 9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020168.png ; $\tilde{v} ( \tilde{u} _ { 1 } ) \leq 0$ ; confidence 0.208 |
10. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016016.png ; $\| . \| _ { k }$ ; confidence 0.208 | 10. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016016.png ; $\| . \| _ { k }$ ; confidence 0.208 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301005.png ; $( ( k _ { | + | 11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301005.png ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } )$ ; confidence 0.208 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011046.png ; $ | + | 12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011046.png ; $\operatorname{Re} z$ ; confidence 0.208 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c11025029.png ; $ | + | 13. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c11025029.png ; $e_1$ ; confidence 0.208 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007036.png ; $c : | + | 14. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007036.png ; $c : a \rightarrow b$ ; confidence 0.207 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060120.png ; $: = \{ B = [ b _ { i | + | 15. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060120.png ; $: = \{ B = [ b _ { i , j } ] : b _ { i , i } = a _ { i , i } , \text { and } r _ { i } ( B ) = r _ { i } ( A ) , 1 \leq i \leq n \}.$ ; confidence 0.207 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103208.png ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103208.png ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { ij } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { m+1 } ^ { ( j ) } ],$ ; confidence 0.207 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007075.png ; $h _ { | + | 17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007075.png ; $\mathfrak{h} _ { n }$ ; confidence 0.207 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202502.png ; $f : U \rightarrow R ^ { | + | 18. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202502.png ; $f : U \rightarrow {\bf R} ^ { n }$ ; confidence 0.207 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006053.png ; $B _ { m } - B _ { | + | 19. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006053.png ; $B _ { m } - B _ { n }$ ; confidence 0.207 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004029.png ; $V _ { \xi } \ | + | 20. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004029.png ; $V _ { \xi } \subseteq_{ * } W$ ; confidence 0.207 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013046.png ; $P _ { \theta } | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013046.png ; $P _ { \theta ^ *} ( X _ { n - 1 }, d x )$ ; confidence 0.207 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200305.png ; $x _ { n } | + | 22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200305.png ; $x _ { n } \nearrow x \swarrow y _ { n }$ ; confidence 0.207 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690033.png ; $T \rightarrow T | _ { P ^ { \prime } } | + | 23. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690033.png ; $T \rightarrow T | _ { P ^ { \prime } H}$ ; confidence 0.207 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260117.png ; $( m , X _ { 1 } , \dots , X _ { | + | 24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260117.png ; $( m , X _ { 1 } , \dots , X _ { s_i } ) ^ { c }$ ; confidence 0.207 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009031.png ; $\xi = e ^ { i \ | + | 25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009031.png ; $\xi = e ^ { i a\operatorname{ln} \tau } f$ ; confidence 0.207 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004017.png ; $ | + | 26. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004017.png ; $\left\lfloor \frac { n } { 2 } \right\rfloor \left\lfloor \frac { n - 1 } { 2 } \right\rfloor \left\lfloor \frac { m } { 2 } \right\rfloor \left\lfloor \frac { m - 1 } { 2 } \right\rfloor.$ ; confidence 0.206 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003090.png ; $\ | + | 27. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003090.png ; $\overset{\rightharpoonup} { x } _ { j }$ ; confidence 0.206 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013074.png ; $\frac { d N } { d t } = \lambda N ( 1 - ( \frac { N } { K } ) ^ { | + | 28. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013074.png ; $\frac { d N } { d t } = \lambda N \left( 1 - \left( \frac { N } { K } \right) ^ {a } \right),$ ; confidence 0.206 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020015.png ; $p _ { | + | 29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020015.png ; $p _ { n } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m } m ^ { - s }$ ; confidence 0.206 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160050.png ; $ | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160050.png ; $r_1$ ; confidence 0.206 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031033.png ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { | + | 31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031033.png ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { |Y| = n } \mu ( Y )$ ; confidence 0.206 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004082.png ; $f _ { | + | 32. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004082.png ; $f _ { i + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { i + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { i } ^ { n } ). } \end{array} \right.$ ; confidence 0.206 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007011.png ; $q _ { | + | 33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007011.png ; ${\bf q} _ { k }$ ; confidence 0.206 |
34. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002026.png ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206 | 34. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002026.png ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206 | ||
− | 35. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016027.png ; $C \backslash \sigma _ { | + | 35. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016027.png ; ${\bf C} \backslash \sigma _ { \text{lre} } ( T )$ ; confidence 0.206 |
36. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002041.png ; $w ^ { * }$ ; confidence 0.206 | 36. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002041.png ; $w ^ { * }$ ; confidence 0.206 | ||
− | 37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010052.png ; $ | + | 37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010052.png ; $l ^ { p }$ ; confidence 0.206 |
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260106.png ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205 | 38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260106.png ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205 | ||
− | 39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001076.png ; $E | + | 39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001076.png ; $E ^ { * * }$ ; confidence 0.205 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015028.png ; $\int _ { Y } \ | + | 40. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015028.png ; $\int _ { Y } \int_X f _ { X , Y } d X d Y = 1$ ; confidence 0.205 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016062.png ; $\ | + | 41. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016062.png ; ${\frak A} [ D ]$ ; confidence 0.205 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008096.png ; $= \{ z \in D : \operatorname { | + | 42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008096.png ; $= \{ z \in {\cal D} : \operatorname { lim\,inf } _ { w \rightarrow x } [ K _ {\cal D } ( z , w ) - K _ {\cal D } ( z_0 , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \},$ ; confidence 0.205 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010012.png ; $\Delta _ { | + | 43. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010012.png ; $\Delta _ { n } = \{ 0 , \dots , n \}$ ; confidence 0.205 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010060.png ; $D ( \Delta ) = H _ { | + | 44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010060.png ; $D ( \Delta ) = H _ { o } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007058.png ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : | + | 45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007058.png ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : a \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1,$ ; confidence 0.205 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718026.png ; $C _ { | + | 46. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718026.png ; $C _ { k }$ ; confidence 0.205 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010040.png ; $= - I ^ { \ | + | 47. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010040.png ; $= - I ^ { \kappa_a } ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { a },$ ; confidence 0.205 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202401.png ; $ | + | 48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202401.png ; $h_* ^ { S }$ ; confidence 0.205 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { | + | 49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { i }$ ; confidence 0.205 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002088.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { | + | 50. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002088.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { q } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080169.png ; $ | + | 51. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080169.png ; $a = 1 , \dots , \text{l}$ ; confidence 0.205 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032000/d03200040.png ; $ | + | 52. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032000/d03200040.png ; $\kappa_2$ ; confidence 0.205 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025055.png ; $ | + | 53. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025055.png ; $ { h } \equiv 1$ ; confidence 0.204 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020189.png ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \ | + | 54. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020189.png ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \overline{D} \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.204 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377012.png ; $x ^ { ( | + | 55. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377012.png ; $x ^ { ( n ) } + a _ { n - 1} z ^ { ( n - 1 ) } + \dots + a _ { 0 } x = 0,$ ; confidence 0.204 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021017.png ; $K , L \in K ^ { n }$ ; confidence 0.204 | + | 56. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021017.png ; $K , L \in {\cal K} ^ { n }$ ; confidence 0.204 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058063.png ; $ | + | 57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058063.png ; $ { l } _ { 1 }$ ; confidence 0.204 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167019.png ; $\xi _ { | + | 58. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167019.png ; $\xi |_ { A }$ ; confidence 0.204 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206014.png ; $I _ { | + | 59. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206014.png ; $I _ { 1 }$ ; confidence 0.204 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004054.png ; $CF ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } }$ ; confidence 0.204 | + | 60. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004054.png ; $\operatorname{CF} ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } },$ ; confidence 0.204 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520270.png ; $\overline { b } | + | 61. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520270.png ; $\overline { b }_1$ ; confidence 0.204 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300505.png ; $a ^ { ( t ) } = ( | + | 62. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300505.png ; ${\bf a}^ { ( t ) } = ( a _ { t } , a _ { t + 1} , \dots , a _ { n + t - 1 }) ( t \geq 0 )$ ; confidence 0.204 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006014.png ; $T _ { n } T _ { m } = \sum _ { d | + | 63. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006014.png ; $T _ { n } T _ { m } = \sum _ { d | ( n , m ) } d ^ { k - 1 } T _ { m n / d^2 } ,$ ; confidence 0.203 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017089.png ; $ | + | 64. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017089.png ; $d$ ; confidence 0.203 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002021.png ; $\int _ { | + | 65. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002021.png ; $\int _ { I } | \varphi - \varphi _ { I } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043033.png ; $S | + | 66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043033.png ; $S\circ . = . \circ \Psi _ { B , B } \circ ( S \bigotimes S )$ ; confidence 0.203 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300107.png ; $x = ( x _ { 1 } , \dots , x _ { | + | 67. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300107.png ; $x = ( x _ { 1 } , \dots , x _ { n } ) \in {\bf T} ^ { n }$ ; confidence 0.203 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013077.png ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { | + | 68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013077.png ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { a } ^ { p }$ ; confidence 0.203 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027043.png ; $a _ { j k }$ ; confidence 0.203 | + | 69. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027043.png ; $a _ {i j k }$ ; confidence 0.203 |
70. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663045.png ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203 | 70. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663045.png ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005025.png ; $\hat { \psi } ( x , k ) \approx | + | 71. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005025.png ; $\hat { \psi } ( x , k ) \approx \begin{cases} { e ^ { - i k x } + b ( k ) e ^ { i k x } } & {\text { as } x \xrightarrow{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } \infty,} \\ { a ( k ) e ^ { - i k x } } & { \text { as } x \xrightarrow{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } - \infty.} \end{cases}$ ; confidence 0.203 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200707.png ; $C ^ { n } ( C , M ) = \prod _ { \langle \alpha _ { 1 } , \ | + | 72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200707.png ; $C ^ { n } ( {\cal C} , M ) = \prod _ { \langle \alpha _ { 1 } , \dots , \alpha _ { n } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0,$ ; confidence 0.202 |
73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010098.png ; $- E$ ; confidence 0.202 | 73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010098.png ; $- E$ ; confidence 0.202 | ||
− | 74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010045.png ; $L _ { | + | 74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010045.png ; ${\cal L} _ { n }$ ; confidence 0.202 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008057.png ; $E [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda | + | 75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008057.png ; $\mathsf{E} [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda { b } ^ { ( 2 ) } + r ( P - \rho ) } { 2 ( 1 - \rho ) },$ ; confidence 0.202 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007015.png ; $a , b \in A _ { | + | 76. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007015.png ; $a , b \in A _ { m }$ ; confidence 0.202 |
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016071.png ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202 | 77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016071.png ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202 | ||
− | 78. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011016.png ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x$ ; confidence 0.202 | + | 78. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011016.png ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x,$ ; confidence 0.202 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004027.png ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.202 | + | 79. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004027.png ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}.$ ; confidence 0.202 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004051.png ; $D x ^ { | + | 80. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004051.png ; $D x ^ { n }$ ; confidence 0.202 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300509.png ; $( | + | 81. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300509.png ; $( a _ { k } ) _ { k = 0 , \dots , N - 1}$ ; confidence 0.202 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l1201305.png ; $\ | + | 82. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l1201305.png ; $\tilde {\bf Q }$ ; confidence 0.202 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005085.png ; $x _ { | + | 83. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005085.png ; $x _ { n } \in \mathfrak { H }$ ; confidence 0.202 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012058.png ; $\| | + | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012058.png ; $\| d \| _ {\cal P M ^* } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002025.png ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1$ ; confidence 0.201 | + | 85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002025.png ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1,$ ; confidence 0.201 |
86. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010043.png ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201 | 86. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010043.png ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201 | ||
− | 87. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202606.png ; $\int _ { S ^ { \prime } ( R ) } e ^ { i \langle | + | 87. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202606.png ; $\int _ { {\cal S} ^ { \prime } ( {\bf R} ) } e ^ { i \langle x , \xi \rangle } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in {\cal S} ( {\bf R} )$ ; confidence 0.201 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006082.png ; $( z _ { k } , \ldots , z _ { k | + | 88. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006082.png ; $( z _ { k } , \ldots , z _ { k + r - 1})$ ; confidence 0.201 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201308.png ; $( M ) \leq v , | \text { sec. curv. } M | \leq \kappa$ ; confidence 0.201 | + | 89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201308.png ; $\operatorname{Vol}( M ) \leq v , | \text { sec. curv. } M | \leq \kappa,$ ; confidence 0.201 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015058.png ; $ | + | 90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015058.png ; $a$ ; confidence 0.201 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003079.png ; $Ch ( \ | + | 91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003079.png ; $\operatorname{Ch} ( \operatorname{ ind } ( P ) ) = ( - 1 ) ^ { n } \pi_{ *} ( \operatorname { ind } ( [ a ] ) {\cal T} ( M | B ) ).$ ; confidence 0.201 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060149.png ; $P _ { E } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { | + | 92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060149.png ; ${\cal P} _ { \text{E} } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { as } n\rightarrow \infty.$ ; confidence 0.201 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007017.png ; $a _ { | + | 93. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007017.png ; $a _ { i1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m,$ ; confidence 0.201 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020043.png ; $ | + | 94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020043.png ; $g_2 ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012053.png ; $e ^ { k \operatorname { ln } k }$ ; confidence 0.201 | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012053.png ; $e ^ { k .\operatorname { ln } k }$ ; confidence 0.201 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018052.png ; $\mu ( 0 , x ) = - \sum _ { | + | 96. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018052.png ; $\mu ( 0 , x ) = - \sum _ { u } \mu ( 0 , u ),$ ; confidence 0.201 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006022.png ; $\hat { E | + | 97. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006022.png ; $\hat { E }_8$ ; confidence 0.201 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040641.png ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201 | + | 98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040641.png ; $\langle {\bf M e} _ { {\cal S} _ { P }} \mathfrak { M } / \Omega F _ { {\cal S}_P } \mathfrak { M } , F _ { {\cal S} _ { P } } \mathfrak { M } / \Omega F _ { {\cal S} _ { P }} \mathfrak { M } \rangle$ ; confidence 0.201 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020080/c02008019.png ; $ | + | 99. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020080/c02008019.png ; $\aleph_1$ ; confidence 0.200 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { | + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $\operatorname { mng }_{{\cal S} _ { P } , \mathfrak { M }} = \operatorname { mng }_{{\cal S} _ { P } , \mathfrak { M }} \circ h$ ; confidence 0.200 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007060.png ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m$ ; confidence 0.200 | + | 101. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007060.png ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m,$ ; confidence 0.200 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022033.png ; $\ | + | 102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022033.png ; $\rho_f \left( 1 , u _ { f } , \frac { 1 } { 2 } | u_f | ^ { 2 } + \frac { N } { 2 } T _ { f } \right) = \int \left( 1 , v , \frac { | v |^ { 2 } } { 2 } \right) f ( v ) d v.$ ; confidence 0.200 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024056.png ; $ | + | 103. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024056.png ; $\operatorname{ord} _ { p } \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : {\bf Z} y _ { K } ].$ ; confidence 0.200 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070102.png ; $\| e ^ { i \zeta A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { | + | 104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070102.png ; $\| e ^ { i \zeta \cal A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { r | \operatorname { Im } \zeta | }$ ; confidence 0.200 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305108.png ; $= \operatorname { min } | + | 105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305108.png ; $\operatorname {mex} S= \operatorname { min } \overline{S} =$ ; confidence 0.200 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n0669604.png ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { | + | 106. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n0669604.png ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { n / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) },$ ; confidence 0.200 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051094.png ; $d = d + ( \alpha - ( y _ { n } ^ { T } | + | 107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051094.png ; $d = d + ( \alpha - ( y _ { n-1 } ^ { T } { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200 |
108. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005019.png ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200 | 108. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005019.png ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200 | ||
− | 109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200120.png ; $ | + | 109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200120.png ; ${\frak h} ^ { e ^ { * } }$ ; confidence 0.200 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007069.png ; $= \sum _ { | + | 110. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007069.png ; $= \sum _ { j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }.$ ; confidence 0.200 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018075.png ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { | + | 111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018075.png ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { A } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002099.png ; $\hat { c } ^ { 2 }$ ; confidence 0.199 | + | 112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002099.png ; $\hat { c } ^ { 2 }_k$ ; confidence 0.199 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200198.png ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { | + | 113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200198.png ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { h _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007061.png ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \ | + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007061.png ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \bigcap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026033.png ; $| X _ { | + | 115. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026033.png ; $| \overline{X} _ { n } | = \operatorname { sup } _ { t } | X _ { n } ( t ) |$ ; confidence 0.199 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049012.png ; $\frac { 2 \ | + | 116. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049012.png ; $\frac { 2 \nu_2 ^ { 2 }( \nu _ { 1 } + \nu _ { 2 } - 2 ) } { \nu _ { 1 } ( \nu _ { 2 } - 2 ) ^ { 2 } ( \nu _ { 2 } - 4 ) } \quad \text { for } \nu _ { 2 } > 4.$ ; confidence 0.199 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020048.png ; $\ | + | 117. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020048.png ; $\iota_0$ ; confidence 0.199 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020183.png ; $P [ \tau \in | + | 118. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020183.png ; $\mathsf {P} [ \tau \in I ] = | I | / ( 2 \pi )$ ; confidence 0.199 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003021.png ; $S q ^ { i } x _ { n } = 0$ ; confidence 0.199 | + | 119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003021.png ; ${\cal S} \operatorname {q} ^ { i } x _ { n } = 0$ ; confidence 0.199 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027054.png ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( | + | 120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027054.png ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( u ) }$ ; confidence 0.199 |
121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031018.png ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199 | 121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031018.png ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199 | ||
− | 122. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047070.png ; $C ^ { | + | 122. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047070.png ; $C ^ { k }$ ; confidence 0.199 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051049.png ; $| V$ ; confidence 0.199 | + | 123. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051049.png ; $| V |$ ; confidence 0.199 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004045.png ; $ | + | 124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004045.png ; $d_1$ ; confidence 0.199 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230155.png ; $\frac { d } { d t } A ( \sigma _ { t } ) | _ { t = 0 } = \frac { d } { d t } \int _ { | + | 125. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230155.png ; $\left. \frac { d } { d t } {\cal A} ( \sigma _ { t } ) \right| _ { t = 0 } = \left. \frac { d } { d t } \int _ { M } \sigma ^ { k ^ { * } } \phi _ { t } ^ { k ^ { * } } ( L \Delta ) \right| _ { t = 0 } =$ ; confidence 0.198 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004012.png ; $f : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.198 | + | 126. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004012.png ; $f : {\bf R} ^ { m } \rightarrow {\bf R} ^ { n }$ ; confidence 0.198 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001030.png ; $T : C ^ { m + 1 } \rightarrow C ^ { n + 1 }$ ; confidence 0.198 | + | 127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001030.png ; $\tilde{T} : {\bf C} ^ { m + 1 } \rightarrow {\bf C} ^ { n + 1 }$ ; confidence 0.198 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018033.png ; $\forall x _ { 1 } \ | + | 128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018033.png ; $\forall x _ { 1 } \dots \forall x _ { n } ( P { x_1 \dots x _ { N }} \leftrightarrow \varphi ( x _ { 1 } , \ldots , x _ { n } ) )$ ; confidence 0.198 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015093.png ; $\operatorname { Var } _ { P _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198 | + | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015093.png ; $\operatorname { Var } _ { \mathsf {P} _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $Mod ^ { * } | + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $\operatorname {Alg} \operatorname {Mod} ^ { * S} { \cal D }$ ; confidence 0.198 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f1300207.png ; $T _ { | + | 131. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f1300207.png ; $T _ { a }$ ; confidence 0.197 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007026.png ; $( \varphi | _ { k } ^ { | + | 132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007026.png ; $( \varphi | _ { k } ^ { \mathbf{v} } M ) ( z ) = {\bf v} ( M ) ( cz + d ) ^ { - k } \varphi ( M z ).$ ; confidence 0.197 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014030.png ; $ | + | 133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014030.png ; $a \neq 0 \in{\bf F}_ { q }$ ; confidence 0.197 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006088.png ; $( z _ { k } , \ldots , z _ { k | + | 134. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006088.png ; $( z _ { k } , \ldots , z _ { k + r - 1} ) \neq ( 0 , \dots , 0 )$ ; confidence 0.197 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010021.png ; $f = \ | + | 135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010021.png ; $f = \vee _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \bigcup _ { j = i } ^ { n } A _ { i }.$ ; confidence 0.197 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001037.png ; $\theta . w : = \sum ^ { 3 | + | 136. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001037.png ; $\theta . w : = \sum ^ { 3 _{ j = 1}} \theta _ { j } w _ { j }$ ; confidence 0.197 NOTE: it would probably be better to write $\sum ^ { 3} _{ j = 1}$ |
− | 137. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520158.png ; $ | + | 137. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520158.png ; $a _ { j } \in K$ ; confidence 0.197 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140140.png ; $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } | + | 138. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140140.png ; $q _I( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { \substack {i \prec j} \\{j\in I\backslash \operatorname {max} I} } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } I } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { | + | 139. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { ab }$ ; confidence 0.196 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048021.png ; $ | + | 140. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048021.png ; $x \in N$ ; confidence 0.196 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007038.png ; $\Delta f _ { i } = A _ { , r + 1 } f _ { r + 1 } + \ldots + A _ { , l } f _ { l }$ ; confidence 0.196 | + | 141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007038.png ; $\Delta f _ { i } = A _ { i , r + 1 } f _ { r + 1 } + \ldots + A _ {i , l } f _ { l },$ ; confidence 0.196 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016092.png ; $\mathfrak { A } \ | + | 142. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016092.png ; $\mathfrak { A } \equiv_l \mathfrak { B }$ ; confidence 0.196 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161709.png ; $ | + | 143. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161709.png ; $r_0$ ; confidence 0.196 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840403.png ; $ | + | 144. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840403.png ; $n, z_1, \dots, z_n$ ; confidence 0.196 |
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002049.png ; $\beta _ { n , F }$ ; confidence 0.196 | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002049.png ; $\beta _ { n , F }$ ; confidence 0.196 | ||
Line 292: | Line 292: | ||
146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055030.png ; $g = e$ ; confidence 0.195 | 146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055030.png ; $g = e$ ; confidence 0.195 | ||
− | 147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048053.png ; $( E _ { | + | 147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048053.png ; $( E _ { r } ^ { p q } , d _ { r } ^ { p q } )$ ; confidence 0.195 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430152.png ; $U _ { q } ( g ) = U _ { q } ( n _ { - } ) \ | + | 148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430152.png ; $U _ { q } ( {\frak g} ) = U _ { q } ( n _ { - } ) {\color{blue} \rtimes} H {\color{blue} \ltimes } U _ { q } ( n _ { + } )$ ; confidence 0.195 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408034.png ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots$ ; confidence 0.195 | + | 149. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408034.png ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots,$ ; confidence 0.195 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003048.png ; $( ( - ) \otimes _ { F } | + | 150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003048.png ; $( ( _- ) \otimes _ {{\bf F}_p } H ^ { * } B V ) :\cal U \rightarrow U$ ; confidence 0.195 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430166.png ; $\Delta f = 1 \bigotimes f + x \ | + | 151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430166.png ; $\Delta f = 1 \bigotimes f + x \bigotimes \partial _ { q } f +\dots$ ; confidence 0.195 |
152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001095.png ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195 | 152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001095.png ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195 | ||
− | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018093.png ; $ | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018093.png ; ${\bf Alg}_\models ( {\cal L} )$ ; confidence 0.194 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010295.png ; $ | + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010295.png ; $g$ ; confidence 0.194 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700079.png ; $c _ { | + | 155. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700079.png ; ${\bf c} _ { k }$ ; confidence 0.194 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007084.png ; $\{ f ^ { | + | 156. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007084.png ; $\{ f ^ { a } \}$ ; confidence 0.194 |
157. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013059.png ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194 | 157. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013059.png ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194 | ||
− | 158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012029.png ; $f _ { | + | 158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012029.png ; $f _ { h } ( x ) = h ^ { - 1 } \int _ {\bf R } \varphi \left( \frac { t } { h } \right) f ( x - t ) d t.$ ; confidence 0.194 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004055.png ; $\hat { f } ( \xi ) = \int _ { R ^ { n } e | + | 159. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004055.png ; $\hat { f } ( \xi ) = \int _ { {\bf R} ^ { n } } e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203102.png ; $ | + | 160. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203102.png ; $ c _ { i } \in \bf R$ ; confidence 0.194 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100108.png ; $K _ { | + | 161. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100108.png ; $K _ { |e| } ( V )$ ; confidence 0.194 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200806.png ; $ | + | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200806.png ; $ { I } _ { n }$ ; confidence 0.194 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021048.png ; $\overline { D } _ { k } = U ( a ) \ | + | 163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021048.png ; $\overline { D } _ { k } = U ( {\frak a} ) \otimes_{U ( {\frak p} )} \wedge ^ { k } ( {\frak a}/ \frak{p} )$ ; confidence 0.194 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050119.png ; $\ | + | 164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050119.png ; $\widetilde { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x },$ ; confidence 0.194 |
165. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306404.png ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194 | 165. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306404.png ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194 | ||
Line 332: | Line 332: | ||
166. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001013.png ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193 | 166. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001013.png ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193 | ||
− | 167. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340136.png ; $M ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / R$ ; confidence 0.193 | + | 167. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340136.png ; ${\cal M} ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / \bf R$ ; confidence 0.193 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702027.png ; $ | + | 168. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702027.png ; $l ^ { n }$ ; confidence 0.193 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009031.png ; $x \mapsto e ^ { | + | 169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009031.png ; $x \mapsto e ^ { r x }$ ; confidence 0.193 |
170. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024052.png ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193 | 170. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024052.png ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193 | ||
− | 171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200201.png ; $ | + | 171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200201.png ; $\operatorname{sl} _ { 2 } ( {\bf R} )$ ; confidence 0.193 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001029.png ; $_ { S } \in R ^ { 1 }$ ; confidence 0.193 | + | 172. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001029.png ; $_ { S } \in {\bf R} ^ { 1 }$ ; confidence 0.193 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007041.png ; $e ^ { i ( p D + q X + t I ) }$ ; confidence 0.193 | + | 173. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007041.png ; $e ^ { i ( p {\cal D} + q {\cal X} + t I ) }$ ; confidence 0.193 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011018.png ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } { 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & { 0 } \end{array} \right)$ ; confidence 0.193 | + | 174. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011018.png ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } {\bf 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & \bf{ 0 } \end{array} \right),$ ; confidence 0.193 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167032.png ; $ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167032.png ; $a_1 , \dots , a _ { n }$ ; confidence 0.193 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022046.png ; $ | + | 176. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022046.png ; $W$ ; confidence 0.193 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008092.png ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g ( \oint _ { A _ { j } } d \hat { \Omega _ { n } | + | 177. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008092.png ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g \left( \oint _ { A _ { j } } d \hat { \Omega} _ { n } \right) d \omega _ { j }$ ; confidence 0.193 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { | + | 178. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { e } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B,$ ; confidence 0.193 |
179. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067084.png ; $V _ { q } ^ { p }$ ; confidence 0.193 | 179. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067084.png ; $V _ { q } ^ { p }$ ; confidence 0.193 | ||
− | 180. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408031.png ; $\pi _ { n } ( X ; A , B , | + | 180. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408031.png ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \bigcap B , * ) , * ).$ ; confidence 0.193 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024032.png ; $\ | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024032.png ; $\widehat { \operatorname {CH} \square } ^ { p } ( X )$ ; confidence 0.193 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090226.png ; $X ^ { \omega | + | 182. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090226.png ; $X ^ { \omega \chi ^ { - 1 }} = \{ x \in X : \delta . x = \omega \chi ^ { - 1 } ( \delta ) x \text{ for } \delta \in \Delta \},$ ; confidence 0.193 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002097.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } P [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x$ ; confidence 0.193 | + | 183. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002097.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } \mathsf {P} [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x.$ ; confidence 0.193 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024014.png ; $V \subset C ^ { m }$ ; confidence 0.192 | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024014.png ; $V \subset {\bf C} ^ { m }$ ; confidence 0.192 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \ | + | 185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \bigcup _ { n _ { 1 } , \dots , n _ { k } , \dots } \bigcap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } \square \dots n _ { k }},$ ; confidence 0.192 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160164.png ; $ | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160164.png ; $e_{ij}$ ; confidence 0.192 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001039.png ; $ | + | 187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001039.png ; ${\bf P} ^ { m } \backslash X$ ; confidence 0.192 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200175.png ; $( e _ { i } ) ^ { k } | + | 188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200175.png ; $( e _ { i } ) ^ { k } . v = 0 = ( f _ { i } ) ^ { k } . v$ ; confidence 0.192 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230178.png ; $ | + | 189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230178.png ; $ { G } _ { i } \Theta _ { i }$ ; confidence 0.192 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022020/c02202042.png ; $ | + | 190. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022020/c02202042.png ; $\kappa_1$ ; confidence 0.192 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650300.png ; $x _ { | + | 191. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650300.png ; $x _ { k }$ ; confidence 0.192 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013087.png ; $L _ { n } = SU ( 2 ) / Z _ { n }$ ; confidence 0.192 | + | 192. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013087.png ; $L _ { n } = \operatorname {SU} ( 2 ) / {\bf Z} _ { n }$ ; confidence 0.192 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028048.png ; $ | + | 193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028048.png ; $D _ { n } H_{*} \Omega ^ { \infty } X$ ; confidence 0.192 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013078.png ; $v _ { | + | 194. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013078.png ; $v _ { i_1 } , \dots , v _ { i_k }$ ; confidence 0.191 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203607.png ; $\{ \ | + | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203607.png ; $\{ \epsilon_l \}$ ; confidence 0.191 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058010.png ; $ | + | 196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058010.png ; $p_2$ ; confidence 0.191 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009069.png ; $R _ { | + | 197. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009069.png ; $R _ { c } ( p ; k , n )$ ; confidence 0.191 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031066.png ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { m | + | 198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031066.png ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { | m | \leq R } \left( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m ),$ ; confidence 0.191 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002031.png ; $( X _ { n } ) _ { n \in Z } ^ { d }$ ; confidence 0.191 | + | 199. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002031.png ; $( X _ { n } ) _ { n \in {\bf Z} ^ { d }}$ ; confidence 0.191 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { | + | 200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { for } n= 1, } \\ { \gamma > 0 } & { \text { for }n = 2, } \\ { \gamma \geq 0 } & { \text { for } n\geq 3. } \end{array} \right.$ ; confidence 0.191 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197039.png ; $ | + | 201. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197039.png ; $l = 1$ ; confidence 0.191 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004070.png ; $\times [ CF ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z | + | 202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004070.png ; $\times \left[ \operatorname {CF} ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z \rangle ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \langle \overline { \zeta } , \zeta - z \rangle ] ^ { n } } \sigma _ { 0 } \right],$ ; confidence 0.191 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304104.png ; $\langle p , q \rangle _ { s } = \sum _ { | + | 203. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304104.png ; $\langle p , q \rangle _ { s } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { \bf R } p ^ { ( i ) } q ^ { ( i ) } d \mu _ { i },$ ; confidence 0.190 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012064.png ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } | + | 204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012064.png ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } \nearrow } & { \vec { \phi _ { 3 } } } &{c_3} \end{array} \right. .$ ; confidence 0.190 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021086.png ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - | + | 205. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021086.png ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - e ) } t ( G - e )$ ; confidence 0.190 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004024.png ; $\psi ^ { ( | + | 206. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004024.png ; $\psi ^ { ( n ) } ( z ) = ( - 1 ) ^ { n + 1 } n ! \zeta ( n + 1 , z ),$ ; confidence 0.190 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060188.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } ) v = 0$ ; confidence 0.190 | + | 207. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060188.png ; $\left( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } \right) v = 0.$ ; confidence 0.190 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005056.png ; $h = ( h _ { 1 } , \dots , h _ { | + | 208. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005056.png ; $h = ( h _ { 1 } , \dots , h _ { m } ) \in N ^ { m } \subset A ^ { m }$ ; confidence 0.190 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $ | + | 209. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $ { i } \leq n$ ; confidence 0.190 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013058.png ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.190 | + | 210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013058.png ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n,$ ; confidence 0.190 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010046.png ; $w ^ { em } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( E ^ { 2 } + B ^ { 2 } ) - \nabla \ | + | 211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010046.png ; $w ^ { \text{em} } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( {\bf E} ^ { 2 } + {\bf B} ^ { 2 } ) - \nabla . ( {\bf S} - v ( {\bf P}.{\bf E}) ),$ ; confidence 0.190 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002040.png ; $( \alpha _ { j | + | 212. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002040.png ; $( \alpha _ { j + k} ) _ { j , k \geq 0}$ ; confidence 0.190 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100154.png ; $\ | + | 213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100154.png ; $\|v\|_{A_p (G)} \leq \| u \| _ { A_p(H) } + \epsilon$ ; confidence 0.190 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010013.png ; $e ^ { - t A | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010013.png ; $e ^ { - t A }x = \operatorname { lim } _ { n \rightarrow \infty } \left( I + \frac { t } { n } A \right) ^ { - n } x = S ( t ) x , \forall x \in X,$ ; confidence 0.189 |
215. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029054.png ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189 | 215. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029054.png ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189 | ||
− | 216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029080.png ; $I ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) | + | 216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029080.png ; $\operatorname {I} ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) .\operatorname { l}_ { A } ( H _ {\frak m } ^ { i } ( M ) )$ ; confidence 0.189 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004049.png ; $h : = \operatorname { max } _ { | + | 217. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004049.png ; $h : = \operatorname { max } _ { n \in \bf N } \{ \sigma _ { n } - n \}$ ; confidence 0.189 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189 | + | 218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { \cal D } T$ ; confidence 0.189 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578016.png ; $I _ { | + | 219. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578016.png ; $I _ { \nu }$ ; confidence 0.189 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026083.png ; $t _ { | + | 220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026083.png ; $t _ { n+1/2 } = t _ { n } + k / 2$ ; confidence 0.189 |
221. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w1300909.png ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189 | 221. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w1300909.png ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189 | ||
− | 222. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666306.png ; $r _ { | + | 222. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666306.png ; $r _ { i } > 0$ ; confidence 0.188 |
223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017046.png ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188 | 223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017046.png ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188 | ||
− | 224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110108.png ; $H _ { K } ^ { | + | 224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110108.png ; $H _ { K } ^ { n } ( D ^ { n } + i {\bf R} ^ { n } , \tilde {\cal O } )$ ; confidence 0.188 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015024.png ; $= ( 3 ^ { d | + | 225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015024.png ; $= \left( 3 ^ { d + 1} \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } \right),$ ; confidence 0.188 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029065.png ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ | + | 226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029065.png ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ a ( x ) : f ( x ) = y \},$ ; confidence 0.188 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170170.png ; $\tau ( \sum a _ { i j } z ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188 | + | 227. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170170.png ; $\tau ( \sum a _ { i j }\overline{z} ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377013.png ; $\dot { x } = A x , \quad x \in R ^ { | + | 228. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377013.png ; $\dot { x } = A x , \quad x \in {\bf R} ^ { n },$ ; confidence 0.188 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205605.png ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }$ ; confidence 0.188 | + | 229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205605.png ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} },$ ; confidence 0.188 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002015.png ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 0.188 | + | 230. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002015.png ; $\overline{c} ^ { a } ( x ) \overline{c} ^ { b } ( y ) = - \overline{c} ^ { b } ( y ) \overline{c} ^ { a } ( x ).$ ; confidence 0.188 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070204.png ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau )$ ; confidence 0.188 | + | 231. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070204.png ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau );$ ; confidence 0.188 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007037.png ; $\operatorname { lim } | + | 232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007037.png ; $\underline{\operatorname { lim }} \leftarrow ^ { n }$ ; confidence 0.188 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * } | + | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * S} = \mathfrak { A }$ ; confidence 0.188 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002048.png ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq P ( A _ { 1 } \ | + | 234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002048.png ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq \mathsf{P} ( A _ { 1 } \bigcup \ldots \bigcup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k },$ ; confidence 0.188 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\Gamma \ | + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\text{iff } \Gamma \vdash _ {\cal D } \Delta ( \varphi , \psi ).$ ; confidence 0.188 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008026.png ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }$ ; confidence 0.187 | + | 236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008026.png ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n },$ ; confidence 0.187 |
237. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006044.png ; $D _ { k } ^ { * }$ ; confidence 0.187 | 237. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006044.png ; $D _ { k } ^ { * }$ ; confidence 0.187 | ||
− | 238. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736068.png ; $ | + | 238. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736068.png ; $|.|_p$ ; confidence 0.187 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004077.png ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { R ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi$ ; confidence 0.187 | + | 239. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004077.png ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { {\bf R} ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi,$ ; confidence 0.187 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008038.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) } { ( - k - l - \alpha ) j ! } r ^ { k + l - 2 j }$ ; confidence 0.187 | + | 240. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008038.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) _j} { ( - k - l - \alpha )_j j ! } r ^ { k + l - 2 j }.$ ; confidence 0.187 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007011.png ; $( \Delta \bigotimes \text { id } ) R = R _ { 13 } R _ { 23 } , ( \text { id } \bigotimes \Delta ) R = R _ { 13 } R _ { 12 }$ ; confidence 0.187 | + | 241. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007011.png ; $( \Delta \bigotimes \text { id } ) {\cal R} = {\cal R} _ { 13 } {\cal R} _ { 23 } , ( \text { id } \bigotimes \Delta ) {\cal R} = {\cal R} _ { 13 } {\cal R} _ { 12 },$ ; confidence 0.187 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187 | + | 242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; ${\cal O} = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 | + | 243. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 a } \int _ { x - a t } ^ { x + a t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ].$ ; confidence 0.187 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340106.png ; $ | + | 244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340106.png ; $\tilde{x}_ - = ( x_ - , u_ - )$ ; confidence 0.187 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001084.png ; $\{ \text { ad } e _ { - } ^ { p | + | 245. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001084.png ; $\left\{ \text { ad } e _ { - 1} ^ { p^k } : 0 < k < m \right\}$ ; confidence 0.187 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602017.png ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \end{array} \right\}$ ; confidence 0.187 | + | 246. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602017.png ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ), } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) ,} \end{array} \right\}$ ; confidence 0.187 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010045.png ; $G ^ { em } = G ^ { em } | + | 247. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010045.png ; ${\bf G} ^ { \text{em} } = {\bf G}^ { \text{em}.f },$ ; confidence 0.187 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008066.png ; $\ | + | 248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008066.png ; $\text{G}$ ; confidence 0.187 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026019.png ; $a _ { m p } | + | 249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026019.png ; $a _ { m p ^ r} \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187 |
250. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004081.png ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187 | 250. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004081.png ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187 | ||
− | 251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070105.png ; $\ | + | 251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070105.png ; $\tilde { H } ^ { 1 } = \tilde { H } ^ { 1 } ( \Gamma , k , {\bf v} ; P ( k ) )$ ; confidence 0.187 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007042.png ; $ | + | 252. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007042.png ; $ { c } _ { k } ^ { \prime }$ ; confidence 0.187 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010059.png ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } | + | 253. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010059.png ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } g_{ij} \langle y _ { m + i - 1} , y _ { m + j - 1} \rangle.$ ; confidence 0.187 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008013.png ; $+ ( 1 - \mu _ { x | + | 254. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008013.png ; $+ ( 1 - \mu _ { x + t }d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t ),$ ; confidence 0.187 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024092.png ; $gl ( n , C )$ ; confidence 0.187 | + | 255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024092.png ; ${\frak gl} ( n , {\bf C} )$ ; confidence 0.187 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130103.png ; $Z [ X _ { 1 } , \dots , X _ { | + | 256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130103.png ; ${\bf Z} [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.187 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014085.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D ) } \int _ { \partial D } f ( \zeta ) \nu ( \zeta - a ) = f ( a )$ ; confidence 0.186 | + | 257. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014085.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( {\cal D} ) } \int _ { \partial \cal D } f ( \zeta ) \nu ( \zeta - a ) = f ( a ).$ ; confidence 0.186 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070137.png ; $= ( F ( . ) , ( h ( | + | 258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070137.png ; $= ( F ( . ) , ( h ( .. , y ) , ( h (. , x ) , h ( .. , x ) ) _ { H } ) _ {\cal H } ) _ {\cal H } =$ ; confidence 0.186 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050115.png ; $\alpha _ { 1 } , \dots , \alpha _ { | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050115.png ; $\alpha _ { 1 } , \dots , \alpha _ { \kappa }$ ; confidence 0.186 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007036.png ; $H ^ { n } ( C , M ) = \operatorname { lim } | + | 260. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007036.png ; $H ^ { n } ( {\cal C} , M ) = \underline{\operatorname { lim }} \leftarrow ^ { n } M,$ ; confidence 0.186 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180211.png ; $\tau _ { | + | 261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180211.png ; $\tau _ { p }$ ; confidence 0.186 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200404.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { | + | 262. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200404.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n} } \int _ { b _ { 0 } P } \frac { f ( \zeta ) d \zeta _ { 1 } \ldots d \zeta _ { n } } { ( \zeta _ { 1 } - z _ { 1 } ) \ldots ( \zeta _ { n } - z _ { n } ) } , z \in P,$ ; confidence 0.186 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013084.png ; $\ | + | 263. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013084.png ; $\tilde { S } _ { n }$ ; confidence 0.186 |
264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120132.png ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186 | 264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120132.png ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186 | ||
− | 265. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090106.png ; $p ^ { | + | 265. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090106.png ; $p ^ { e_n}$ ; confidence 0.185 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080119.png ; $d | + | 266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080119.png ; $d \Omega _ { A }$ ; confidence 0.185 |
267. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001017.png ; $N B$ ; confidence 0.185 | 267. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001017.png ; $N B$ ; confidence 0.185 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301008.png ; $( l _ { | + | 268. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301008.png ; $( l _ { n } ) _ { n = 1 } ^ { \infty } $ ; confidence 0.185 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001085.png ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { | + | 269. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001085.png ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { t } [ G _ { \text { inn } } ]$ ; confidence 0.185 |
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230147.png ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185 | 270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230147.png ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185 | ||
− | 271. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032031.png ; $[ | + | 271. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032031.png ; $[ a , b ] = a b - ( - 1 ) ^ { p ( a ) p ( b ) } b a$ ; confidence 0.185 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185 | + | 272. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial \overline{z} _ { k }$ ; confidence 0.185 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032660/d0326606.png ; $x _ { 1 } , \dots , x _ { | + | 273. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032660/d0326606.png ; $x _ { 1 } , \dots , x _ { l }$ ; confidence 0.185 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029016.png ; $\hat { R } _ { R _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } R ^ { n }$ ; confidence 0.185 | + | 274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029016.png ; $\hat { R } _ { \hat{R} _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } {\bf R} ^ { n }$ ; confidence 0.185 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007029.png ; $\operatorname { | + | 275. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007029.png ; $\operatorname { Clif } ({\bf R} ^ { m } )$ ; confidence 0.185 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663058.png ; $H _ { p } ^ { | + | 276. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663058.png ; $H _ { p } ^ { r } ( {\bf R} ^ { n } )$ ; confidence 0.185 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007063.png ; $\delta : | + | 277. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007063.png ; $\delta : \operatorname{sl}_ { 2 } \rightarrow \operatorname{sl} _ { 2 } \otimes sl _ { 2 }$ ; confidence 0.185 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003025.png ; $\Omega ^ { \bullet } ( \tilde { M } _ { C } ) \ | + | 278. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003025.png ; $\Omega ^ { \bullet } ( \tilde {\bf M } _ {\bf C } ) \overset{\sim}{\rightarrow} \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , {\cal C} _ { \infty } ( \Gamma \backslash G ( {\bf R} ) \bigotimes {\cal M} _ {\bf C } ) ),$ ; confidence 0.185 |
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103207.png ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185 | 279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103207.png ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014041.png ; $E _ { | + | 280. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014041.png ; $\tilde{\bf E} _ { 8 }$ ; confidence 0.184 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850208.png ; $ | + | 281. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850208.png ; $x _ { \alpha }$ ; confidence 0.184 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100380.png ; $ | + | 282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100380.png ; $c_2$ ; confidence 0.184 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023092.png ; $E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184 | + | 283. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023092.png ; $X\backslash E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184 |
284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301006.png ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184 | 284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301006.png ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003024.png ; $g : I \rightarrow R ^ { m }$ ; confidence 0.184 | + | 285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003024.png ; $g : I \rightarrow {\bf R} ^ { m }$ ; confidence 0.184 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034019.png ; $S _ { | + | 286. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034019.png ; $S _ { 3 } ( M )$ ; confidence 0.184 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015043.png ; $Q [ \zeta _ { | + | 287. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015043.png ; ${\bf Q} [ \zeta _ { { e } } ]$ ; confidence 0.184 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060127.png ; $T ^ { \# } ( n ) \sim C _ { 0 } | + | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060127.png ; ${\cal T} ^ { \# } ( n ) \sim C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { as } n \rightarrow \infty ,$ ; confidence 0.184 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220136.png ; $r _ { D } \otimes R : H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } \otimes R \rightarrow H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.184 | + | 289. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220136.png ; $r _ {\cal D } \otimes {\bf R} : H _ {\cal M } ^ { i + 1 } ( X , {\bf Q} ( i + 1 - m ) ) _ {\bf Z } \otimes {\bf R} \rightarrow H _ {\cal D } ^ { i + 1 } ( X _ { / \bf R } , {\bf R} ( i + 1 - m ) )$ ; confidence 0.184 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011010.png ; $\alpha _ { | + | 290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011010.png ; $\alpha _ { x }$ ; confidence 0.184 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026050.png ; $x \rightarrow \| | + | 291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026050.png ; $x \rightarrow \| a x \| + \| a x \|$ ; confidence 0.184 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003010.png ; $f ^ { * } \in \text { | + | 292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003010.png ; $f ^ { * } \in \text { Hom}_{\text{alg} } ( H ^ { * } ( Y , {\bf F} _ { p } ) , H ^ { * } ( X , {\bf F} _ { p } ) )$ ; confidence 0.183 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029045.png ; $HF _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \ | + | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029045.png ; $\operatorname{HF} _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \overset{\simeq}{\rightarrow} HF _ { * } ^ { \text { symp } } ( {\cal M} ( P ) , {\cal L} _ { 0 } , {\cal L} _ { 1 } ).$ ; confidence 0.183 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001062.png ; $ | + | 294. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001062.png ; ${\bf P}^ { n^* }$ ; confidence 0.183 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050026.png ; $l ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } | + | 295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050026.png ; ${\bf l} ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } 1_{( x - \varepsilon , x + \varepsilon )} ( W _ { s } ) d s,$ ; confidence 0.183 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026072.png ; $ | + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026072.png ; $\tilde{y}$ ; confidence 0.183 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $ | + | 297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $r$ ; confidence 0.183 |
298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183 | 298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183 | ||
Line 598: | Line 598: | ||
299. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009078.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183 | 299. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009078.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183 | ||
− | 300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080100.png ; $\partial d S / \partial \ | + | 300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080100.png ; $\partial d S / \partial \alpha_j = d \omega_j$ ; confidence 0.183 |
Latest revision as of 11:48, 11 May 2020
List
1. ; $= \langle x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i + 1} } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \rangle.$ ; confidence 0.208
2. ; $R _ { n } [ f ]$ ; confidence 0.208
3. ; $w _ { i } ^ { ( t + 1 ) } = \mathsf{E} ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n,$ ; confidence 0.208
4. ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C ; A = B \bigcap C } m _ { E _ { 1 } } ( B ) .m _ { E _ { 2 } } ( C )$ ; confidence 0.208
5. ; ${\bf Z} _ { i j }$ ; confidence 0.208
6. ; $G$ ; confidence 0.208
7. ; $\odot$ ; confidence 0.208
8. ; $Z _ { p }$ ; confidence 0.208
9. ; $\tilde{v} ( \tilde{u} _ { 1 } ) \leq 0$ ; confidence 0.208
10. ; $\| . \| _ { k }$ ; confidence 0.208
11. ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } )$ ; confidence 0.208
12. ; $\operatorname{Re} z$ ; confidence 0.208
13. ; $e_1$ ; confidence 0.208
14. ; $c : a \rightarrow b$ ; confidence 0.207
15. ; $: = \{ B = [ b _ { i , j } ] : b _ { i , i } = a _ { i , i } , \text { and } r _ { i } ( B ) = r _ { i } ( A ) , 1 \leq i \leq n \}.$ ; confidence 0.207
16. ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { ij } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { m+1 } ^ { ( j ) } ],$ ; confidence 0.207
17. ; $\mathfrak{h} _ { n }$ ; confidence 0.207
18. ; $f : U \rightarrow {\bf R} ^ { n }$ ; confidence 0.207
19. ; $B _ { m } - B _ { n }$ ; confidence 0.207
20. ; $V _ { \xi } \subseteq_{ * } W$ ; confidence 0.207
21. ; $P _ { \theta ^ *} ( X _ { n - 1 }, d x )$ ; confidence 0.207
22. ; $x _ { n } \nearrow x \swarrow y _ { n }$ ; confidence 0.207
23. ; $T \rightarrow T | _ { P ^ { \prime } H}$ ; confidence 0.207
24. ; $( m , X _ { 1 } , \dots , X _ { s_i } ) ^ { c }$ ; confidence 0.207
25. ; $\xi = e ^ { i a\operatorname{ln} \tau } f$ ; confidence 0.207
26. ; $\left\lfloor \frac { n } { 2 } \right\rfloor \left\lfloor \frac { n - 1 } { 2 } \right\rfloor \left\lfloor \frac { m } { 2 } \right\rfloor \left\lfloor \frac { m - 1 } { 2 } \right\rfloor.$ ; confidence 0.206
27. ; $\overset{\rightharpoonup} { x } _ { j }$ ; confidence 0.206
28. ; $\frac { d N } { d t } = \lambda N \left( 1 - \left( \frac { N } { K } \right) ^ {a } \right),$ ; confidence 0.206
29. ; $p _ { n } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m } m ^ { - s }$ ; confidence 0.206
30. ; $r_1$ ; confidence 0.206
31. ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { |Y| = n } \mu ( Y )$ ; confidence 0.206
32. ; $f _ { i + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { i + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { i } ^ { n } ). } \end{array} \right.$ ; confidence 0.206
33. ; ${\bf q} _ { k }$ ; confidence 0.206
34. ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206
35. ; ${\bf C} \backslash \sigma _ { \text{lre} } ( T )$ ; confidence 0.206
36. ; $w ^ { * }$ ; confidence 0.206
37. ; $l ^ { p }$ ; confidence 0.206
38. ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205
39. ; $E ^ { * * }$ ; confidence 0.205
40. ; $\int _ { Y } \int_X f _ { X , Y } d X d Y = 1$ ; confidence 0.205
41. ; ${\frak A} [ D ]$ ; confidence 0.205
42. ; $= \{ z \in {\cal D} : \operatorname { lim\,inf } _ { w \rightarrow x } [ K _ {\cal D } ( z , w ) - K _ {\cal D } ( z_0 , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \},$ ; confidence 0.205
43. ; $\Delta _ { n } = \{ 0 , \dots , n \}$ ; confidence 0.205
44. ; $D ( \Delta ) = H _ { o } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205
45. ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : a \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1,$ ; confidence 0.205
46. ; $C _ { k }$ ; confidence 0.205
47. ; $= - I ^ { \kappa_a } ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { a },$ ; confidence 0.205
48. ; $h_* ^ { S }$ ; confidence 0.205
49. ; $H _ { i }$ ; confidence 0.205
50. ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { q } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205
51. ; $a = 1 , \dots , \text{l}$ ; confidence 0.205
52. ; $\kappa_2$ ; confidence 0.205
53. ; $ { h } \equiv 1$ ; confidence 0.204
54. ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \overline{D} \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.204
55. ; $x ^ { ( n ) } + a _ { n - 1} z ^ { ( n - 1 ) } + \dots + a _ { 0 } x = 0,$ ; confidence 0.204
56. ; $K , L \in {\cal K} ^ { n }$ ; confidence 0.204
57. ; $ { l } _ { 1 }$ ; confidence 0.204
58. ; $\xi |_ { A }$ ; confidence 0.204
59. ; $I _ { 1 }$ ; confidence 0.204
60. ; $\operatorname{CF} ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } },$ ; confidence 0.204
61. ; $\overline { b }_1$ ; confidence 0.204
62. ; ${\bf a}^ { ( t ) } = ( a _ { t } , a _ { t + 1} , \dots , a _ { n + t - 1 }) ( t \geq 0 )$ ; confidence 0.204
63. ; $T _ { n } T _ { m } = \sum _ { d | ( n , m ) } d ^ { k - 1 } T _ { m n / d^2 } ,$ ; confidence 0.203
64. ; $d$ ; confidence 0.203
65. ; $\int _ { I } | \varphi - \varphi _ { I } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203
66. ; $S\circ . = . \circ \Psi _ { B , B } \circ ( S \bigotimes S )$ ; confidence 0.203
67. ; $x = ( x _ { 1 } , \dots , x _ { n } ) \in {\bf T} ^ { n }$ ; confidence 0.203
68. ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { a } ^ { p }$ ; confidence 0.203
69. ; $a _ {i j k }$ ; confidence 0.203
70. ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203
71. ; $\hat { \psi } ( x , k ) \approx \begin{cases} { e ^ { - i k x } + b ( k ) e ^ { i k x } } & {\text { as } x \xrightarrow{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } \infty,} \\ { a ( k ) e ^ { - i k x } } & { \text { as } x \xrightarrow{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } - \infty.} \end{cases}$ ; confidence 0.203
72. ; $C ^ { n } ( {\cal C} , M ) = \prod _ { \langle \alpha _ { 1 } , \dots , \alpha _ { n } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0,$ ; confidence 0.202
73. ; $- E$ ; confidence 0.202
74. ; ${\cal L} _ { n }$ ; confidence 0.202
75. ; $\mathsf{E} [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda { b } ^ { ( 2 ) } + r ( P - \rho ) } { 2 ( 1 - \rho ) },$ ; confidence 0.202
76. ; $a , b \in A _ { m }$ ; confidence 0.202
77. ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202
78. ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x,$ ; confidence 0.202
79. ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}.$ ; confidence 0.202
80. ; $D x ^ { n }$ ; confidence 0.202
81. ; $( a _ { k } ) _ { k = 0 , \dots , N - 1}$ ; confidence 0.202
82. ; $\tilde {\bf Q }$ ; confidence 0.202
83. ; $x _ { n } \in \mathfrak { H }$ ; confidence 0.202
84. ; $\| d \| _ {\cal P M ^* } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201
85. ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1,$ ; confidence 0.201
86. ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201
87. ; $\int _ { {\cal S} ^ { \prime } ( {\bf R} ) } e ^ { i \langle x , \xi \rangle } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in {\cal S} ( {\bf R} )$ ; confidence 0.201
88. ; $( z _ { k } , \ldots , z _ { k + r - 1})$ ; confidence 0.201
89. ; $\operatorname{Vol}( M ) \leq v , | \text { sec. curv. } M | \leq \kappa,$ ; confidence 0.201
90. ; $a$ ; confidence 0.201
91. ; $\operatorname{Ch} ( \operatorname{ ind } ( P ) ) = ( - 1 ) ^ { n } \pi_{ *} ( \operatorname { ind } ( [ a ] ) {\cal T} ( M | B ) ).$ ; confidence 0.201
92. ; ${\cal P} _ { \text{E} } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { as } n\rightarrow \infty.$ ; confidence 0.201
93. ; $a _ { i1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m,$ ; confidence 0.201
94. ; $g_2 ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201
95. ; $e ^ { k .\operatorname { ln } k }$ ; confidence 0.201
96. ; $\mu ( 0 , x ) = - \sum _ { u } \mu ( 0 , u ),$ ; confidence 0.201
97. ; $\hat { E }_8$ ; confidence 0.201
98. ; $\langle {\bf M e} _ { {\cal S} _ { P }} \mathfrak { M } / \Omega F _ { {\cal S}_P } \mathfrak { M } , F _ { {\cal S} _ { P } } \mathfrak { M } / \Omega F _ { {\cal S} _ { P }} \mathfrak { M } \rangle$ ; confidence 0.201
99. ; $\aleph_1$ ; confidence 0.200
100. ; $\operatorname { mng }_{{\cal S} _ { P } , \mathfrak { M }} = \operatorname { mng }_{{\cal S} _ { P } , \mathfrak { M }} \circ h$ ; confidence 0.200
101. ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m,$ ; confidence 0.200
102. ; $\rho_f \left( 1 , u _ { f } , \frac { 1 } { 2 } | u_f | ^ { 2 } + \frac { N } { 2 } T _ { f } \right) = \int \left( 1 , v , \frac { | v |^ { 2 } } { 2 } \right) f ( v ) d v.$ ; confidence 0.200
103. ; $\operatorname{ord} _ { p } \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : {\bf Z} y _ { K } ].$ ; confidence 0.200
104. ; $\| e ^ { i \zeta \cal A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { r | \operatorname { Im } \zeta | }$ ; confidence 0.200
105. ; $\operatorname {mex} S= \operatorname { min } \overline{S} =$ ; confidence 0.200
106. ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { n / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) },$ ; confidence 0.200
107. ; $d = d + ( \alpha - ( y _ { n-1 } ^ { T } { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200
108. ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200
109. ; ${\frak h} ^ { e ^ { * } }$ ; confidence 0.200
110. ; $= \sum _ { j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }.$ ; confidence 0.200
111. ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { A } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200
112. ; $\hat { c } ^ { 2 }_k$ ; confidence 0.199
113. ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { h _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199
114. ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \bigcap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199
115. ; $| \overline{X} _ { n } | = \operatorname { sup } _ { t } | X _ { n } ( t ) |$ ; confidence 0.199
116. ; $\frac { 2 \nu_2 ^ { 2 }( \nu _ { 1 } + \nu _ { 2 } - 2 ) } { \nu _ { 1 } ( \nu _ { 2 } - 2 ) ^ { 2 } ( \nu _ { 2 } - 4 ) } \quad \text { for } \nu _ { 2 } > 4.$ ; confidence 0.199
117. ; $\iota_0$ ; confidence 0.199
118. ; $\mathsf {P} [ \tau \in I ] = | I | / ( 2 \pi )$ ; confidence 0.199
119. ; ${\cal S} \operatorname {q} ^ { i } x _ { n } = 0$ ; confidence 0.199
120. ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( u ) }$ ; confidence 0.199
121. ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199
122. ; $C ^ { k }$ ; confidence 0.199
123. ; $| V |$ ; confidence 0.199
124. ; $d_1$ ; confidence 0.199
125. ; $\left. \frac { d } { d t } {\cal A} ( \sigma _ { t } ) \right| _ { t = 0 } = \left. \frac { d } { d t } \int _ { M } \sigma ^ { k ^ { * } } \phi _ { t } ^ { k ^ { * } } ( L \Delta ) \right| _ { t = 0 } =$ ; confidence 0.198
126. ; $f : {\bf R} ^ { m } \rightarrow {\bf R} ^ { n }$ ; confidence 0.198
127. ; $\tilde{T} : {\bf C} ^ { m + 1 } \rightarrow {\bf C} ^ { n + 1 }$ ; confidence 0.198
128. ; $\forall x _ { 1 } \dots \forall x _ { n } ( P { x_1 \dots x _ { N }} \leftrightarrow \varphi ( x _ { 1 } , \ldots , x _ { n } ) )$ ; confidence 0.198
129. ; $\operatorname { Var } _ { \mathsf {P} _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198
130. ; $\operatorname {Alg} \operatorname {Mod} ^ { * S} { \cal D }$ ; confidence 0.198
131. ; $T _ { a }$ ; confidence 0.197
132. ; $( \varphi | _ { k } ^ { \mathbf{v} } M ) ( z ) = {\bf v} ( M ) ( cz + d ) ^ { - k } \varphi ( M z ).$ ; confidence 0.197
133. ; $a \neq 0 \in{\bf F}_ { q }$ ; confidence 0.197
134. ; $( z _ { k } , \ldots , z _ { k + r - 1} ) \neq ( 0 , \dots , 0 )$ ; confidence 0.197
135. ; $f = \vee _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \bigcup _ { j = i } ^ { n } A _ { i }.$ ; confidence 0.197
136. ; $\theta . w : = \sum ^ { 3 _{ j = 1}} \theta _ { j } w _ { j }$ ; confidence 0.197 NOTE: it would probably be better to write $\sum ^ { 3} _{ j = 1}$
137. ; $a _ { j } \in K$ ; confidence 0.197
138. ; $q _I( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { \substack {i \prec j} \\{j\in I\backslash \operatorname {max} I} } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } I } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197
139. ; $l _ { ab }$ ; confidence 0.196
140. ; $x \in N$ ; confidence 0.196
141. ; $\Delta f _ { i } = A _ { i , r + 1 } f _ { r + 1 } + \ldots + A _ {i , l } f _ { l },$ ; confidence 0.196
142. ; $\mathfrak { A } \equiv_l \mathfrak { B }$ ; confidence 0.196
143. ; $r_0$ ; confidence 0.196
144. ; $n, z_1, \dots, z_n$ ; confidence 0.196
145. ; $\beta _ { n , F }$ ; confidence 0.196
146. ; $g = e$ ; confidence 0.195
147. ; $( E _ { r } ^ { p q } , d _ { r } ^ { p q } )$ ; confidence 0.195
148. ; $U _ { q } ( {\frak g} ) = U _ { q } ( n _ { - } ) {\color{blue} \rtimes} H {\color{blue} \ltimes } U _ { q } ( n _ { + } )$ ; confidence 0.195
149. ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots,$ ; confidence 0.195
150. ; $( ( _- ) \otimes _ {{\bf F}_p } H ^ { * } B V ) :\cal U \rightarrow U$ ; confidence 0.195
151. ; $\Delta f = 1 \bigotimes f + x \bigotimes \partial _ { q } f +\dots$ ; confidence 0.195
152. ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195
153. ; ${\bf Alg}_\models ( {\cal L} )$ ; confidence 0.194
154. ; $g$ ; confidence 0.194
155. ; ${\bf c} _ { k }$ ; confidence 0.194
156. ; $\{ f ^ { a } \}$ ; confidence 0.194
157. ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194
158. ; $f _ { h } ( x ) = h ^ { - 1 } \int _ {\bf R } \varphi \left( \frac { t } { h } \right) f ( x - t ) d t.$ ; confidence 0.194
159. ; $\hat { f } ( \xi ) = \int _ { {\bf R} ^ { n } } e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194
160. ; $ c _ { i } \in \bf R$ ; confidence 0.194
161. ; $K _ { |e| } ( V )$ ; confidence 0.194
162. ; $ { I } _ { n }$ ; confidence 0.194
163. ; $\overline { D } _ { k } = U ( {\frak a} ) \otimes_{U ( {\frak p} )} \wedge ^ { k } ( {\frak a}/ \frak{p} )$ ; confidence 0.194
164. ; $\widetilde { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x },$ ; confidence 0.194
165. ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194
166. ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193
167. ; ${\cal M} ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / \bf R$ ; confidence 0.193
168. ; $l ^ { n }$ ; confidence 0.193
169. ; $x \mapsto e ^ { r x }$ ; confidence 0.193
170. ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193
171. ; $\operatorname{sl} _ { 2 } ( {\bf R} )$ ; confidence 0.193
172. ; $_ { S } \in {\bf R} ^ { 1 }$ ; confidence 0.193
173. ; $e ^ { i ( p {\cal D} + q {\cal X} + t I ) }$ ; confidence 0.193
174. ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } {\bf 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & \bf{ 0 } \end{array} \right),$ ; confidence 0.193
175. ; $a_1 , \dots , a _ { n }$ ; confidence 0.193
176. ; $W$ ; confidence 0.193
177. ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g \left( \oint _ { A _ { j } } d \hat { \Omega} _ { n } \right) d \omega _ { j }$ ; confidence 0.193
178. ; $A \stackrel { f } { \rightarrow } B = A \stackrel { e } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B,$ ; confidence 0.193
179. ; $V _ { q } ^ { p }$ ; confidence 0.193
180. ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \bigcap B , * ) , * ).$ ; confidence 0.193
181. ; $\widehat { \operatorname {CH} \square } ^ { p } ( X )$ ; confidence 0.193
182. ; $X ^ { \omega \chi ^ { - 1 }} = \{ x \in X : \delta . x = \omega \chi ^ { - 1 } ( \delta ) x \text{ for } \delta \in \Delta \},$ ; confidence 0.193
183. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } \mathsf {P} [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x.$ ; confidence 0.193
184. ; $V \subset {\bf C} ^ { m }$ ; confidence 0.192
185. ; $P = \bigcup _ { n _ { 1 } , \dots , n _ { k } , \dots } \bigcap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } \square \dots n _ { k }},$ ; confidence 0.192
186. ; $e_{ij}$ ; confidence 0.192
187. ; ${\bf P} ^ { m } \backslash X$ ; confidence 0.192
188. ; $( e _ { i } ) ^ { k } . v = 0 = ( f _ { i } ) ^ { k } . v$ ; confidence 0.192
189. ; $ { G } _ { i } \Theta _ { i }$ ; confidence 0.192
190. ; $\kappa_1$ ; confidence 0.192
191. ; $x _ { k }$ ; confidence 0.192
192. ; $L _ { n } = \operatorname {SU} ( 2 ) / {\bf Z} _ { n }$ ; confidence 0.192
193. ; $D _ { n } H_{*} \Omega ^ { \infty } X$ ; confidence 0.192
194. ; $v _ { i_1 } , \dots , v _ { i_k }$ ; confidence 0.191
195. ; $\{ \epsilon_l \}$ ; confidence 0.191
196. ; $p_2$ ; confidence 0.191
197. ; $R _ { c } ( p ; k , n )$ ; confidence 0.191
198. ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { | m | \leq R } \left( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m ),$ ; confidence 0.191
199. ; $( X _ { n } ) _ { n \in {\bf Z} ^ { d }}$ ; confidence 0.191
200. ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { for } n= 1, } \\ { \gamma > 0 } & { \text { for }n = 2, } \\ { \gamma \geq 0 } & { \text { for } n\geq 3. } \end{array} \right.$ ; confidence 0.191
201. ; $l = 1$ ; confidence 0.191
202. ; $\times \left[ \operatorname {CF} ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z \rangle ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \langle \overline { \zeta } , \zeta - z \rangle ] ^ { n } } \sigma _ { 0 } \right],$ ; confidence 0.191
203. ; $\langle p , q \rangle _ { s } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { \bf R } p ^ { ( i ) } q ^ { ( i ) } d \mu _ { i },$ ; confidence 0.190
204. ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } \nearrow } & { \vec { \phi _ { 3 } } } &{c_3} \end{array} \right. .$ ; confidence 0.190
205. ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - e ) } t ( G - e )$ ; confidence 0.190
206. ; $\psi ^ { ( n ) } ( z ) = ( - 1 ) ^ { n + 1 } n ! \zeta ( n + 1 , z ),$ ; confidence 0.190
207. ; $\left( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } \right) v = 0.$ ; confidence 0.190
208. ; $h = ( h _ { 1 } , \dots , h _ { m } ) \in N ^ { m } \subset A ^ { m }$ ; confidence 0.190
209. ; $ { i } \leq n$ ; confidence 0.190
210. ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n,$ ; confidence 0.190
211. ; $w ^ { \text{em} } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( {\bf E} ^ { 2 } + {\bf B} ^ { 2 } ) - \nabla . ( {\bf S} - v ( {\bf P}.{\bf E}) ),$ ; confidence 0.190
212. ; $( \alpha _ { j + k} ) _ { j , k \geq 0}$ ; confidence 0.190
213. ; $\|v\|_{A_p (G)} \leq \| u \| _ { A_p(H) } + \epsilon$ ; confidence 0.190
214. ; $e ^ { - t A }x = \operatorname { lim } _ { n \rightarrow \infty } \left( I + \frac { t } { n } A \right) ^ { - n } x = S ( t ) x , \forall x \in X,$ ; confidence 0.189
215. ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189
216. ; $\operatorname {I} ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) .\operatorname { l}_ { A } ( H _ {\frak m } ^ { i } ( M ) )$ ; confidence 0.189
217. ; $h : = \operatorname { max } _ { n \in \bf N } \{ \sigma _ { n } - n \}$ ; confidence 0.189
218. ; $\Lambda _ { \cal D } T$ ; confidence 0.189
219. ; $I _ { \nu }$ ; confidence 0.189
220. ; $t _ { n+1/2 } = t _ { n } + k / 2$ ; confidence 0.189
221. ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189
222. ; $r _ { i } > 0$ ; confidence 0.188
223. ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188
224. ; $H _ { K } ^ { n } ( D ^ { n } + i {\bf R} ^ { n } , \tilde {\cal O } )$ ; confidence 0.188
225. ; $= \left( 3 ^ { d + 1} \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } \right),$ ; confidence 0.188
226. ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ a ( x ) : f ( x ) = y \},$ ; confidence 0.188
227. ; $\tau ( \sum a _ { i j }\overline{z} ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188
228. ; $\dot { x } = A x , \quad x \in {\bf R} ^ { n },$ ; confidence 0.188
229. ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} },$ ; confidence 0.188
230. ; $\overline{c} ^ { a } ( x ) \overline{c} ^ { b } ( y ) = - \overline{c} ^ { b } ( y ) \overline{c} ^ { a } ( x ).$ ; confidence 0.188
231. ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau );$ ; confidence 0.188
232. ; $\underline{\operatorname { lim }} \leftarrow ^ { n }$ ; confidence 0.188
233. ; $\mathfrak { A } ^ { * S} = \mathfrak { A }$ ; confidence 0.188
234. ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq \mathsf{P} ( A _ { 1 } \bigcup \ldots \bigcup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k },$ ; confidence 0.188
235. ; $\text{iff } \Gamma \vdash _ {\cal D } \Delta ( \varphi , \psi ).$ ; confidence 0.188
236. ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n },$ ; confidence 0.187
237. ; $D _ { k } ^ { * }$ ; confidence 0.187
238. ; $|.|_p$ ; confidence 0.187
239. ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { {\bf R} ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi,$ ; confidence 0.187
240. ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) _j} { ( - k - l - \alpha )_j j ! } r ^ { k + l - 2 j }.$ ; confidence 0.187
241. ; $( \Delta \bigotimes \text { id } ) {\cal R} = {\cal R} _ { 13 } {\cal R} _ { 23 } , ( \text { id } \bigotimes \Delta ) {\cal R} = {\cal R} _ { 13 } {\cal R} _ { 12 },$ ; confidence 0.187
242. ; ${\cal O} = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
243. ; $+ \frac { 1 } { 2 a } \int _ { x - a t } ^ { x + a t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ].$ ; confidence 0.187
244. ; $\tilde{x}_ - = ( x_ - , u_ - )$ ; confidence 0.187
245. ; $\left\{ \text { ad } e _ { - 1} ^ { p^k } : 0 < k < m \right\}$ ; confidence 0.187
246. ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ), } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) ,} \end{array} \right\}$ ; confidence 0.187
247. ; ${\bf G} ^ { \text{em} } = {\bf G}^ { \text{em}.f },$ ; confidence 0.187
248. ; $\text{G}$ ; confidence 0.187
249. ; $a _ { m p ^ r} \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187
250. ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187
251. ; $\tilde { H } ^ { 1 } = \tilde { H } ^ { 1 } ( \Gamma , k , {\bf v} ; P ( k ) )$ ; confidence 0.187
252. ; $ { c } _ { k } ^ { \prime }$ ; confidence 0.187
253. ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } g_{ij} \langle y _ { m + i - 1} , y _ { m + j - 1} \rangle.$ ; confidence 0.187
254. ; $+ ( 1 - \mu _ { x + t }d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t ),$ ; confidence 0.187
255. ; ${\frak gl} ( n , {\bf C} )$ ; confidence 0.187
256. ; ${\bf Z} [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.187
257. ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( {\cal D} ) } \int _ { \partial \cal D } f ( \zeta ) \nu ( \zeta - a ) = f ( a ).$ ; confidence 0.186
258. ; $= ( F ( . ) , ( h ( .. , y ) , ( h (. , x ) , h ( .. , x ) ) _ { H } ) _ {\cal H } ) _ {\cal H } =$ ; confidence 0.186
259. ; $\alpha _ { 1 } , \dots , \alpha _ { \kappa }$ ; confidence 0.186
260. ; $H ^ { n } ( {\cal C} , M ) = \underline{\operatorname { lim }} \leftarrow ^ { n } M,$ ; confidence 0.186
261. ; $\tau _ { p }$ ; confidence 0.186
262. ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n} } \int _ { b _ { 0 } P } \frac { f ( \zeta ) d \zeta _ { 1 } \ldots d \zeta _ { n } } { ( \zeta _ { 1 } - z _ { 1 } ) \ldots ( \zeta _ { n } - z _ { n } ) } , z \in P,$ ; confidence 0.186
263. ; $\tilde { S } _ { n }$ ; confidence 0.186
264. ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186
265. ; $p ^ { e_n}$ ; confidence 0.185
266. ; $d \Omega _ { A }$ ; confidence 0.185
267. ; $N B$ ; confidence 0.185
268. ; $( l _ { n } ) _ { n = 1 } ^ { \infty } $ ; confidence 0.185
269. ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { t } [ G _ { \text { inn } } ]$ ; confidence 0.185
270. ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185
271. ; $[ a , b ] = a b - ( - 1 ) ^ { p ( a ) p ( b ) } b a$ ; confidence 0.185
272. ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial \overline{z} _ { k }$ ; confidence 0.185
273. ; $x _ { 1 } , \dots , x _ { l }$ ; confidence 0.185
274. ; $\hat { R } _ { \hat{R} _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } {\bf R} ^ { n }$ ; confidence 0.185
275. ; $\operatorname { Clif } ({\bf R} ^ { m } )$ ; confidence 0.185
276. ; $H _ { p } ^ { r } ( {\bf R} ^ { n } )$ ; confidence 0.185
277. ; $\delta : \operatorname{sl}_ { 2 } \rightarrow \operatorname{sl} _ { 2 } \otimes sl _ { 2 }$ ; confidence 0.185
278. ; $\Omega ^ { \bullet } ( \tilde {\bf M } _ {\bf C } ) \overset{\sim}{\rightarrow} \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , {\cal C} _ { \infty } ( \Gamma \backslash G ( {\bf R} ) \bigotimes {\cal M} _ {\bf C } ) ),$ ; confidence 0.185
279. ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185
280. ; $\tilde{\bf E} _ { 8 }$ ; confidence 0.184
281. ; $x _ { \alpha }$ ; confidence 0.184
282. ; $c_2$ ; confidence 0.184
283. ; $X\backslash E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184
284. ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184
285. ; $g : I \rightarrow {\bf R} ^ { m }$ ; confidence 0.184
286. ; $S _ { 3 } ( M )$ ; confidence 0.184
287. ; ${\bf Q} [ \zeta _ { { e } } ]$ ; confidence 0.184
288. ; ${\cal T} ^ { \# } ( n ) \sim C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { as } n \rightarrow \infty ,$ ; confidence 0.184
289. ; $r _ {\cal D } \otimes {\bf R} : H _ {\cal M } ^ { i + 1 } ( X , {\bf Q} ( i + 1 - m ) ) _ {\bf Z } \otimes {\bf R} \rightarrow H _ {\cal D } ^ { i + 1 } ( X _ { / \bf R } , {\bf R} ( i + 1 - m ) )$ ; confidence 0.184
290. ; $\alpha _ { x }$ ; confidence 0.184
291. ; $x \rightarrow \| a x \| + \| a x \|$ ; confidence 0.184
292. ; $f ^ { * } \in \text { Hom}_{\text{alg} } ( H ^ { * } ( Y , {\bf F} _ { p } ) , H ^ { * } ( X , {\bf F} _ { p } ) )$ ; confidence 0.183
293. ; $\operatorname{HF} _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \overset{\simeq}{\rightarrow} HF _ { * } ^ { \text { symp } } ( {\cal M} ( P ) , {\cal L} _ { 0 } , {\cal L} _ { 1 } ).$ ; confidence 0.183
294. ; ${\bf P}^ { n^* }$ ; confidence 0.183
295. ; ${\bf l} ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } 1_{( x - \varepsilon , x + \varepsilon )} ( W _ { s } ) d s,$ ; confidence 0.183
296. ; $\tilde{y}$ ; confidence 0.183
297. ; $r$ ; confidence 0.183
298. ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
299. ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183
300. ; $\partial d S / \partial \alpha_j = d \omega_j$ ; confidence 0.183
Maximilian Janisch/latexlist/latex/NoNroff/72. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/72&oldid=44826