Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/62"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 62 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
 
(5 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
1. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300206.png ; $e ^ { \pi }$ ; confidence 0.439
 
1. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300206.png ; $e ^ { \pi }$ ; confidence 0.439
  
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230122.png ; $E ( X ) = 0$ ; confidence 0.439
+
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230122.png ; $\mathsf{E} ( X ) = 0$ ; confidence 0.439
  
3. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110140.png ; $a b + \frac { 1 } { 2 c } \{ a , b \}$ ; confidence 0.439
+
3. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110140.png ; $a b + \frac { 1 } { 2 \iota} \{ a , b \},$ ; confidence 0.439
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040671.png ; $\{ X , v \}$ ; confidence 0.439
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040671.png ; $\langle X , v \rangle$ ; confidence 0.439
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650260.png ; $f _ { 1 } , \ldots , f _ { x }$ ; confidence 0.439
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650260.png ; $f _ { 1 } , \ldots , f _ { n }$ ; confidence 0.439
  
6. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011091.png ; $\dot { v }$ ; confidence 0.439
+
6. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011091.png ; $\dot { v }_i$ ; confidence 0.439
  
7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006017.png ; $Q ( A ) = \sum _ { B ; A \subseteq B m ( B ) }$ ; confidence 0.439
+
7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006017.png ; $Q ( A ) = \sum _ { B ; A \subseteq B} m ( B ) $ ; confidence 0.439
  
8. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060107.png ; $\sigma ( A ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A )$ ; confidence 0.439
+
8. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060107.png ; $\sigma ( A ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ).$ ; confidence 0.439
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300205.png ; $X \subset R ^ { n }$ ; confidence 0.439
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300205.png ; $X \subset {\bf R} ^ { n }$ ; confidence 0.439
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180261.png ; $\{ \otimes ^ { * } \varepsilon , \nabla \}$ ; confidence 0.439
+
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180261.png ; $\{ \otimes ^ { * } {\cal E} , \nabla \}$ ; confidence 0.439
  
 
11. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027058.png ; $\{ a _ { n } \}$ ; confidence 0.439
 
11. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027058.png ; $\{ a _ { n } \}$ ; confidence 0.439
  
12. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090286.png ; $y ^ { + }$ ; confidence 0.439
+
12. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090286.png ; $v ^ { + }$ ; confidence 0.439
  
13. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001065.png ; $L ( G ) = [ k ; ]$ ; confidence 0.438
+
13. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001065.png ; $L ( G ) = [ l_{ij} ]$ ; confidence 0.438
  
 
14. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970204.png ; $X ( t _ { 1 } )$ ; confidence 0.438
 
14. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970204.png ; $X ( t _ { 1 } )$ ; confidence 0.438
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040344.png ; $F \in \operatorname{Fi} _ {\cal D } \bf A$ ; confidence 0.438
  
16. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023022.png ; $( D . Z _ { 1 } ) = ( D . Z _ { 2 } ) \in R$ ; confidence 0.438
+
16. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023022.png ; $( D . Z _ { 1 } ) = ( D . Z _ { 2 } ) \in \bf R$ ; confidence 0.438
  
17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007036.png ; $( a )$ ; confidence 0.438
+
17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007036.png ; $\langle a \rangle$ ; confidence 0.438
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180222.png ; $h . k = ( \theta \otimes \varphi - \varphi \otimes \theta ) \otimes ( \theta \otimes \varphi - \varphi \otimes \theta ) \in$ ; confidence 0.438
+
18. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180222.png ; $h . k = ( \theta \bigotimes \varphi - \varphi \bigotimes \theta ) \bigotimes ( \theta \bigotimes \varphi - \varphi \bigotimes \theta ) \in$ ; confidence 0.438
  
19. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026034.png ; $0$ ; confidence 0.438
+
19. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026034.png ; $\partial_t$ ; confidence 0.438
  
20. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200203.png ; $II _ { s + 2,2 }$ ; confidence 0.438
+
20. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200203.png ; $\text{II} _ { s + 2,2 }$ ; confidence 0.438
  
21. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200206.png ; $\times G _ { p + 2 , q } ^ { m , n + 2 } \left( \begin{array} { c } { 1 - \mu + i \tau , 1 - \mu - i \tau , ( \alpha _ { p } ) } \\ { ( \beta _ { q } ) } \end{array} \right) , f ( x ) = \frac { 1 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.438
+
21. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200206.png ; $\times G _ { p + 2 , q } ^ { m , n + 2 } \left( x \Bigg| \begin{array} { c } { 1 - \mu + i \tau , 1 - \mu - i \tau , ( \alpha _ { p } ) } \\ { ( \beta _ { q } ) } \end{array} \right) , f ( x ) = \frac { 1 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) F ( \tau ) d \tau\times$ ; confidence 0.438
  
22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040114.png ; $x _ { x } \downarrow 0$ ; confidence 0.438
+
22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040114.png ; $x _ { n } \downarrow 0$ ; confidence 0.438
  
23. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010097.png ; $y \in X$ ; confidence 0.438
+
23. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010097.png ; $y \in x$ ; confidence 0.438
  
 
24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438
 
24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438
  
25. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438
+
25. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $u \in {\bf C} ^ { G }$ ; confidence 0.438
  
26. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040136.png ; $N ( S )$ ; confidence 0.438
+
26. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040136.png ; ${\bf M} ( S )$ ; confidence 0.438
  
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201002.png ; $F _ { N } ( t )$ ; confidence 0.438
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201002.png ; $F _ { n } ( t )$ ; confidence 0.438
  
28. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311023.png ; $2 ^ { i ^ { n } }$ ; confidence 0.438
+
28. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311023.png ; $2 ^ {k}$ ; confidence 0.438
  
29. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003024.png ; $\omega _ { x } = n$ ; confidence 0.438
+
29. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003024.png ; $\omega _ { n } = n$ ; confidence 0.438
  
30. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001051.png ; $\overline { d } _ { \langle k , 1 ^ { n - k } \rangle }$ ; confidence 0.438
+
30. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001051.png ; $\overline { d } _ { ( k , 1 ^ { n - k } ) }$ ; confidence 0.438
  
 
31. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006074.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma }$ ; confidence 0.438
 
31. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006074.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma }$ ; confidence 0.438
  
32. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040500/f04050011.png ; $m ^ { 2 }$ ; confidence 0.437
+
32. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040500/f04050011.png ; $m _ { 2 }$ ; confidence 0.437
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060185.png ; $T _ { d }$ ; confidence 0.437
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060185.png ; $T _ { \phi }$ ; confidence 0.437
  
34. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011065.png ; $\frac { \mu _ { \aleph } ( x ) } { \mu _ { N } } \approx \frac { 1 } { ( a + b x ) ^ { 2 } }$ ; confidence 0.437
+
34. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011065.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \approx \frac { 1 } { ( a + b x ) ^ { 2 } }$ ; confidence 0.437
  
35. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m0622206.png ; $\Omega ^ { \alpha } = \lambda _ { i } ^ { \alpha } \Omega ^ { i } , \quad \Delta \lambda _ { i } ^ { \alpha } \wedge \Omega ^ { i } = 0 , \quad i , j = 1 , \ldots , m$ ; confidence 0.437
+
35. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m0622206.png ; $\Omega ^ { a } = \lambda _ { i } ^ { a } \Omega ^ { i } , \quad \Delta \lambda _ { i } ^ { a } \bigwedge \Omega ^ { i } = 0 , \quad i , j = 1 , \ldots , m;$ ; confidence 0.437
  
36. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009015.png ; $\tilde { n } _ { 1 } \ldots \tilde { n } _ { k }$ ; confidence 0.437
+
36. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009015.png ; $\tilde { h } _ { 1 } \ldots \tilde { h } _ { k }$ ; confidence 0.437
  
37. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010120.png ; $\square _ { A ( R ) } c ^ { A / R }$ ; confidence 0.437
+
37. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010120.png ; $\square _ { A ( R ) } {\cal C} ^ { A ( R) }$ ; confidence 0.437
  
 
38. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201209.png ; $\phi$ ; confidence 0.437
 
38. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201209.png ; $\phi$ ; confidence 0.437
Line 80: Line 80:
 
40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051016.png ; $\lambda = \beta ^ { m }$ ; confidence 0.437
 
40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051016.png ; $\lambda = \beta ^ { m }$ ; confidence 0.437
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180157.png ; $C A _ { 3 }$ ; confidence 0.437
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180157.png ; ${\bf C A} _ { 3 }$ ; confidence 0.437
  
 
42. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200307.png ; $A \stackrel { x } { \rightarrow } B \stackrel { t } { \rightarrow } B$ ; confidence 0.437
 
42. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200307.png ; $A \stackrel { x } { \rightarrow } B \stackrel { t } { \rightarrow } B$ ; confidence 0.437
  
43. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008075.png ; $z _ { t }$ ; confidence 0.437
+
43. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008075.png ; ${\bf Z}_+$ ; confidence 0.437
  
 
44. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003021.png ; $\lambda _ { n } = n ^ { 2 }$ ; confidence 0.437
 
44. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003021.png ; $\lambda _ { n } = n ^ { 2 }$ ; confidence 0.437
  
45. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500082.png ; $\{ \xi ( t ) \} _ { t \in [ x , b ] }$ ; confidence 0.437
+
45. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500082.png ; $\{ \xi ( t ) \} _ { t \in [ a , b ] }$ ; confidence 0.437
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020085.png ; $T \in X$ ; confidence 0.437
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020085.png ; $T \in \cal X$ ; confidence 0.437
  
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220102.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = \sum _ { n = 1 } ^ { \infty } \delta ( t - t _ { n } ) ( M _ { f } n - - f ^ { n - } )$ ; confidence 0.437
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220102.png ; $\partial _ { t } f + a ( \xi ) . \nabla _ { x } f = \sum _ { n = 1 } ^ { \infty } \delta ( t - t _ { n } ) ( M _ { f ^{ n -}} - f ^ { n - } ),$ ; confidence 0.437
  
 
48. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041130/f04113013.png ; $\{ c _ { n } \}$ ; confidence 0.437
 
48. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041130/f04113013.png ; $\{ c _ { n } \}$ ; confidence 0.437
  
49. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201409.png ; $D _ { N } ( x , a ) = ( \frac { x + \sqrt { x ^ { 2 } - 4 a } } { 2 } ) ^ { n } + ( \frac { x - \sqrt { x ^ { 2 } - 4 a } } { 2 } ) ^ { n }$ ; confidence 0.437
+
49. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201409.png ; $D _ { n } ( x , a ) = \left( \frac { x + \sqrt { x ^ { 2 } - 4 a } } { 2 } \right) ^ { n } + \left( \frac { x - \sqrt { x ^ { 2 } - 4 a } } { 2 } \right) ^ { n }.$ ; confidence 0.437
  
50. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300103.png ; $\kappa ( z ) = Z ( x ( n ) ) = \sum _ { j = 0 } ^ { \infty } x ( j ) z ^ { - j }$ ; confidence 0.437
+
50. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300103.png ; $\tilde{x} ( z ) = Z ( x ( n ) ) = \sum _ { j = 0 } ^ { \infty } x ( j ) z ^ { - j },$ ; confidence 0.437
  
51. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202005.png ; $\lambda _ { i } \in Z$ ; confidence 0.437
+
51. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202005.png ; $\lambda _ { i } \in \bf Z$ ; confidence 0.437
  
 
52. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012046.png ; $x ^ { n } - n \sigma x ^ { n - 1 }$ ; confidence 0.437
 
52. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012046.png ; $x ^ { n } - n \sigma x ^ { n - 1 }$ ; confidence 0.437
  
53. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003050.png ; $U \}$ ; confidence 0.436
+
53. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003050.png ; ${\cal U} \}$ ; confidence 0.436 NOTE: should the parentesis be opened?
  
 
54. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004014.png ; $t = t ^ { 0 } , \dots , t ^ { n } , \dots$ ; confidence 0.436
 
54. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004014.png ; $t = t ^ { 0 } , \dots , t ^ { n } , \dots$ ; confidence 0.436
  
55. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f1201003.png ; $SL ( 2 , Z )$ ; confidence 0.436
+
55. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f1201003.png ; $\operatorname{SL} ( 2 , {\bf Z} )$ ; confidence 0.436
  
56. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015380/b0153801.png ; $A _ { 1 } , \ldots , A _ { N }$ ; confidence 0.436
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015380/b0153801.png ; $A _ { 1 } , \ldots , A _ { n }$ ; confidence 0.436
  
57. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011028.png ; $x _ { i } ^ { x _ { i } }$ ; confidence 0.436
+
57. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011028.png ; $x _ { i } ^ {\color{blue} *}$ ; confidence 0.436
  
58. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006085.png ; $p ^ { \gamma } - 1$ ; confidence 0.436
+
58. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006085.png ; $p ^ { r } - 1$ ; confidence 0.436
  
59. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002016.png ; $= 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) | \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } | f ( \tau ) | ^ { 2 } d \tau$ ; confidence 0.436
+
59. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002016.png ; $= 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau.$ ; confidence 0.436
  
60. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840170.png ; $A | _ { R } \langle E _ { \lambda } \rangle$ ; confidence 0.436
+
60. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840170.png ; $A | _ { {\cal R} ( E _ { \lambda } )}$ ; confidence 0.436
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030048.png ; $\psi ( y ; \eta ) = e ^ { i \eta y } \phi ( y ; \eta )$ ; confidence 0.436
+
61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030048.png ; $\psi ( y ; \eta ) = e ^ { i \eta .y } \phi ( y ; \eta )$ ; confidence 0.436
  
62. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011028.png ; $C ( 4 )$ ; confidence 0.436
+
62. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011028.png ; ${\bf C} ( 4 )$ ; confidence 0.436
  
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017086.png ; $Z _ { 2 } \times Z _ { 4 }$ ; confidence 0.435
+
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017086.png ; ${\bf Z} _ { 2 } \times {\bf Z} _ { 4 }$ ; confidence 0.435
  
 
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024030.png ; $n \times p$ ; confidence 0.435
 
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024030.png ; $n \times p$ ; confidence 0.435
Line 130: Line 130:
 
65. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240109.png ; $K _ { 2 } ^ { M } ( Y ( N ) )$ ; confidence 0.435
 
65. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240109.png ; $K _ { 2 } ^ { M } ( Y ( N ) )$ ; confidence 0.435
  
66. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260100.png ; $f _ { x } ^ { x }$ ; confidence 0.435
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260100.png ; $f _ { n } ^ { * }$ ; confidence 0.435
  
 
67. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070169.png ; $\delta ( P )$ ; confidence 0.435
 
67. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070169.png ; $\delta ( P )$ ; confidence 0.435
  
68. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002096.png ; $E [ X _ { 0 } ] + E [ X _ { \infty } \operatorname { log } + \frac { X _ { \infty } } { E [ X _ { 0 } ] } ] \leq$ ; confidence 0.435
+
68. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002096.png ; $\mathsf{E} [ X _ { 0 } ] + \mathsf{E} \left[ X _ { \infty } \operatorname { log }^+ \frac { X _ { \infty } } { \mathsf{E} [ X _ { 0 } ] } \right] \leq$ ; confidence 0.435
  
69. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008033.png ; $_ { n } = \prod _ { i = 1 } ^ { n } ( a + i - 1 )$ ; confidence 0.435
+
69. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008033.png ; $(a)_ { n } = \prod _ { i = 1 } ^ { n } ( a + i - 1 )$ ; confidence 0.435
  
70. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
+
70. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } ).$ ; confidence 0.435
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002013.png ; $\partial _ { x } a$ ; confidence 0.435
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002013.png ; $\partial _ { x ^\alpha}$ ; confidence 0.435
  
72. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840306.png ; $K _ { 2 }$ ; confidence 0.435
+
72. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840306.png ; ${\cal K} _ { 2 }$ ; confidence 0.435
  
73. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023077.png ; $\| . \| *$ ; confidence 0.435
+
73. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023077.png ; $\| . \|_{*}$ ; confidence 0.435
  
74. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008096.png ; $n = n / + n 2$ ; confidence 0.435
+
74. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008096.png ; $n = n_l+ n_2$ ; confidence 0.435
  
75. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026020.png ; $f ^ { ( n ) } \in L ^ { 2 } \overline { ( R ^ { n } ) }$ ; confidence 0.435
+
75. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026020.png ; $f ^ { ( n ) } \in L ^ { 2 } \widehat { ( {\bf R} ^ { n } ) }$ ; confidence 0.435
  
 
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b1202706.png ; $X _ { 1 } , X _ { 2 } , \ldots$ ; confidence 0.435
 
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b1202706.png ; $X _ { 1 } , X _ { 2 } , \ldots$ ; confidence 0.435
Line 154: Line 154:
 
77. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023088.png ; $L = 0$ ; confidence 0.435
 
77. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023088.png ; $L = 0$ ; confidence 0.435
  
78. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008099.png ; $| \varphi ; ( x ) | < c$ ; confidence 0.435
+
78. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008099.png ; $| \varphi_j ( x ) | < c$ ; confidence 0.435
  
79. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063040/m06304038.png ; $\{ c _ { t } \}$ ; confidence 0.435
+
79. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063040/m06304038.png ; $\{ c _ { k } \}$ ; confidence 0.435
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007032.png ; $BS ( 1 , n ) = \langle \alpha , b | \alpha ^ { - 1 } b \alpha = b ^ { n } \rangle$ ; confidence 0.435
+
80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007032.png ; $\operatorname{BS} ( 1 , n ) = \left\langle a , b | a ^ { - 1 } b a = b ^ { n } \right\rangle$ ; confidence 0.435
  
81. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007080.png ; $A = ( A _ { 1 } , \dots , A _ { k } )$ ; confidence 0.435
+
81. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007080.png ; ${\cal A} = ( A _ { 1 } , \dots , A _ { k } )$ ; confidence 0.435
  
 
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020031.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | g _ { 1 } ( k ) | } { M _ { d } ( k ) }$ ; confidence 0.434
 
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020031.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | g _ { 1 } ( k ) | } { M _ { d } ( k ) }$ ; confidence 0.434
Line 166: Line 166:
 
83. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200604.png ; $Q _ { 1 } , \dots , Q _ { k }$ ; confidence 0.434
 
83. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200604.png ; $Q _ { 1 } , \dots , Q _ { k }$ ; confidence 0.434
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049035.png ; $\{ E _ { n } , \}$ ; confidence 0.434
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049035.png ; $\{ E _ { n_j} \}$ ; confidence 0.434
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060143.png ; $\pi$ ; confidence 0.434
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060143.png ; $\cal I$ ; confidence 0.434
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $x$ ; confidence 0.434
  
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
+
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \bigcup _ { n \geq 0 } k _ { n },$ ; confidence 0.434
  
88. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034025.png ; $SH ^ { * } ( M , \omega , L _ { 1 } , L _ { 2 } ) \otimes SH ^ { * } ( M , \omega , L _ { 2 } , L _ { 3 } ) \rightarrow SH ^ { * } ( M , \omega , L _ { 1 } , L _ { 3 } )$ ; confidence 0.434
+
88. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034025.png ; $\operatorname{SH} ^ { * } ( M , \omega , L _ { 1 } , L _ { 2 } ) \bigotimes \operatorname{SH} ^ { * } ( M , \omega , L _ { 2 } , L _ { 3 } ) \rightarrow \operatorname{SH} ^ { * } ( M , \omega , L _ { 1 } , L _ { 3 } ),$ ; confidence 0.434
  
89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001052.png ; $F _ { q } [ x ] / ( f )$ ; confidence 0.434
+
89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001052.png ; ${\bf F} _ { q } [ x ] / ( f )$ ; confidence 0.434
  
90. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015012.png ; $\left\{ \begin{array} { l } { x \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } ) , \quad i = 1 , \ldots , n } \\ { \overline { t } = t } \end{array} \right.$ ; confidence 0.434
+
90. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015012.png ; $\text{(A)} \left\{ \begin{array} { l } { \overline{x} \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } ) , \quad i = 1 , \ldots , n, } \\ { \overline { t } = t .} \end{array} \right.$ ; confidence 0.434
  
91. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041420/f04142066.png ; $A _ { x y }$ ; confidence 0.434
+
91. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041420/f04142066.png ; $A _ { m }$ ; confidence 0.434
  
 
92. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006017.png ; $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ ; confidence 0.434
 
92. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006017.png ; $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ ; confidence 0.434
  
93. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001024.png ; $c ( x ) = \tau$ ; confidence 0.434
+
93. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001024.png ; $c ( x ) = \bar{c}$ ; confidence 0.434
  
94. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022050.png ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in SL _ { 2 } ( Z )$ ; confidence 0.434
+
94. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022050.png ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in \operatorname{SL} _ { 2 } ( {\bf Z} ).$ ; confidence 0.434
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037062.png ; $C _ { E _ { 2 } } ( f ) \leq \frac { 2 ^ { n } } { n } ( 1 + o ( 1 ) )$ ; confidence 0.434
+
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037062.png ; $C _ { B _ { 2 } } ( f ) \leq \frac { 2 ^ { n } } { n } ( 1 + o ( 1 ) ),$ ; confidence 0.434
  
96. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110102.png ; $U \cap C ^ { x }$ ; confidence 0.434
+
96. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110102.png ; $U \cap {\bf C} ^ { n }$ ; confidence 0.434
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021059.png ; $Z ( g )$ ; confidence 0.433
+
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021059.png ; $Z ( {\frak g} )$ ; confidence 0.433
  
98. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050101.png ; $\imath 1 = n - p$ ; confidence 0.433
+
98. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050101.png ; $i_ 1 = n - p$ ; confidence 0.433
  
99. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016039.png ; $( S ^ { 1 } ) / SL ( 2 , R )$ ; confidence 0.433
+
99. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016039.png ; $\operatorname{Diff} ( S ^ { 1 } ) / \operatorname{SL} ( 2 , {\bf R} )$ ; confidence 0.433
  
 
100. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015054.png ; $O ( \varepsilon ^ { q } )$ ; confidence 0.433
 
100. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015054.png ; $O ( \varepsilon ^ { q } )$ ; confidence 0.433
  
101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026061.png ; $U _ { 0 } ^ { n } = U _ { j } ^ { n } = 0$ ; confidence 0.433
+
101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026061.png ; $U _ { 0 } ^ { n } = U _ { J } ^ { n } = 0$ ; confidence 0.433
  
 
102. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008057.png ; $d \tilde { \Omega } = d \lambda + O ( \lambda ^ { - 2 } ) d \lambda$ ; confidence 0.433
 
102. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008057.png ; $d \tilde { \Omega } = d \lambda + O ( \lambda ^ { - 2 } ) d \lambda$ ; confidence 0.433
  
103. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140123.png ; $q R = q d$ ; confidence 0.433
+
103. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140123.png ; $q_R = q_Q$ ; confidence 0.433
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026840/c02684012.png ; $GL ( V )$ ; confidence 0.433
+
104. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026840/c02684012.png ; $\operatorname{GL} ( V )$ ; confidence 0.433
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060281.png ; $A ^ { x }$ ; confidence 0.433
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060281.png ; $A ^ { n }$ ; confidence 0.433
  
106. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090163.png ; $\dot { k }$ ; confidence 0.433
+
106. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090163.png ; $ { k }_\chi$ ; confidence 0.433
  
107. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433
+
107. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003027.png ; $X.( Y . f ) = ( Y X ) . f$ ; confidence 0.433
  
108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001013.png ; $R s$ ; confidence 0.433
+
108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001013.png ; $R_S$ ; confidence 0.433
  
109. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001046.png ; $x ^ { 4 }$ ; confidence 0.433
+
109. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001046.png ; $x ^ { q }$ ; confidence 0.433
  
 
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070159.png ; $a _ { 2 } ( g )$ ; confidence 0.433
 
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070159.png ; $a _ { 2 } ( g )$ ; confidence 0.433
Line 222: Line 222:
 
111. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003043.png ; $u _ { j } \equiv 0$ ; confidence 0.433
 
111. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003043.png ; $u _ { j } \equiv 0$ ; confidence 0.433
  
112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001068.png ; $i _ { i j }$ ; confidence 0.433
+
112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001068.png ; $l _ { i i }$ ; confidence 0.433
  
113. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200507.png ; $Im$ ; confidence 0.433
+
113. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200507.png ; $\operatorname{Im}$ ; confidence 0.433
  
 
114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023066.png ; $f + ( 2 T ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.433
 
114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023066.png ; $f + ( 2 T ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.433
  
115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130102.png ; $g _ { 1 } , \ldots , g _ { W }$ ; confidence 0.433
+
115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130102.png ; $g _ { 1 } , \ldots , g _ { m }$ ; confidence 0.433
  
 
116. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700093.png ; $Q x$ ; confidence 0.433
 
116. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700093.png ; $Q x$ ; confidence 0.433
  
117. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008017.png ; $7$ ; confidence 0.433
+
117. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008017.png ; $\frak P$ ; confidence 0.433
  
118. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014088.png ; $Z _ { p } r$ ; confidence 0.433
+
118. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014088.png ; ${\bf Z} _ { p ^ r}$ ; confidence 0.433
  
119. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008071.png ; $E [ C ] = \frac { R } { 1 - \rho }$ ; confidence 0.433
+
119. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008071.png ; $\mathsf{E} [ C ] = \frac { R } { 1 - \rho }$ ; confidence 0.433
  
 
120. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110109.png ; $\chi \in \operatorname { Sp } ( n )$ ; confidence 0.433
 
120. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110109.png ; $\chi \in \operatorname { Sp } ( n )$ ; confidence 0.433
  
121. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170106.png ; $K ^ { 2 } \times I \searrow pt$ ; confidence 0.433
+
121. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170106.png ; $K ^ { 2 } \times I \searrow \operatorname{pt}$ ; confidence 0.433
  
122. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028044.png ; $\rho : F T \circ p \rightarrow \omega \square Gpd$ ; confidence 0.433
+
122. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028044.png ; $\rho : {\cal F T} \operatorname{op} \rightarrow \omega \square \operatorname{Gpd}$ ; confidence 0.433
  
123. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024049.png ; $U ( g ) J$ ; confidence 0.433
+
123. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024049.png ; $U ( {\frak g} ) J$ ; confidence 0.433
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180142.png ; $< 2 ^ { ( n ^ { 2 } ) }$ ; confidence 0.432
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180142.png ; $\leq 2 ^ { ( n ^ { 2 } ) }$ ; confidence 0.432
  
125. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018034.png ; $\{ x , a \} = 0$ ; confidence 0.432
+
125. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018034.png ; $\langle x , a \rangle = 0$ ; confidence 0.432
  
126. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010021.png ; $P ^ { i } _ { C } = \delta ^ { i }$ ; confidence 0.432
+
126. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010021.png ; $P ^ { i } _ { r } = \delta ^ { i }_r$ ; confidence 0.432
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001033.png ; $\frac { \partial v } { \partial x } = u + v ^ { 2 }$ ; confidence 0.432
+
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001033.png ; $\frac { \partial v } { \partial x } = u + v ^ { 2 },$ ; confidence 0.432
  
128. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016058.png ; $f _ { x } = f$ ; confidence 0.432
+
128. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016058.png ; $f _ { n } = f$ ; confidence 0.432
  
129. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015064.png ; $\nu _ { 1 } * \chi _ { X _ { 1 } } + \ldots + \nu _ { 1 } ^ { * } \chi _ { K _ { 1 } } = \delta$ ; confidence 0.432
+
129. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015064.png ; $\nu _ { 1 } * \chi _ { K _ { 1 } } + \ldots + \nu _ { 1 } { * } \chi _ { K _ { 1 } } = \delta,$ ; confidence 0.432
  
 
130. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023890/c0238907.png ; $p = ( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.432
 
130. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023890/c0238907.png ; $p = ( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.432
  
131. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507010.png ; $H ^ { 2 r } ( M , C ) \neq 0 \quad \text { if } r = 1 , \dots , \frac { 1 } { 2 } \operatorname { dim } _ { C } M$ ; confidence 0.432
+
131. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507010.png ; $H ^ { 2 r } ( M , {\bf C} ) \neq 0 \quad \text { if } r = 1 , \dots , \frac { 1 } { 2 } \operatorname { dim } _ {\bf C } M.$ ; confidence 0.432
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220106.png ; $i$ ; confidence 0.432
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220106.png ; $L^1$ ; confidence 0.432
  
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051085.png ; $u = ( u _ { 1 } , \dots , u _ { m } ) \in V$ ; confidence 0.432
+
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051085.png ; ${\bf u} = ( u _ { 1 } , \dots , u _ { m } ) \in \bf V$ ; confidence 0.432
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006036.png ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } } \end{array} \right.$ ; confidence 0.432
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006036.png ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0, } } \end{array} \right.$ ; confidence 0.432
  
135. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230110.png ; $V \sim U _ { p , N }$ ; confidence 0.432
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230110.png ; $V \sim {\cal U} _ { p , n }$ ; confidence 0.432
  
136. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005019.png ; $A = R .1 \oplus N$ ; confidence 0.432
+
136. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005019.png ; $A = {\bf R} .1 \bigoplus N,$ ; confidence 0.432
  
137. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302908.png ; $\varnothing = \Lambda$ ; confidence 0.431
+
137. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302908.png ; $\otimes = \wedge$ ; confidence 0.431
  
 
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180177.png ; $\{ 1 , \ldots , r , r + 1 , \ldots , r + 4 \}$ ; confidence 0.431
 
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180177.png ; $\{ 1 , \ldots , r , r + 1 , \ldots , r + 4 \}$ ; confidence 0.431
  
139. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005017.png ; $u | _ { x } = y = \tau ( x )$ ; confidence 0.431
+
139. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005017.png ; $u | _ { x = y} = \tau ( x ),$ ; confidence 0.431
  
140. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002066.png ; $| R$ ; confidence 0.431
+
140. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002066.png ; $| R |$ ; confidence 0.431
  
141. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009050.png ; $\delta _ { p } ( k ) = \operatorname { rank } _ { Z } E _ { 1 } ( k ) - \operatorname { rank } _ { Z _ { p } } E _ { 1 } ( k ) \geq 0$ ; confidence 0.431
+
141. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009050.png ; $\delta _ { p } ( k ) = \operatorname { rank } _ {\bf Z } \overline{E} _ { 1 } ( k ) - \operatorname { rank } _ { {\bf Z} _ { p } } E _ { 1 } ( k ) \geq 0$ ; confidence 0.431
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040788.png ; $g , g ^ { \prime } : \bf B \rightarrow C$ ; confidence 0.431
  
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029044.png ; $\varepsilon _ { X } ^ { X \backslash V } ( R _ { S } ^ { X \backslash U } ) = R _ { S } ^ { X \backslash U } ( x )$ ; confidence 0.431
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029044.png ; $\varepsilon _ { x } ^ { X \backslash V } ( R _ { s } ^ { X \backslash U } ) = R _ { s } ^ { X \backslash U } ( x )$ ; confidence 0.431
  
144. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840301.png ; $0 \in D$ ; confidence 0.431
+
144. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840301.png ; $0 \in \cal D$ ; confidence 0.431
  
145. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016014.png ; $j > i : \alpha _ { j } = \sum _ { k = 1 } ^ { i } r _ { k l } r _ { k j }$ ; confidence 0.431
+
145. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016014.png ; $j > i : a _ { ij } = \sum _ { k = 1 } ^ { i } r _ { k i } r _ { k j }.$ ; confidence 0.431
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; ${\cal L} ^ { r } ( X , Y )$ ; confidence 0.431
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040453.png ; $\langle {\bf A} , F \rangle \in \mathsf{K}$ ; confidence 0.431
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042074.png ; $1 \rightarrow 1$ ; confidence 0.431
+
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042074.png ; $\underline{1} \rightarrow \underline{1} $; confidence 0.431
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040067.png ; $\mathfrak { h } = \mathfrak { h } _ { R } \oplus \mathfrak { h } _ { R }$ ; confidence 0.430
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040067.png ; $\mathfrak { h } = \mathfrak { h } _ { R } \oplus i \mathfrak { h } _ { R }$ ; confidence 0.430
  
150. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006020.png ; $G _ { i } ( A ) : = \Delta _ { i _ { i } } ( A ) ( \alpha _ { i } , i )$ ; confidence 0.430
+
150. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006020.png ; $G _ { i } ( A ) : = \Delta _ { r _ { i } ( A )} ( a _ { i , i } )$ ; confidence 0.430
  
 
151. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397094.png ; $N ^ { i }$ ; confidence 0.430
 
151. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397094.png ; $N ^ { i }$ ; confidence 0.430
Line 306: Line 306:
 
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021017.png ; $P ^ { + } \subset \mathfrak { h } ^ { * }$ ; confidence 0.430
 
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021017.png ; $P ^ { + } \subset \mathfrak { h } ^ { * }$ ; confidence 0.430
  
154. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020045.png ; $x \in M , X \in \mathfrak { g }$ ; confidence 0.430
+
154. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020045.png ; $x \in M , X \in \mathfrak { g },$ ; confidence 0.430
  
155. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090245.png ; $\delta _ { \mu \nu }$ ; confidence 0.430
+
155. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090245.png ; $\delta _ { W }$ ; confidence 0.430
  
156. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230161.png ; $\frac { d } { d t } A ( \sigma _ { t } ) | _ { t = 0 } = \int _ { M } \sigma ^ { k ^ { * } } ( Z ^ { k } _ { - } d L \Delta ) =$ ; confidence 0.430
+
156. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230161.png ; $\frac { d } { d t } {\cal A} ( \sigma _ { t } ) | _ { t = 0 } = \int _ { M } \sigma ^ { k ^ { * } } ( Z ^ { k } \lrcorner d L \Delta ) =$ ; confidence 0.430  
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $\varepsilon \in X$ ; confidence 0.430
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $e \in X$ ; confidence 0.430
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c1202609.png ; $U _ { j } ^ { x }$ ; confidence 0.430
+
158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c1202609.png ; $U _ { j } ^ { n }$ ; confidence 0.430
  
159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180156.png ; $\gamma ^ { - 1 } : E \rightarrow E \times$ ; confidence 0.430
+
159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180156.png ; $\gamma ^ { - 1 } : \cal E \rightarrow E *$ ; confidence 0.430
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( S ^ { 1 } , \operatorname{SL}_ { 2 } ( {\bf C} ) )$ ; confidence 0.430
  
161. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002017.png ; $R = \Delta \zeta : G \rightarrow G \otimes A$ ; confidence 0.430
+
161. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002017.png ; $R = \Delta |_{\cal G} :\cal G \rightarrow G \otimes A$ ; confidence 0.430
  
162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200107.png ; $E \cap 1$ ; confidence 0.430
+
162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200107.png ; $E \cap \bf l$ ; confidence 0.430
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026096.png ; $R \nmid a$ ; confidence 0.430
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026096.png ; $R / a$ ; confidence 0.430
  
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024077.png ; $Z / p ^ { m } ( 1 )$ ; confidence 0.430
+
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024077.png ; ${\bf Z} / p ^ { m } ( 1 )$ ; confidence 0.430
  
165. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230145.png ; $\{ < \operatorname { dim } X _ { n }$ ; confidence 0.430
+
165. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230145.png ; $\operatorname { dim } Y < \operatorname { dim } X _ { n }$ ; confidence 0.430
  
 
166. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006039.png ; $X _ { 1 } , \dots , X _ { n }$ ; confidence 0.429
 
166. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006039.png ; $X _ { 1 } , \dots , X _ { n }$ ; confidence 0.429
Line 334: Line 334:
 
167. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180447.png ; $N \subset \tilde { N }$ ; confidence 0.429
 
167. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180447.png ; $N \subset \tilde { N }$ ; confidence 0.429
  
168. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013014.png ; $\frac { \partial L _ { i } } { \partial y _ { N } } = [ ( L _ { 2 } ^ { n } ) _ { - } , L _ { i } ]$ ; confidence 0.429
+
168. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013014.png ; $\frac { \partial L _ { i } } { \partial y _ { n } } = [ ( L _ { 2 } ^ { n } ) _ { - } , L _ { i } ],$ ; confidence 0.429
  
169. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240116.png ; $\xi _ { I }$ ; confidence 0.429
+
169. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240116.png ; $\xi _ { L }$ ; confidence 0.429
  
170. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o06817012.png ; $= 1 - \frac { 2 } { \pi } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \int _ { ( 2 k - 1 ) \pi } ^ { 2 k \pi } \frac { e ^ { - t ^ { 2 } \lambda / 2 } } { \sqrt { - t \operatorname { sin } t } } d t , \quad \lambda > 0$ ; confidence 0.429
+
170. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o06817012.png ; $= 1 - \frac { 2 } { \pi } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \int _ { ( 2 k - 1 ) \pi } ^ { 2 k \pi } \frac { e ^ { - t ^ { 2 } \lambda / 2 } } { \sqrt { - t \operatorname { sin } t } } d t , \quad \lambda > 0.$ ; confidence 0.429
  
 
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
 
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010045.png ; $\overline { \varphi }$ ; confidence 0.429
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010045.png ; $\tilde { \varphi }$ ; confidence 0.429
  
173. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011016.png ; $v \in R ^ { x }$ ; confidence 0.429
+
173. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011016.png ; $v \in {\bf R} ^ { n }$ ; confidence 0.429
  
174. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702031.png ; $T _ { l } ( A ) = ( A _ { j } n ) _ { n \in N }$ ; confidence 0.429
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702031.png ; $T _ { l } ( A ) = ( A _ { l^n } ) _ { n \in \bf N }$ ; confidence 0.429
  
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006076.png ; $E ^ { T F }$ ; confidence 0.429
+
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006076.png ; $E ^ { \text{TF} }$ ; confidence 0.429
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020052.png ; $d \alpha | \xi$ ; confidence 0.429
+
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020052.png ; $d \alpha |_\xi$ ; confidence 0.429
  
 
177. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007015.png ; $\overline { h ( n ) }$ ; confidence 0.429
 
177. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007015.png ; $\overline { h ( n ) }$ ; confidence 0.429
  
178. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005020.png ; $R$ ; confidence 0.429
+
178. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005020.png ; $R_c$ ; confidence 0.429
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066087.png ; $g \in B MOA$ ; confidence 0.429
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066087.png ; $g_i \in \operatorname { BMOA}$ ; confidence 0.429
  
180. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008067.png ; $H = - J \sum _ { i = 1 } ^ { N } S _ { i } S _ { + 1 } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.429
+
180. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008067.png ; $H = - J \sum _ { i = 1 } ^ { N } S _ { i } S _ { i+ 1 } - {\cal H} \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.429
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028097.png ; $\rho \in Y *$ ; confidence 0.428
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028097.png ; $\rho \in \cal Y_{*}$ ; confidence 0.428
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022063.png ; $H _ { M } ^ { \bullet } ( X , Q ( * ) ) z$ ; confidence 0.428
+
182. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022063.png ; $H _ {\cal M } ^ { \bullet } ( X , {\bf Q} ( ^{\color{blue}*} ) )_ {\bf Z}$ ; confidence 0.428
  
183. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019018.png ; $f , g \in L _ { p } ( R _ { + } ; x ^ { \nu p - 1 } )$ ; confidence 0.428
+
183. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019018.png ; $f , g \in L _ { p } ( {\bf R} _ { + } ; x ^ { \nu p - 1 } )$ ; confidence 0.428
  
184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015055.png ; $X = G = R ^ { x }$ ; confidence 0.428
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015055.png ; $X = G = {\bf R} ^ { n }$ ; confidence 0.428
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280100.png ; $( L _ { w } ( X , Y ) , L _ { W } ( X , Y ) * )$ ; confidence 0.428
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280100.png ; $\cal ( L _ { w } ( X , Y ) , L _ { w } ( X , Y ) * )$ ; confidence 0.428
  
186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110101.png ; $\pi : Mp ( n ) \rightarrow Sp ( n )$ ; confidence 0.428
+
186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110101.png ; $\pi : \operatorname { Mp} ( n ) \rightarrow \operatorname { Sp} ( n )$ ; confidence 0.428
  
 
187. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520439.png ; $x _ { i } = \tilde { \xi } _ { i } ( U ) , \quad i = 1 , \dots , n$ ; confidence 0.428
 
187. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520439.png ; $x _ { i } = \tilde { \xi } _ { i } ( U ) , \quad i = 1 , \dots , n$ ; confidence 0.428
Line 376: Line 376:
 
188. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101102.png ; $\square _ { p } F _ { q }$ ; confidence 0.428
 
188. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101102.png ; $\square _ { p } F _ { q }$ ; confidence 0.428
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008067.png ; $A \in M _ { m } ( P _ { n } )$ ; confidence 0.428
+
189. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008067.png ; $E,A \in M _ { m } ( P _ { n } )$ ; confidence 0.428
  
 
190. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090102.png ; $p \in S$ ; confidence 0.428
 
190. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090102.png ; $p \in S$ ; confidence 0.428
  
191. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015062.png ; $K _ { 1 } , \dots , K _ { 1 }$ ; confidence 0.428
+
191. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015062.png ; $K _ { 1 } , \dots , K _ { \text{l} }$ ; confidence 0.428
  
192. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004020.png ; $\{ G , , e , - 1 \}$ ; confidence 0.428
+
192. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004020.png ; $\{ G ,. , e , ^{- 1} \}$ ; confidence 0.428
  
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011065.png ; $\psi ) _ { L ^ { 2 } ( R ^ { n } ) } ( \varphi , u ) _ { L ^ { 2 } ( R ^ { n } ) } = ( H ( u , v ) , H ( \psi , \varphi ) ) _ { L ^ { 2 } ( R ^ { 2 n } ) }$ ; confidence 0.428
+
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011065.png ; $(u, \psi ) _ { L ^ { 2 } ( {\bf R} ^ { n } ) } ( \varphi , u ) _ { L ^ { 2 } ( {\bf R} ^ { n } ) } = ( {\cal H} ( u , v ) , {\cal H} ( \psi , \varphi ) ) _ { L ^ { 2 } ( {\bf R} ^ { 2 n } ) }.$ ; confidence 0.428
  
194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200306.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x _ { x } ) = f ( x ) = \operatorname { lim } _ { x \rightarrow \infty } f ( y _ { x } )$ ; confidence 0.428
+
194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200306.png ; $\operatorname { lim } _ { n \rightarrow \infty } f ( x _ { n } ) = f ( n ) = \operatorname { lim } _ { n \rightarrow \infty } f ( y _ { n } ).$ ; confidence 0.428
  
 
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160116.png ; $j = 1 , \ldots , p _ { t }$ ; confidence 0.428
 
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160116.png ; $j = 1 , \ldots , p _ { t }$ ; confidence 0.428
Line 392: Line 392:
 
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052010.png ; $( x _ { c } , x _ { + } )$ ; confidence 0.428
 
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052010.png ; $( x _ { c } , x _ { + } )$ ; confidence 0.428
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050113.png ; $U ( ., . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004088.png ; $z$ ; confidence 0.428
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004088.png ; $\| f \|_X \leq C\| g  \|_X$ ; confidence 0.428
  
 
199. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014034.png ; $f _ { \rho } ^ { C } ( x ) : = f ( x ) - f _ { \rho } ( x )$ ; confidence 0.427
 
199. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014034.png ; $f _ { \rho } ^ { C } ( x ) : = f ( x ) - f _ { \rho } ( x )$ ; confidence 0.427
  
200. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021040.png ; $p _ { M } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w$ ; confidence 0.427
+
200. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021040.png ; $p _ { m } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w$ ; confidence 0.427
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004090.png ; $d > 5$ ; confidence 0.427
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004090.png ; $d \geq 5$ ; confidence 0.427
  
 
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001019.png ; $| z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1$ ; confidence 0.427
 
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001019.png ; $| z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1$ ; confidence 0.427
  
203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020107.png ; $z > 1 / p$ ; confidence 0.427
+
203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020107.png ; $n > 1 / p$ ; confidence 0.427
  
204. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003096.png ; $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in N _ { 0 } \}$ ; confidence 0.427
+
204. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003096.png ; $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in {\bf N} _ { 0 } \}$ ; confidence 0.427
  
 
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002060.png ; $y \in J$ ; confidence 0.427
 
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002060.png ; $y \in J$ ; confidence 0.427
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420134.png ; $\sum _ { V } v ^ { ( T ) } \otimes v ^ { ( 2 ) }$ ; confidence 0.427
+
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420134.png ; $\sum _ { V } v ^ { \overline{( 1 ) }} \otimes v ^ { \overline{( 2 ) } }$ ; confidence 0.427
  
 
207. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006020.png ; $Q = ( Y _ { Q } , < _ { Q } )$ ; confidence 0.427
 
207. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006020.png ; $Q = ( Y _ { Q } , < _ { Q } )$ ; confidence 0.427
  
208. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005043.png ; $\xi _ { j } = \varepsilon ( x _ { j } + \frac { 1 } { i } \frac { \partial \mu _ { 0 } } { \partial \dot { k } _ { i } } ( k _ { c } , R _ { c } ) t ) , j = 1 , \ldots , n$ ; confidence 0.427
+
208. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005043.png ; $\xi _ { j } = \varepsilon \left( x _ { j } + \frac { 1 } { i } \frac { \partial \mu _ { 0 } } { \partial { k } _ { i } } ( k _ { c } , R _ { c } ) t \right) , j = 1 , \ldots , n,$ ; confidence 0.427
  
209. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001038.png ; $C ^ { 0 , \sigma } _ { 2 } ( t ) ( \Omega )$ ; confidence 0.427
+
209. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001038.png ; $C ^ { 0 , \sigma _ { 2 } ( t )} ( \Omega )$ ; confidence 0.427
  
210. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584032.png ; $x = x _ { + } + x _ { - } , \quad y = y _ { + } + y _ { - } , \quad x _ { \pm } , y _ { \pm } \in K _ { + }$ ; confidence 0.427
+
210. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584032.png ; $x = x _ { + } + x _ { - } , \quad y = y _ { + } + y _ { - } , \quad x _ { \pm } , y _ { \pm } \in {\cal K} _ { + }.$ ; confidence 0.427
  
211. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008044.png ; $V _ { k + l } ^ { k - 1 } ( x , y ; \alpha ) =$ ; confidence 0.427
+
211. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008044.png ; $V _ { k + l } ^ { k - l } ( x , y ; \alpha ) =$ ; confidence 0.427
  
212. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007047.png ; $n | \hat { k }$ ; confidence 0.426
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007047.png ; $n | { k }$ ; confidence 0.426
  
 
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020048.png ; $r _ { 1 } = \ldots = r _ { n } = 1$ ; confidence 0.426
 
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020048.png ; $r _ { 1 } = \ldots = r _ { n } = 1$ ; confidence 0.426
  
214. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161062.png ; $a \in R$ ; confidence 0.426
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161062.png ; $a \in \bf R$ ; confidence 0.426
  
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202508.png ; $\{ x \in 1 ^ { 2 } : x _ { 1 } = 0 \}$ ; confidence 0.426
+
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202508.png ; $\{ x \in {\bf l} ^ { 2 } : x _ { 1 } = 0 \}$ ; confidence 0.426
  
216. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001015.png ; $i _ { i } ^ { 3 }$ ; confidence 0.426
+
216. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001015.png ; $l _ { i } ^ { 3 }$ ; confidence 0.426
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017057.png ; $K N L$ ; confidence 0.426
+
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017057.png ; $K N L$ ; confidence 0.426 ???
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022062.png ; $\subset H _ { M } ( X , Q ( * ) )$ ; confidence 0.426
+
218. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022062.png ; $\subset H _ {\cal M } ^ { \bullet } ( X , {\bf Q} (^ {\color{blue}*} ) ).$ ; confidence 0.426
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040233.png ; $E ( \Gamma , \Delta ) \vdash _ {\cal D } E ( \varphi , \psi )$ ; confidence 0.426
  
220. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010040.png ; $18$ ; confidence 0.426
+
220. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010040.png ; $I_8$ ; confidence 0.426
  
221. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032071.png ; $A ^ { p } | q = A ^ { \oplus p } \oplus \Pi ( A ) ^ { \oplus q }$ ; confidence 0.426
+
221. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032071.png ; $A ^ { p | q } = A ^ { \oplus p } \oplus \Pi ( A ) ^ { \oplus q }$ ; confidence 0.426
  
 
222. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017027.png ; $K _ { R }$ ; confidence 0.426
 
222. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017027.png ; $K _ { R }$ ; confidence 0.426
  
223. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451065.png ; $M _ { g , N }$ ; confidence 0.426
+
223. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451065.png ; ${\cal M} _ { g , n }$ ; confidence 0.426
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006098.png ; $1 \leq \operatorname { max } _ { i } ( \frac { 1 } { | \mu - b _ { i i } | } \cdot \sum _ { j \neq i } | b _ { i j } | )$ ; confidence 0.426
+
224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006098.png ; $1 \leq \operatorname { max } _ { i } \left( \frac { 1 } { | \mu - b _ { i i } | } . \sum _ { j \neq i } | b _ { i j } | \right),$ ; confidence 0.426
  
225. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150134.png ; $\varphi / / G : ( G \times G _ { x } S ) / / G \rightarrow X / / G$ ; confidence 0.425
+
225. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150134.png ; $\varphi /\!/ G : ( G \times_{ G _ { x }} S ) / \!/ G \rightarrow X /\! / G$ ; confidence 0.425
  
 
226. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370117.png ; $S \subset X$ ; confidence 0.425
 
226. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370117.png ; $S \subset X$ ; confidence 0.425
  
227. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f120190119.png ; $\operatorname { PSL } ( 2,3 ^ { 2 } )$ ; confidence 0.425
+
227. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f120190119.png ; $\operatorname { PSL } ( 2,3 ^ { 2^t } )$ ; confidence 0.425
  
 
228. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012079.png ; $q \sim X _ { \nu } ^ { 2 } / \nu$ ; confidence 0.425
 
228. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012079.png ; $q \sim X _ { \nu } ^ { 2 } / \nu$ ; confidence 0.425
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016094.png ; $y = \sum _ { i = 1 } ^ { I } ( n _ { i } \sum _ { j = 1 } ^ { J } z _ { i j } p _ { i j } )$ ; confidence 0.425
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016094.png ; $y = \sum _ { i = 1 } ^ { I } \left( n _ { i } \sum _ { j = 1 } ^ { J } z _ { i j } p _ { i j } \right),$ ; confidence 0.425
  
230. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001027.png ; $c _ { 0 }$ ; confidence 0.425
+
230. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001027.png ; $c _ { \alpha }$ ; confidence 0.425
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024054.png ; $x _ { x } ^ { x + 1 }$ ; confidence 0.425
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024054.png ; $x _ { * } ^ { n + 1 }$ ; confidence 0.425
  
232. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005054.png ; $( d f d x ) Y ( v , x ) 1$ ; confidence 0.425
+
232. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005054.png ; $( d / d x ) Y ( v , x ) \bf 1$ ; confidence 0.425
  
233. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013057.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , )$ ; confidence 0.425
+
233. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013057.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . )$ ; confidence 0.425
  
 
234. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200116.png ; $\operatorname { min } _ { k = m + 1 , \ldots , m + N } | g ( k ) | \geq$ ; confidence 0.425
 
234. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200116.png ; $\operatorname { min } _ { k = m + 1 , \ldots , m + N } | g ( k ) | \geq$ ; confidence 0.425
Line 472: Line 472:
 
236. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130030/r1300303.png ; $T ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.425
 
236. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130030/r1300303.png ; $T ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.425
  
237. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232709.png ; $\vec { A \cup B } = \vec { A \cup B }$ ; confidence 0.425
+
237. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232709.png ; $\overline { A \cup B } = { \overline{A} \cup \overline{B} }$ ; confidence 0.425
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c0254705.png ; $\alpha \wedge ( d \alpha ) ^ { N } \neq 0$ ; confidence 0.425
+
238. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c0254705.png ; $\alpha \wedge ( d \alpha ) ^ { n } \neq 0$ ; confidence 0.425
  
 
239. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080122.png ; $T _ { c }$ ; confidence 0.425
 
239. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080122.png ; $T _ { c }$ ; confidence 0.425
  
240. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011073.png ; $M _ { 1 } = \rho \Delta V i b = \rho \Gamma \dot { b }$ ; confidence 0.425
+
240. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011073.png ; $M _ { 1 } = \rho \Delta V l b = \rho \Gamma { b }$ ; confidence 0.425
  
 
241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047054.png ; $C ^ { 0 }$ ; confidence 0.425
 
241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047054.png ; $C ^ { 0 }$ ; confidence 0.425
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130226.png ; $f _ { j }$ ; confidence 0.424
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130226.png ; $f _ { b }$ ; confidence 0.424
  
243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023095.png ; $\sigma ^ { k } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) , \ldots , y ^ { ( k ) } ( x ) )$ ; confidence 0.424
+
243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023095.png ; $\sigma ^ { k } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) , \ldots , y ^ { ( k ) } ( x ) ),$ ; confidence 0.424
  
244. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007066.png ; $u _ { Y } ( \mathfrak { g } )$ ; confidence 0.424
+
244. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007066.png ; $u _ { q } ( \mathfrak { g } )$ ; confidence 0.424
  
245. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003081.png ; $\sum _ { i = 1 } ^ { n } \psi ( r _ { i } ) \vec { x } _ { i } = \vec { 0 }$ ; confidence 0.424
+
245. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003081.png ; $\sum _ { i = 1 } ^ { n } \psi ( r _ { i } ) \overset{\rightharpoonup} { x } _ { i } = \overset{\rightharpoonup} { 0 },$ ; confidence 0.424
  
246. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027030.png ; $P _ { m } + 1$ ; confidence 0.424
+
246. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027030.png ; $P _ { m + 1 }$ ; confidence 0.424
  
 
247. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010106.png ; $\Phi _ { \sigma } = \{ q \in Q : q x ^ { \sigma } = x q \text { for all } x \in R \}$ ; confidence 0.424
 
247. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010106.png ; $\Phi _ { \sigma } = \{ q \in Q : q x ^ { \sigma } = x q \text { for all } x \in R \}$ ; confidence 0.424
Line 498: Line 498:
 
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290125.png ; $R ( \mathfrak { q } )$ ; confidence 0.424
 
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290125.png ; $R ( \mathfrak { q } )$ ; confidence 0.424
  
250. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280107.png ; $\phi \operatorname { log }$ ; confidence 0.424
+
250. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280107.png ; $\phi |_{\partial D}$ ; confidence 0.424
  
 
251. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110020/e11002048.png ; $S ^ { 2 n + 1 }$ ; confidence 0.424
 
251. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110020/e11002048.png ; $S ^ { 2 n + 1 }$ ; confidence 0.424
Line 504: Line 504:
 
252. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001011.png ; $\{ 1 , \alpha , \alpha ^ { 2 } , \dots , \alpha ^ { n - 1 } \}$ ; confidence 0.424
 
252. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001011.png ; $\{ 1 , \alpha , \alpha ^ { 2 } , \dots , \alpha ^ { n - 1 } \}$ ; confidence 0.424
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; ${\bf y} _ { 1 } , \dots , {\bf y} _ { j }$ ; confidence 0.424
  
254. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032210/d03221015.png ; $y$ ; confidence 0.424
+
254. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032210/d03221015.png ; $y_j$ ; confidence 0.424
  
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021042.png ; $T _ { y } \rightarrow 0$ ; confidence 0.424
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021042.png ; $T _ { n } \rightarrow 0$ ; confidence 0.424
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036011.png ; $P _ { l } = \frac { \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) }$ ; confidence 0.423
+
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036011.png ; $\operatorname{P} _ { l } = \frac { \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) }.$ ; confidence 0.423
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028023.png ; $p 0 , p _ { 1 } , \dots$ ; confidence 0.423
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028023.png ; $p_0 , p _ { 1 } , \dots$ ; confidence 0.423
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010011.png ; $K _ { Z }$ ; confidence 0.423
+
258. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010011.png ; $K _ { z }$ ; confidence 0.423
  
259. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008066.png ; $0.5$ ; confidence 0.423
+
259. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008066.png ; $\partial \bf B$ ; confidence 0.423
  
 
260. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005087.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.423
 
260. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005087.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.423
  
261. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011038.png ; $\mathfrak { S } _ { w } = x _ { r } \mathfrak { S } _ { v } + \sum \mathfrak { S } _ { v ( q , r ) }$ ; confidence 0.423
+
261. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011038.png ; $\mathfrak { S } _ { w } = x _ { r } \mathfrak { S } _ { v } + \sum \mathfrak { S } _ { v ( q , r ) },$ ; confidence 0.423
  
 
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014051.png ; $x ^ { n }$ ; confidence 0.423
 
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014051.png ; $x ^ { n }$ ; confidence 0.423
  
263. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020235.png ; $100$ ; confidence 0.423
+
263. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020235.png ; $\overline{L^\infty}$ ; confidence 0.423
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026068.png ; $g : \overline { \Delta } \rightarrow R ^ { n }$ ; confidence 0.423
+
264. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026068.png ; $g : \overline { \Delta } \rightarrow {\bf R} ^ { n }$ ; confidence 0.423
  
265. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023052.png ; $\frac { 1 } { ( k + 1 ) ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma \in S _ { k + 1 } } \operatorname { sign } \sigma . \omega ( K ( X _ { \sigma 1 } , \ldots , X _ { \sigma ( k + 1 ) } ) , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.423
+
265. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023052.png ; $=\frac { 1 } { ( k + 1 ) ! ( l - 1 ) ! } \times \times \sum _ { \sigma \in S _ { k + \text{l} } } \operatorname { sign } \sigma . \omega ( K ( X _ { \sigma 1 } , \ldots , X _ { \sigma ( k + 1 ) } ) , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.423
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120109.png ; $p \in T \backslash S$ ; confidence 0.423
+
266. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120109.png ; $\text{p} \in T \backslash S$ ; confidence 0.423
  
267. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030165.png ; $\phi * : K _ { 0 } ( R \otimes C [ \Gamma ] ) \rightarrow C$ ; confidence 0.423
+
267. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030165.png ; $\phi * : K _ { 0 } ( {\cal R} \otimes {\bf C} [ \Gamma ] ) \rightarrow \bf C$ ; confidence 0.423
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024032.png ; $Q ( \mu _ { p } )$ ; confidence 0.423
+
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024032.png ; ${\bf Q} ( \mu _ { p } )$ ; confidence 0.423
  
269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023011.png ; $= \varphi \wedge \psi \otimes [ X , Y ] + \varphi \wedge L _ { X } \psi \otimes Y - L _ { Y } \varphi \wedge \psi \otimes X +$ ; confidence 0.423
+
269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023011.png ; $= \varphi \bigwedge \psi \bigotimes [ X , Y ] + \varphi \bigwedge {\cal L} _ { X } \psi \bigotimes Y - {\cal L} _ { Y } \varphi \bigwedge \psi \bigotimes X +$ ; confidence 0.423
  
 
270. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080105.png ; $\partial _ { n } F = ( 1 / 2 \pi i n ) \operatorname { Res } _ { 0 } \xi ^ { - n } d S$ ; confidence 0.423
 
270. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080105.png ; $\partial _ { n } F = ( 1 / 2 \pi i n ) \operatorname { Res } _ { 0 } \xi ^ { - n } d S$ ; confidence 0.423
  
271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007081.png ; $\operatorname { diag } ( \gamma _ { 1 } , \ldots , \gamma _ { N } )$ ; confidence 0.422
+
271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007081.png ; $\operatorname { diag } ( \gamma _ { 1 } , \ldots , \gamma _ { n } )$ ; confidence 0.422
  
 
272. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088058.png ; $x ^ { k }$ ; confidence 0.422
 
272. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088058.png ; $x ^ { k }$ ; confidence 0.422
  
273. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140152.png ; $F _ { n } f = [ \prod _ { j = 1 } ^ { n - 1 } ( F + j ) ] f$ ; confidence 0.422
+
273. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140152.png ; $F _ { n } f = \left[ \prod _ { j = 1 } ^ { n - 1 } ( F + j ) \right] f,$ ; confidence 0.422
  
 
274. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015035.png ; $\operatorname { Ker } ( \text { ad } ) = \mathfrak { g }$ ; confidence 0.422
 
274. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015035.png ; $\operatorname { Ker } ( \text { ad } ) = \mathfrak { g }$ ; confidence 0.422
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090266.png ; $u \in R ^ { m }$ ; confidence 0.422
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090266.png ; $u \in {\bf R} ^ { m }$ ; confidence 0.422
  
276. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001059.png ; $T ^ { 2 x + 1 }$ ; confidence 0.422
+
276. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001059.png ; $T ^ { 2 n + 1 }$ ; confidence 0.422
  
277. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023047.png ; $r _ { j } \in R _ { \geq 0 }$ ; confidence 0.422
+
277. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023047.png ; $r _ { j } \in {\bf R} _ { \geq 0 }$ ; confidence 0.422
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ {A_ i }$ ; confidence 0.422
  
279. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010036.png ; $t ^ { em \cdot f } = E \otimes E + B \otimes B - \frac { 1 } { 2 } ( E ^ { 2 } + B ^ { 2 } ) 1$ ; confidence 0.422
+
279. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010036.png ; ${\bf t} ^ { \text{em} . f } = {\bf E \bigotimes E + B \bigotimes B} - \frac { 1 } { 2 } ( {\bf E} ^ { 2 } + {\bf B} ^ { 2 } ) 1,$ ; confidence 0.422
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a1101607.png ; $a _ { i }$ ; confidence 0.422
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a1101607.png ; $a _ { i j}$ ; confidence 0.422
  
281. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530117.png ; $St$ ; confidence 0.422
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530117.png ; $\operatorname{St}$ ; confidence 0.422
  
282. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067049.png ; $m ( m )$ ; confidence 0.422
+
282. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067049.png ; $W ( M )$ ; confidence 0.422
  
 
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102205.png ; $X _ { t }$ ; confidence 0.422
 
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102205.png ; $X _ { t }$ ; confidence 0.422
  
284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029050.png ; $\bigwedge _ { j \in J } T ( u _ { j } ) \leq T ( \underset { j \in J } { \vee } u _ { j } )$ ; confidence 0.422
+
284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029050.png ; $\bigwedge _ { j \in J } {\cal T} ( u _ { j } ) \leq {\cal T} \left( \underset { j \in J } { \vee } u _ { j } \right).$ ; confidence 0.422
  
285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180240.png ; $g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \otimes \ldots \otimes W ( g ) )$ ; confidence 0.422
+
285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180240.png ; $g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) )$ ; confidence 0.422
  
286. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110080/c11008022.png ; $T$ ; confidence 0.422
+
286. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110080/c11008022.png ; $\bf T$ ; confidence 0.422
  
287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180359.png ; $( g ) \in S ^ { 2 } \tilde { E }$ ; confidence 0.422
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180359.png ; $\operatorname{Ric}( \tilde{g} ) \in \mathsf{S} ^ { 2 } \tilde {\cal  E }$ ; confidence 0.422
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245019.png ; $C ^ { 2 } / \Gamma$ ; confidence 0.421
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245019.png ; ${\bf C} ^ { 2 } / \Gamma$ ; confidence 0.421
  
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021027.png ; $A \in A _ { \gamma }$ ; confidence 0.421
+
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021027.png ; $A \in {\cal A} _ { n }$ ; confidence 0.421
  
290. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h04842036.png ; $\Gamma \subset R ^ { \gamma }$ ; confidence 0.421
+
290. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h04842036.png ; $\Gamma \subset {\bf R} ^ { n }$ ; confidence 0.421
  
291. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080150.png ; $f _ { k } \in L _ { p } ( G ) , g _ { k } \in L _ { q } ( G ) , \sum _ { k = 1 } ^ { \infty } \| f _ { k } \| \| g _ { k } \| < \infty$ ; confidence 0.421
+
291. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080150.png ; $f _ { k } \in L _ { p } ( G ) , g _ { k } \in L _ { q } ( G ) , \sum _ { k = 1 } ^ { \infty } \| f _ { k } \| \| g _ { k } \| < \infty,$ ; confidence 0.421
  
 
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
 
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
  
293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030033.png ; $\alpha _ { k }$ ; confidence 0.421
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030033.png ; $a _ { k \text{l} }$ ; confidence 0.421
  
294. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020227.png ; $\Phi : \partial U \rightarrow E ^ { n + 1 } \backslash 0$ ; confidence 0.421
+
294. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020227.png ; $\Phi : \partial U \rightarrow E ^ { n + 1 } {\color{blue} \backslash} 0$ ; confidence 0.421
  
295. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002019.png ; $P ( X = 0 ) \leq \operatorname { exp } \{ \frac { \Delta } { 1 - \epsilon } \} \prod _ { A } ( 1 - E I _ { A } )$ ; confidence 0.421
+
295. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002019.png ; $\mathsf{P} ( X = 0 ) \leq \operatorname { exp } \left\{ \frac { \Delta } { 1 - \epsilon } \right\} \prod _ { A } ( 1 - \mathsf{E} I _ { A } ),$ ; confidence 0.421
  
296. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602018.png ; $\Phi ^ { + } ( t _ { 0 } ) + \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t 0 }$ ; confidence 0.421
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602018.png ; $\Phi ^ { + } ( t _ { 0 } ) + \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t 0 },$ ; confidence 0.421
  
 
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055062.png ; $b _ { p }$ ; confidence 0.421
 
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055062.png ; $b _ { p }$ ; confidence 0.421
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026017.png ; $c \in N$ ; confidence 0.421
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026017.png ; $c \in \bf N$ ; confidence 0.421
  
299. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002049.png ; $\operatorname { Vol } ( \overline { U M } ) = C _ { 1 } ( n ) \int _ { U ^ { + } \partial N } l ( v ) \langle v , N _ { x } \rangle d v d x$ ; confidence 0.421
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002049.png ; $\operatorname { Vol } ( \overline { U M } ) = C _ { 1 } ( n ) \int _ { U ^ { + } \partial M } l ( v ) \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.421
  
300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009038.png ; $h _ { 1 } \otimes \ldots \otimes h _ { \gamma } \in H ^ { \otimes X }$ ; confidence 0.421
+
300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009038.png ; $h _ { 1 } \otimes \ldots \otimes h _ { n } \in H ^ { \otimes n }$ ; confidence 0.421

Latest revision as of 20:16, 10 May 2020

List

1. g1300206.png ; $e ^ { \pi }$ ; confidence 0.439

2. s120230122.png ; $\mathsf{E} ( X ) = 0$ ; confidence 0.439

3. w120110140.png ; $a b + \frac { 1 } { 2 \iota} \{ a , b \},$ ; confidence 0.439

4. a130040671.png ; $\langle X , v \rangle$ ; confidence 0.439

5. a011650260.png ; $f _ { 1 } , \ldots , f _ { n }$ ; confidence 0.439

6. m13011091.png ; $\dot { v }_i$ ; confidence 0.439

7. d13006017.png ; $Q ( A ) = \sum _ { B ; A \subseteq B} m ( B ) $ ; confidence 0.439

8. g130060107.png ; $\sigma ( A ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ).$ ; confidence 0.439

9. a1300205.png ; $X \subset {\bf R} ^ { n }$ ; confidence 0.439

10. c120180261.png ; $\{ \otimes ^ { * } {\cal E} , \nabla \}$ ; confidence 0.439

11. b12027058.png ; $\{ a _ { n } \}$ ; confidence 0.439

12. w120090286.png ; $v ^ { + }$ ; confidence 0.439

13. i13001065.png ; $L ( G ) = [ l_{ij} ]$ ; confidence 0.438

14. p074970204.png ; $X ( t _ { 1 } )$ ; confidence 0.438

15. a130040344.png ; $F \in \operatorname{Fi} _ {\cal D } \bf A$ ; confidence 0.438

16. m13023022.png ; $( D . Z _ { 1 } ) = ( D . Z _ { 2 } ) \in \bf R$ ; confidence 0.438

17. z13007036.png ; $\langle a \rangle$ ; confidence 0.438

18. c120180222.png ; $h . k = ( \theta \bigotimes \varphi - \varphi \bigotimes \theta ) \bigotimes ( \theta \bigotimes \varphi - \varphi \bigotimes \theta ) \in$ ; confidence 0.438

19. s12026034.png ; $\partial_t$ ; confidence 0.438

20. b130200203.png ; $\text{II} _ { s + 2,2 }$ ; confidence 0.438

21. i1200206.png ; $\times G _ { p + 2 , q } ^ { m , n + 2 } \left( x \Bigg| \begin{array} { c } { 1 - \mu + i \tau , 1 - \mu - i \tau , ( \alpha _ { p } ) } \\ { ( \beta _ { q } ) } \end{array} \right) , f ( x ) = \frac { 1 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) F ( \tau ) d \tau\times$ ; confidence 0.438

22. b120040114.png ; $x _ { n } \downarrow 0$ ; confidence 0.438

23. z13010097.png ; $y \in x$ ; confidence 0.438

24. a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438

25. f13010016.png ; $u \in {\bf C} ^ { G }$ ; confidence 0.438

26. g130040136.png ; ${\bf M} ( S )$ ; confidence 0.438

27. b1201002.png ; $F _ { n } ( t )$ ; confidence 0.438

28. d03311023.png ; $2 ^ {k}$ ; confidence 0.438

29. n13003024.png ; $\omega _ { n } = n$ ; confidence 0.438

30. i13001051.png ; $\overline { d } _ { ( k , 1 ^ { n - k } ) }$ ; confidence 0.438

31. o13006074.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma }$ ; confidence 0.438

32. f04050011.png ; $m _ { 2 }$ ; confidence 0.437

33. a014060185.png ; $T _ { \phi }$ ; confidence 0.437

34. z13011065.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \approx \frac { 1 } { ( a + b x ) ^ { 2 } }$ ; confidence 0.437

35. m0622206.png ; $\Omega ^ { a } = \lambda _ { i } ^ { a } \Omega ^ { i } , \quad \Delta \lambda _ { i } ^ { a } \bigwedge \Omega ^ { i } = 0 , \quad i , j = 1 , \ldots , m;$ ; confidence 0.437

36. w13009015.png ; $\tilde { h } _ { 1 } \ldots \tilde { h } _ { k }$ ; confidence 0.437

37. y120010120.png ; $\square _ { A ( R ) } {\cal C} ^ { A ( R) }$ ; confidence 0.437

38. p1201209.png ; $\phi$ ; confidence 0.437

39. c13008012.png ; $\sigma _ { \mathfrak { P } } \equiv x ^ { N ( \mathfrak { p } ) } \operatorname { mod } \mathfrak { P }$ ; confidence 0.437

40. b12051016.png ; $\lambda = \beta ^ { m }$ ; confidence 0.437

41. a130180157.png ; ${\bf C A} _ { 3 }$ ; confidence 0.437

42. n1200307.png ; $A \stackrel { x } { \rightarrow } B \stackrel { t } { \rightarrow } B$ ; confidence 0.437

43. c12008075.png ; ${\bf Z}_+$ ; confidence 0.437

44. n13003021.png ; $\lambda _ { n } = n ^ { 2 }$ ; confidence 0.437

45. e03500082.png ; $\{ \xi ( t ) \} _ { t \in [ a , b ] }$ ; confidence 0.437

46. a12020085.png ; $T \in \cal X$ ; confidence 0.437

47. b120220102.png ; $\partial _ { t } f + a ( \xi ) . \nabla _ { x } f = \sum _ { n = 1 } ^ { \infty } \delta ( t - t _ { n } ) ( M _ { f ^{ n -}} - f ^ { n - } ),$ ; confidence 0.437

48. f04113013.png ; $\{ c _ { n } \}$ ; confidence 0.437

49. d1201409.png ; $D _ { n } ( x , a ) = \left( \frac { x + \sqrt { x ^ { 2 } - 4 a } } { 2 } \right) ^ { n } + \left( \frac { x - \sqrt { x ^ { 2 } - 4 a } } { 2 } \right) ^ { n }.$ ; confidence 0.437

50. z1300103.png ; $\tilde{x} ( z ) = Z ( x ( n ) ) = \sum _ { j = 0 } ^ { \infty } x ( j ) z ^ { - j },$ ; confidence 0.437

51. s1202005.png ; $\lambda _ { i } \in \bf Z$ ; confidence 0.437

52. z13012046.png ; $x ^ { n } - n \sigma x ^ { n - 1 }$ ; confidence 0.437

53. g13003050.png ; ${\cal U} \}$ ; confidence 0.436 NOTE: should the parentesis be opened?

54. l12004014.png ; $t = t ^ { 0 } , \dots , t ^ { n } , \dots$ ; confidence 0.436

55. f1201003.png ; $\operatorname{SL} ( 2 , {\bf Z} )$ ; confidence 0.436

56. b0153801.png ; $A _ { 1 } , \ldots , A _ { n }$ ; confidence 0.436

57. n12011028.png ; $x _ { i } ^ {\color{blue} *}$ ; confidence 0.436

58. l13006085.png ; $p ^ { r } - 1$ ; confidence 0.436

59. o12002016.png ; $= 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau.$ ; confidence 0.436

60. k055840170.png ; $A | _ { {\cal R} ( E _ { \lambda } )}$ ; confidence 0.436

61. b12030048.png ; $\psi ( y ; \eta ) = e ^ { i \eta .y } \phi ( y ; \eta )$ ; confidence 0.436

62. d13011028.png ; ${\bf C} ( 4 )$ ; confidence 0.436

63. l12017086.png ; ${\bf Z} _ { 2 } \times {\bf Z} _ { 4 }$ ; confidence 0.435

64. a13024030.png ; $n \times p$ ; confidence 0.435

65. e120240109.png ; $K _ { 2 } ^ { M } ( Y ( N ) )$ ; confidence 0.435

66. b130260100.png ; $f _ { n } ^ { * }$ ; confidence 0.435

67. c130070169.png ; $\delta ( P )$ ; confidence 0.435

68. j12002096.png ; $\mathsf{E} [ X _ { 0 } ] + \mathsf{E} \left[ X _ { \infty } \operatorname { log }^+ \frac { X _ { \infty } } { \mathsf{E} [ X _ { 0 } ] } \right] \leq$ ; confidence 0.435

69. z13008033.png ; $(a)_ { n } = \prod _ { i = 1 } ^ { n } ( a + i - 1 )$ ; confidence 0.435

70. d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } ).$ ; confidence 0.435

71. s12002013.png ; $\partial _ { x ^\alpha}$ ; confidence 0.435

72. k055840306.png ; ${\cal K} _ { 2 }$ ; confidence 0.435

73. m12023077.png ; $\| . \|_{*}$ ; confidence 0.435

74. c12008096.png ; $n = n_l+ n_2$ ; confidence 0.435

75. s12026020.png ; $f ^ { ( n ) } \in L ^ { 2 } \widehat { ( {\bf R} ^ { n } ) }$ ; confidence 0.435

76. b1202706.png ; $X _ { 1 } , X _ { 2 } , \ldots$ ; confidence 0.435

77. f12023088.png ; $L = 0$ ; confidence 0.435

78. r13008099.png ; $| \varphi_j ( x ) | < c$ ; confidence 0.435

79. m06304038.png ; $\{ c _ { k } \}$ ; confidence 0.435

80. b13007032.png ; $\operatorname{BS} ( 1 , n ) = \left\langle a , b | a ^ { - 1 } b a = b ^ { n } \right\rangle$ ; confidence 0.435

81. w12007080.png ; ${\cal A} = ( A _ { 1 } , \dots , A _ { k } )$ ; confidence 0.435

82. t12020031.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | g _ { 1 } ( k ) | } { M _ { d } ( k ) }$ ; confidence 0.434

83. i1200604.png ; $Q _ { 1 } , \dots , Q _ { k }$ ; confidence 0.434

84. b12049035.png ; $\{ E _ { n_j} \}$ ; confidence 0.434

85. a130060143.png ; $\cal I$ ; confidence 0.434

86. a13013098.png ; $x$ ; confidence 0.434

87. i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \bigcup _ { n \geq 0 } k _ { n },$ ; confidence 0.434

88. s12034025.png ; $\operatorname{SH} ^ { * } ( M , \omega , L _ { 1 } , L _ { 2 } ) \bigotimes \operatorname{SH} ^ { * } ( M , \omega , L _ { 2 } , L _ { 3 } ) \rightarrow \operatorname{SH} ^ { * } ( M , \omega , L _ { 1 } , L _ { 3 } ),$ ; confidence 0.434

89. f13001052.png ; ${\bf F} _ { q } [ x ] / ( f )$ ; confidence 0.434

90. e12015012.png ; $\text{(A)} \left\{ \begin{array} { l } { \overline{x} \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } ) , \quad i = 1 , \ldots , n, } \\ { \overline { t } = t .} \end{array} \right.$ ; confidence 0.434

91. f04142066.png ; $A _ { m }$ ; confidence 0.434

92. k13006017.png ; $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ ; confidence 0.434

93. c13001024.png ; $c ( x ) = \bar{c}$ ; confidence 0.434

94. m13022050.png ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in \operatorname{SL} _ { 2 } ( {\bf Z} ).$ ; confidence 0.434

95. b12037062.png ; $C _ { B _ { 2 } } ( f ) \leq \frac { 2 ^ { n } } { n } ( 1 + o ( 1 ) ),$ ; confidence 0.434

96. f120110102.png ; $U \cap {\bf C} ^ { n }$ ; confidence 0.434

97. b12021059.png ; $Z ( {\frak g} )$ ; confidence 0.433

98. t120050101.png ; $i_ 1 = n - p$ ; confidence 0.433

99. l12016039.png ; $\operatorname{Diff} ( S ^ { 1 } ) / \operatorname{SL} ( 2 , {\bf R} )$ ; confidence 0.433

100. c13015054.png ; $O ( \varepsilon ^ { q } )$ ; confidence 0.433

101. c12026061.png ; $U _ { 0 } ^ { n } = U _ { J } ^ { n } = 0$ ; confidence 0.433

102. w13008057.png ; $d \tilde { \Omega } = d \lambda + O ( \lambda ^ { - 2 } ) d \lambda$ ; confidence 0.433

103. t130140123.png ; $q_R = q_Q$ ; confidence 0.433

104. c02684012.png ; $\operatorname{GL} ( V )$ ; confidence 0.433

105. a014060281.png ; $A ^ { n }$ ; confidence 0.433

106. i130090163.png ; $ { k }_\chi$ ; confidence 0.433

107. q12003027.png ; $X.( Y . f ) = ( Y X ) . f$ ; confidence 0.433

108. s13001013.png ; $R_S$ ; confidence 0.433

109. f13001046.png ; $x ^ { q }$ ; confidence 0.433

110. t120070159.png ; $a _ { 2 } ( g )$ ; confidence 0.433

111. g13003043.png ; $u _ { j } \equiv 0$ ; confidence 0.433

112. i13001068.png ; $l _ { i i }$ ; confidence 0.433

113. l1200507.png ; $\operatorname{Im}$ ; confidence 0.433

114. m12023066.png ; $f + ( 2 T ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.433

115. l120130102.png ; $g _ { 1 } , \ldots , g _ { m }$ ; confidence 0.433

116. l05700093.png ; $Q x$ ; confidence 0.433

117. c13008017.png ; $\frak P$ ; confidence 0.433

118. d12014088.png ; ${\bf Z} _ { p ^ r}$ ; confidence 0.433

119. q12008071.png ; $\mathsf{E} [ C ] = \frac { R } { 1 - \rho }$ ; confidence 0.433

120. w120110109.png ; $\chi \in \operatorname { Sp } ( n )$ ; confidence 0.433

121. l120170106.png ; $K ^ { 2 } \times I \searrow \operatorname{pt}$ ; confidence 0.433

122. c12028044.png ; $\rho : {\cal F T} \operatorname{op} \rightarrow \omega \square \operatorname{Gpd}$ ; confidence 0.433

123. d12024049.png ; $U ( {\frak g} ) J$ ; confidence 0.433

124. a130180142.png ; $\leq 2 ^ { ( n ^ { 2 } ) }$ ; confidence 0.432

125. s12018034.png ; $\langle x , a \rangle = 0$ ; confidence 0.432

126. w12010021.png ; $P ^ { i } _ { r } = \delta ^ { i }_r$ ; confidence 0.432

127. b12001033.png ; $\frac { \partial v } { \partial x } = u + v ^ { 2 },$ ; confidence 0.432

128. d12016058.png ; $f _ { n } = f$ ; confidence 0.432

129. p12015064.png ; $\nu _ { 1 } * \chi _ { K _ { 1 } } + \ldots + \nu _ { 1 } { * } \chi _ { K _ { 1 } } = \delta,$ ; confidence 0.432

130. c0238907.png ; $p = ( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.432

131. k05507010.png ; $H ^ { 2 r } ( M , {\bf C} ) \neq 0 \quad \text { if } r = 1 , \dots , \frac { 1 } { 2 } \operatorname { dim } _ {\bf C } M.$ ; confidence 0.432

132. a110220106.png ; $L^1$ ; confidence 0.432

133. s13051085.png ; ${\bf u} = ( u _ { 1 } , \dots , u _ { m } ) \in \bf V$ ; confidence 0.432

134. a12006036.png ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0, } } \end{array} \right.$ ; confidence 0.432

135. s120230110.png ; $V \sim {\cal U} _ { p , n }$ ; confidence 0.432

136. w12005019.png ; $A = {\bf R} .1 \bigoplus N,$ ; confidence 0.432

137. f1302908.png ; $\otimes = \wedge$ ; confidence 0.431

138. c120180177.png ; $\{ 1 , \ldots , r , r + 1 , \ldots , r + 4 \}$ ; confidence 0.431

139. e13005017.png ; $u | _ { x = y} = \tau ( x ),$ ; confidence 0.431

140. d12002066.png ; $| R |$ ; confidence 0.431

141. i13009050.png ; $\delta _ { p } ( k ) = \operatorname { rank } _ {\bf Z } \overline{E} _ { 1 } ( k ) - \operatorname { rank } _ { {\bf Z} _ { p } } E _ { 1 } ( k ) \geq 0$ ; confidence 0.431

142. a130040788.png ; $g , g ^ { \prime } : \bf B \rightarrow C$ ; confidence 0.431

143. b12029044.png ; $\varepsilon _ { x } ^ { X \backslash V } ( R _ { s } ^ { X \backslash U } ) = R _ { s } ^ { X \backslash U } ( x )$ ; confidence 0.431

144. k055840301.png ; $0 \in \cal D$ ; confidence 0.431

145. c12016014.png ; $j > i : a _ { ij } = \sum _ { k = 1 } ^ { i } r _ { k i } r _ { k j }.$ ; confidence 0.431

146. a12022026.png ; ${\cal L} ^ { r } ( X , Y )$ ; confidence 0.431

147. a130040453.png ; $\langle {\bf A} , F \rangle \in \mathsf{K}$ ; confidence 0.431

148. b12042074.png ; $\underline{1} \rightarrow \underline{1} $; confidence 0.431

149. b12040067.png ; $\mathfrak { h } = \mathfrak { h } _ { R } \oplus i \mathfrak { h } _ { R }$ ; confidence 0.430

150. g13006020.png ; $G _ { i } ( A ) : = \Delta _ { r _ { i } ( A )} ( a _ { i , i } )$ ; confidence 0.430

151. g04397094.png ; $N ^ { i }$ ; confidence 0.430

152. r08209022.png ; $e _ { \mu }$ ; confidence 0.430

153. b12021017.png ; $P ^ { + } \subset \mathfrak { h } ^ { * }$ ; confidence 0.430

154. m13020045.png ; $x \in M , X \in \mathfrak { g },$ ; confidence 0.430

155. g045090245.png ; $\delta _ { W }$ ; confidence 0.430

156. e120230161.png ; $\frac { d } { d t } {\cal A} ( \sigma _ { t } ) | _ { t = 0 } = \int _ { M } \sigma ^ { k ^ { * } } ( Z ^ { k } \lrcorner d L \Delta ) =$ ; confidence 0.430

157. a1202206.png ; $e \in X$ ; confidence 0.430

158. c1202609.png ; $U _ { j } ^ { n }$ ; confidence 0.430

159. c120180156.png ; $\gamma ^ { - 1 } : \cal E \rightarrow E *$ ; confidence 0.430

160. a13013025.png ; $C ^ { \infty } ( S ^ { 1 } , \operatorname{SL}_ { 2 } ( {\bf C} ) )$ ; confidence 0.430

161. q12002017.png ; $R = \Delta |_{\cal G} :\cal G \rightarrow G \otimes A$ ; confidence 0.430

162. c1200107.png ; $E \cap \bf l$ ; confidence 0.430

163. a12026096.png ; $R / a$ ; confidence 0.430

164. e12024077.png ; ${\bf Z} / p ^ { m } ( 1 )$ ; confidence 0.430

165. m130230145.png ; $\operatorname { dim } Y < \operatorname { dim } X _ { n }$ ; confidence 0.430

166. d13006039.png ; $X _ { 1 } , \dots , X _ { n }$ ; confidence 0.429

167. c120180447.png ; $N \subset \tilde { N }$ ; confidence 0.429

168. t12013014.png ; $\frac { \partial L _ { i } } { \partial y _ { n } } = [ ( L _ { 2 } ^ { n } ) _ { - } , L _ { i } ],$ ; confidence 0.429

169. e120240116.png ; $\xi _ { L }$ ; confidence 0.429

170. o06817012.png ; $= 1 - \frac { 2 } { \pi } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \int _ { ( 2 k - 1 ) \pi } ^ { 2 k \pi } \frac { e ^ { - t ^ { 2 } \lambda / 2 } } { \sqrt { - t \operatorname { sin } t } } d t , \quad \lambda > 0.$ ; confidence 0.429

171. a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429

172. b13010045.png ; $\tilde { \varphi }$ ; confidence 0.429

173. l12011016.png ; $v \in {\bf R} ^ { n }$ ; confidence 0.429

174. l05702031.png ; $T _ { l } ( A ) = ( A _ { l^n } ) _ { n \in \bf N }$ ; confidence 0.429

175. t12006076.png ; $E ^ { \text{TF} }$ ; confidence 0.429

176. c12020052.png ; $d \alpha |_\xi$ ; confidence 0.429

177. e13007015.png ; $\overline { h ( n ) }$ ; confidence 0.429

178. g12005020.png ; $R_c$ ; confidence 0.429

179. b11066087.png ; $g_i \in \operatorname { BMOA}$ ; confidence 0.429

180. i12008067.png ; $H = - J \sum _ { i = 1 } ^ { N } S _ { i } S _ { i+ 1 } - {\cal H} \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.429

181. a12028097.png ; $\rho \in \cal Y_{*}$ ; confidence 0.428

182. b11022063.png ; $H _ {\cal M } ^ { \bullet } ( X , {\bf Q} ( ^{\color{blue}*} ) )_ {\bf Z}$ ; confidence 0.428

183. m12019018.png ; $f , g \in L _ { p } ( {\bf R} _ { + } ; x ^ { \nu p - 1 } )$ ; confidence 0.428

184. p12015055.png ; $X = G = {\bf R} ^ { n }$ ; confidence 0.428

185. a120280100.png ; $\cal ( L _ { w } ( X , Y ) , L _ { w } ( X , Y ) * )$ ; confidence 0.428

186. w120110101.png ; $\pi : \operatorname { Mp} ( n ) \rightarrow \operatorname { Sp} ( n )$ ; confidence 0.428

187. n067520439.png ; $x _ { i } = \tilde { \xi } _ { i } ( U ) , \quad i = 1 , \dots , n$ ; confidence 0.428

188. m1101102.png ; $\square _ { p } F _ { q }$ ; confidence 0.428

189. c12008067.png ; $E,A \in M _ { m } ( P _ { n } )$ ; confidence 0.428

190. a014090102.png ; $p \in S$ ; confidence 0.428

191. p12015062.png ; $K _ { 1 } , \dots , K _ { \text{l} }$ ; confidence 0.428

192. l11004020.png ; $\{ G ,. , e , ^{- 1} \}$ ; confidence 0.428

193. w12011065.png ; $(u, \psi ) _ { L ^ { 2 } ( {\bf R} ^ { n } ) } ( \varphi , u ) _ { L ^ { 2 } ( {\bf R} ^ { n } ) } = ( {\cal H} ( u , v ) , {\cal H} ( \psi , \varphi ) ) _ { L ^ { 2 } ( {\bf R} ^ { 2 n } ) }.$ ; confidence 0.428

194. d1200306.png ; $\operatorname { lim } _ { n \rightarrow \infty } f ( x _ { n } ) = f ( n ) = \operatorname { lim } _ { n \rightarrow \infty } f ( y _ { n } ).$ ; confidence 0.428

195. a120160116.png ; $j = 1 , \ldots , p _ { t }$ ; confidence 0.428

196. b12052010.png ; $( x _ { c } , x _ { + } )$ ; confidence 0.428

197. a120050113.png ; $U ( ., . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428

198. b12004088.png ; $\| f \|_X \leq C\| g \|_X$ ; confidence 0.428

199. p13014034.png ; $f _ { \rho } ^ { C } ( x ) : = f ( x ) - f _ { \rho } ( x )$ ; confidence 0.427

200. e12021040.png ; $p _ { m } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w$ ; confidence 0.427

201. a11004090.png ; $d \geq 5$ ; confidence 0.427

202. c12001019.png ; $| z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1$ ; confidence 0.427

203. h120020107.png ; $n > 1 / p$ ; confidence 0.427

204. g13003096.png ; $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in {\bf N} _ { 0 } \}$ ; confidence 0.427

205. b13002060.png ; $y \in J$ ; confidence 0.427

206. b120420134.png ; $\sum _ { V } v ^ { \overline{( 1 ) }} \otimes v ^ { \overline{( 2 ) } }$ ; confidence 0.427

207. i12006020.png ; $Q = ( Y _ { Q } , < _ { Q } )$ ; confidence 0.427

208. g12005043.png ; $\xi _ { j } = \varepsilon \left( x _ { j } + \frac { 1 } { i } \frac { \partial \mu _ { 0 } } { \partial { k } _ { i } } ( k _ { c } , R _ { c } ) t \right) , j = 1 , \ldots , n,$ ; confidence 0.427

209. i12001038.png ; $C ^ { 0 , \sigma _ { 2 } ( t )} ( \Omega )$ ; confidence 0.427

210. k05584032.png ; $x = x _ { + } + x _ { - } , \quad y = y _ { + } + y _ { - } , \quad x _ { \pm } , y _ { \pm } \in {\cal K} _ { + }.$ ; confidence 0.427

211. z13008044.png ; $V _ { k + l } ^ { k - l } ( x , y ; \alpha ) =$ ; confidence 0.427

212. b13007047.png ; $n | { k }$ ; confidence 0.426

213. a12020048.png ; $r _ { 1 } = \ldots = r _ { n } = 1$ ; confidence 0.426

214. c02161062.png ; $a \in \bf R$ ; confidence 0.426

215. d1202508.png ; $\{ x \in {\bf l} ^ { 2 } : x _ { 1 } = 0 \}$ ; confidence 0.426

216. j12001015.png ; $l _ { i } ^ { 3 }$ ; confidence 0.426

217. l12017057.png ; $K N L$ ; confidence 0.426 ???

218. b11022062.png ; $\subset H _ {\cal M } ^ { \bullet } ( X , {\bf Q} (^ {\color{blue}*} ) ).$ ; confidence 0.426

219. a130040233.png ; $E ( \Gamma , \Delta ) \vdash _ {\cal D } E ( \varphi , \psi )$ ; confidence 0.426

220. f12010040.png ; $I_8$ ; confidence 0.426

221. s12032071.png ; $A ^ { p | q } = A ^ { \oplus p } \oplus \Pi ( A ) ^ { \oplus q }$ ; confidence 0.426

222. c12017027.png ; $K _ { R }$ ; confidence 0.426

223. m06451065.png ; ${\cal M} _ { g , n }$ ; confidence 0.426

224. b13006098.png ; $1 \leq \operatorname { max } _ { i } \left( \frac { 1 } { | \mu - b _ { i i } | } . \sum _ { j \neq i } | b _ { i j } | \right),$ ; confidence 0.426

225. s120150134.png ; $\varphi /\!/ G : ( G \times_{ G _ { x }} S ) / \!/ G \rightarrow X /\! / G$ ; confidence 0.425

226. a011370117.png ; $S \subset X$ ; confidence 0.425

227. f120190119.png ; $\operatorname { PSL } ( 2,3 ^ { 2^t } )$ ; confidence 0.425

228. e12012079.png ; $q \sim X _ { \nu } ^ { 2 } / \nu$ ; confidence 0.425

229. a12016094.png ; $y = \sum _ { i = 1 } ^ { I } \left( n _ { i } \sum _ { j = 1 } ^ { J } z _ { i j } p _ { i j } \right),$ ; confidence 0.425

230. c13001027.png ; $c _ { \alpha }$ ; confidence 0.425

231. s12024054.png ; $x _ { * } ^ { n + 1 }$ ; confidence 0.425

232. v13005054.png ; $( d / d x ) Y ( v , x ) \bf 1$ ; confidence 0.425

233. t13013057.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . )$ ; confidence 0.425

234. t120200116.png ; $\operatorname { min } _ { k = m + 1 , \ldots , m + N } | g ( k ) | \geq$ ; confidence 0.425

235. a12023068.png ; $c _ { q }$ ; confidence 0.425

236. r1300303.png ; $T ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.425

237. c0232709.png ; $\overline { A \cup B } = { \overline{A} \cup \overline{B} }$ ; confidence 0.425

238. c0254705.png ; $\alpha \wedge ( d \alpha ) ^ { n } \neq 0$ ; confidence 0.425

239. i120080122.png ; $T _ { c }$ ; confidence 0.425

240. v13011073.png ; $M _ { 1 } = \rho \Delta V l b = \rho \Gamma { b }$ ; confidence 0.425

241. b11047054.png ; $C ^ { 0 }$ ; confidence 0.425

242. b110130226.png ; $f _ { b }$ ; confidence 0.424

243. e12023095.png ; $\sigma ^ { k } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) , \ldots , y ^ { ( k ) } ( x ) ),$ ; confidence 0.424

244. q12007066.png ; $u _ { q } ( \mathfrak { g } )$ ; confidence 0.424

245. m12003081.png ; $\sum _ { i = 1 } ^ { n } \psi ( r _ { i } ) \overset{\rightharpoonup} { x } _ { i } = \overset{\rightharpoonup} { 0 },$ ; confidence 0.424

246. e12027030.png ; $P _ { m + 1 }$ ; confidence 0.424

247. x120010106.png ; $\Phi _ { \sigma } = \{ q \in Q : q x ^ { \sigma } = x q \text { for all } x \in R \}$ ; confidence 0.424

248. w120110182.png ; $a _ { m } + a _ { m - 1 }$ ; confidence 0.424

249. b130290125.png ; $R ( \mathfrak { q } )$ ; confidence 0.424

250. d120280107.png ; $\phi |_{\partial D}$ ; confidence 0.424

251. e11002048.png ; $S ^ { 2 n + 1 }$ ; confidence 0.424

252. g13001011.png ; $\{ 1 , \alpha , \alpha ^ { 2 } , \dots , \alpha ^ { n - 1 } \}$ ; confidence 0.424

253. a130240449.png ; ${\bf y} _ { 1 } , \dots , {\bf y} _ { j }$ ; confidence 0.424

254. d03221015.png ; $y_j$ ; confidence 0.424

255. c12021042.png ; $T _ { n } \rightarrow 0$ ; confidence 0.424

256. b12036011.png ; $\operatorname{P} _ { l } = \frac { \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) }.$ ; confidence 0.423

257. a13028023.png ; $p_0 , p _ { 1 } , \dots$ ; confidence 0.423

258. b13010011.png ; $K _ { z }$ ; confidence 0.423

259. d13008066.png ; $\partial \bf B$ ; confidence 0.423

260. t12005087.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.423

261. s13011038.png ; $\mathfrak { S } _ { w } = x _ { r } \mathfrak { S } _ { v } + \sum \mathfrak { S } _ { v ( q , r ) },$ ; confidence 0.423

262. d12014051.png ; $x ^ { n }$ ; confidence 0.423

263. j120020235.png ; $\overline{L^\infty}$ ; confidence 0.423

264. b13026068.png ; $g : \overline { \Delta } \rightarrow {\bf R} ^ { n }$ ; confidence 0.423

265. f12023052.png ; $=\frac { 1 } { ( k + 1 ) ! ( l - 1 ) ! } \times \times \sum _ { \sigma \in S _ { k + \text{l} } } \operatorname { sign } \sigma . \omega ( K ( X _ { \sigma 1 } , \ldots , X _ { \sigma ( k + 1 ) } ) , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.423

266. l120120109.png ; $\text{p} \in T \backslash S$ ; confidence 0.423

267. i130030165.png ; $\phi * : K _ { 0 } ( {\cal R} \otimes {\bf C} [ \Gamma ] ) \rightarrow \bf C$ ; confidence 0.423

268. e12024032.png ; ${\bf Q} ( \mu _ { p } )$ ; confidence 0.423

269. f12023011.png ; $= \varphi \bigwedge \psi \bigotimes [ X , Y ] + \varphi \bigwedge {\cal L} _ { X } \psi \bigotimes Y - {\cal L} _ { Y } \varphi \bigwedge \psi \bigotimes X +$ ; confidence 0.423

270. w130080105.png ; $\partial _ { n } F = ( 1 / 2 \pi i n ) \operatorname { Res } _ { 0 } \xi ^ { - n } d S$ ; confidence 0.423

271. z13007081.png ; $\operatorname { diag } ( \gamma _ { 1 } , \ldots , \gamma _ { n } )$ ; confidence 0.422

272. b11088058.png ; $x ^ { k }$ ; confidence 0.422

273. m130140152.png ; $F _ { n } f = \left[ \prod _ { j = 1 } ^ { n - 1 } ( F + j ) \right] f,$ ; confidence 0.422

274. a12015035.png ; $\operatorname { Ker } ( \text { ad } ) = \mathfrak { g }$ ; confidence 0.422

275. a014090266.png ; $u \in {\bf R} ^ { m }$ ; confidence 0.422

276. k11001059.png ; $T ^ { 2 n + 1 }$ ; confidence 0.422

277. m13023047.png ; $r _ { j } \in {\bf R} _ { \geq 0 }$ ; confidence 0.422

278. c13010015.png ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ {A_ i }$ ; confidence 0.422

279. e12010036.png ; ${\bf t} ^ { \text{em} . f } = {\bf E \bigotimes E + B \bigotimes B} - \frac { 1 } { 2 } ( {\bf E} ^ { 2 } + {\bf B} ^ { 2 } ) 1,$ ; confidence 0.422

280. a1101607.png ; $a _ { i j}$ ; confidence 0.422

281. s130530117.png ; $\operatorname{St}$ ; confidence 0.422

282. s09067049.png ; $W ( M )$ ; confidence 0.422

283. a1102205.png ; $X _ { t }$ ; confidence 0.422

284. f13029050.png ; $\bigwedge _ { j \in J } {\cal T} ( u _ { j } ) \leq {\cal T} \left( \underset { j \in J } { \vee } u _ { j } \right).$ ; confidence 0.422

285. c120180240.png ; $g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) )$ ; confidence 0.422

286. c11008022.png ; $\bf T$ ; confidence 0.422

287. c120180359.png ; $\operatorname{Ric}( \tilde{g} ) \in \mathsf{S} ^ { 2 } \tilde {\cal E }$ ; confidence 0.422

288. a01245019.png ; ${\bf C} ^ { 2 } / \Gamma$ ; confidence 0.421

289. c12021027.png ; $A \in {\cal A} _ { n }$ ; confidence 0.421

290. h04842036.png ; $\Gamma \subset {\bf R} ^ { n }$ ; confidence 0.421

291. f120080150.png ; $f _ { k } \in L _ { p } ( G ) , g _ { k } \in L _ { q } ( G ) , \sum _ { k = 1 } ^ { \infty } \| f _ { k } \| \| g _ { k } \| < \infty,$ ; confidence 0.421

292. m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421

293. b12030033.png ; $a _ { k \text{l} }$ ; confidence 0.421

294. v120020227.png ; $\Phi : \partial U \rightarrow E ^ { n + 1 } {\color{blue} \backslash} 0$ ; confidence 0.421

295. j13002019.png ; $\mathsf{P} ( X = 0 ) \leq \operatorname { exp } \left\{ \frac { \Delta } { 1 - \epsilon } \right\} \prod _ { A } ( 1 - \mathsf{E} I _ { A } ),$ ; confidence 0.421

296. s08602018.png ; $\Phi ^ { + } ( t _ { 0 } ) + \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t 0 },$ ; confidence 0.421

297. b12055062.png ; $b _ { p }$ ; confidence 0.421

298. a12026017.png ; $c \in \bf N$ ; confidence 0.421

299. s13002049.png ; $\operatorname { Vol } ( \overline { U M } ) = C _ { 1 } ( n ) \int _ { U ^ { + } \partial M } l ( v ) \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.421

300. w13009038.png ; $h _ { 1 } \otimes \ldots \otimes h _ { n } \in H ^ { \otimes n }$ ; confidence 0.421

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/62. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/62&oldid=44550