Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/53"
(AUTOMATIC EDIT of page 53 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
|||
(26 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007096.png ; $B _ { j } ( t , x , D _ { x } ) u = 0 , \text { on } [ 0 , T ] \times \partial \Omega , j = 1 , \ldots , m$ ; confidence 0.592 | + | 1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007096.png ; $B _ { j } ( t , x , D _ { x } ) u = 0 , \text { on } [ 0 , T ] \times \partial \Omega ,\quad j = 1 , \ldots , m,$ ; confidence 0.592 |
2. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006023.png ; $L : X _ { P } \rightarrow Y _ { Q }$ ; confidence 0.592 | 2. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006023.png ; $L : X _ { P } \rightarrow Y _ { Q }$ ; confidence 0.592 | ||
− | 3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050052.png ; $X \in R$ ; confidence 0.592 | + | 3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050052.png ; $X \in \mathbf R$ ; confidence 0.592 |
4. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024020.png ; $\mathfrak { g } ^ { * } / G$ ; confidence 0.592 | 4. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024020.png ; $\mathfrak { g } ^ { * } / G$ ; confidence 0.592 | ||
Line 10: | Line 10: | ||
5. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200172.png ; $r \in [ m + 1 , m + n ( 3 + \pi / k ) ]$ ; confidence 0.592 | 5. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200172.png ; $r \in [ m + 1 , m + n ( 3 + \pi / k ) ]$ ; confidence 0.592 | ||
− | 6. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510157.png ; $ | + | 6. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510157.png ; $d \leq 3$ ; confidence 0.592 |
7. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001048.png ; $( \text { Epi } , \text { Mono } ) =$ ; confidence 0.592 | 7. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001048.png ; $( \text { Epi } , \text { Mono } ) =$ ; confidence 0.592 | ||
− | 8. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010040.png ; $\ | + | 8. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010040.png ; $\widetilde { f } : = \mathcal F f$ ; confidence 0.592 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052084.png ; $s _ { | + | 9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052084.png ; $s _ { n } = - B _ { n } ^ { - 1 } F ( x _ { n } ) =$ ; confidence 0.592 |
10. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007089.png ; $\| e ^ { i \xi A } \| \leq C ( 1 + | \xi | ) ^ { s }$ ; confidence 0.592 | 10. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007089.png ; $\| e ^ { i \xi A } \| \leq C ( 1 + | \xi | ) ^ { s }$ ; confidence 0.592 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014034.png ; $F _ { q } | + | 11. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014034.png ; $\mathbf F _ { q } [ z ]$ ; confidence 0.592 |
12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230158.png ; $d _ { k } < 0$ ; confidence 0.592 | 12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230158.png ; $d _ { k } < 0$ ; confidence 0.592 | ||
− | 13. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009040.png ; $U _ { 1 , p }$ ; confidence 0.592 | + | 13. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009040.png ; $U _ { 1 , \mathfrak p }$ ; confidence 0.592 |
14. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001073.png ; $z ^ { - k }$ ; confidence 0.591 | 14. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001073.png ; $z ^ { - k }$ ; confidence 0.591 | ||
Line 30: | Line 30: | ||
15. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024032.png ; $S ^ { ( r ) } ( f )$ ; confidence 0.591 | 15. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024032.png ; $S ^ { ( r ) } ( f )$ ; confidence 0.591 | ||
− | 16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a11038053.png ; $\ | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a11038053.png ; $\approx$ ; confidence 0.591 |
17. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005027.png ; $d _ { k } < 1$ ; confidence 0.591 | 17. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005027.png ; $d _ { k } < 1$ ; confidence 0.591 | ||
Line 38: | Line 38: | ||
19. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012043.png ; $i = 1 , \dots , M$ ; confidence 0.591 | 19. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012043.png ; $i = 1 , \dots , M$ ; confidence 0.591 | ||
− | 20. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120032.png ; $p ( x ) = 1$ ; confidence 0.591 | + | 20. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120032.png ; $p ( x ) = \overline{1}$ ; confidence 0.591 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003026.png ; $JBW ^ { * }$ ; confidence 0.591 | + | 21. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003026.png ; $\operatorname {JBW} ^ { * }$ ; confidence 0.591 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012055.png ; $d : G \rightarrow C$ ; confidence 0.591 | + | 22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012055.png ; $d : G \rightarrow \mathcal C$ ; confidence 0.591 |
23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029041.png ; $\operatorname { gcd } ( p _ { 1 } , \dots , p _ { k } , q ) = 1$ ; confidence 0.591 | 23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029041.png ; $\operatorname { gcd } ( p _ { 1 } , \dots , p _ { k } , q ) = 1$ ; confidence 0.591 | ||
Line 52: | Line 52: | ||
26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006022.png ; $\Gamma X$ ; confidence 0.591 | 26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006022.png ; $\Gamma X$ ; confidence 0.591 | ||
− | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040149.png ; $\Lambda _ { | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040149.png ; $\Lambda _ { \operatorname {S5} } T$ ; confidence 0.591 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.591 | + | 28. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \widehat{\otimes} n }$ ; confidence 0.591 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301902.png ; $ | + | 29. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301902.png ; $I \subset \mathbf{C}$ ; confidence 0.591 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028032.png ; $f * ( x _ { | + | 30. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028032.png ; $f * ( x _ { n } )$ ; confidence 0.591 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306504.png ; $\Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z )$ ; confidence 0.591 | + | 31. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306504.png ; $\Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z ),$ ; confidence 0.591 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004011.png ; $\lambda = \operatorname { det } ( x _ { i } ^ { \ | + | 32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004011.png ; $a_\lambda = \operatorname { det } ( x _ { i } ^ { \lambda_j } ).$ ; confidence 0.591 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002059.png ; $P ( X \leq \lambda - t ) \leq \operatorname { exp } ( - \frac { \phi ( - t / \lambda ) \lambda ^ { 2 } } { \overline { \Delta } } ) \leq \operatorname { exp } ( - \frac { t ^ { 2 } } { 2 \overline { \Delta } } )$ ; confidence 0.591 | + | 33. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002059.png ; $\mathsf P ( X \leq \lambda - t ) \leq \operatorname { exp } \left( - \frac { \phi ( - t / \lambda ) \lambda ^ { 2 } } { \overline { \Delta } } \right) \leq \operatorname { exp } \left( - \frac { t ^ { 2 } } { 2 \overline { \Delta } } \right).$ ; confidence 0.591 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059010.png ; $\Lambda _ { 2 m + 1 } = \ | + | 34. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059010.png ; $\Lambda _ { 2 m + 1 } = \Lambda_{ - ( m + 1 ) , m}$ ; confidence 0.591 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b1202502.png ; $B _ { | + | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b1202502.png ; $B _ { \kappa }$ ; confidence 0.591 |
36. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f1201905.png ; $H \cap g ^ { - 1 } H g = \{ 1 \}$ ; confidence 0.591 | 36. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f1201905.png ; $H \cap g ^ { - 1 } H g = \{ 1 \}$ ; confidence 0.591 | ||
Line 74: | Line 74: | ||
37. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005031.png ; $\mu _ { c }$ ; confidence 0.591 | 37. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005031.png ; $\mu _ { c }$ ; confidence 0.591 | ||
− | 38. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008031.png ; $f _ { | + | 38. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008031.png ; $f _ { x } ( y ) = f ( y - x )$ ; confidence 0.591 |
39. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s12029027.png ; $Y = Z$ ; confidence 0.590 | 39. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s12029027.png ; $Y = Z$ ; confidence 0.590 | ||
− | 40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230109.png ; $U \sim U _ { p , p }$ ; confidence 0.590 | + | 40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230109.png ; $U \sim \mathcal U _ { p , p }$ ; confidence 0.590 |
41. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120189.png ; $V _ { \text { simp } } ( M ) \neq \emptyset$ ; confidence 0.590 | 41. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120189.png ; $V _ { \text { simp } } ( M ) \neq \emptyset$ ; confidence 0.590 | ||
Line 84: | Line 84: | ||
42. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182081.png ; $M _ { 2 }$ ; confidence 0.590 | 42. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182081.png ; $M _ { 2 }$ ; confidence 0.590 | ||
− | 43. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004013.png ; $h _ { 1 } , \dots , h _ { | + | 43. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004013.png ; $h _ { 1 } , \dots , h _ { \operatorname {l} }$ ; confidence 0.590 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110101.png ; $E \mu _ { | + | 44. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110101.png ; $\mathsf E \mu _ { n } ( x )$ ; confidence 0.590 |
45. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070104.png ; $\| f \| _ { 1 } ^ { 2 } = \operatorname { lim } _ { n \rightarrow \infty } \| f _ { n } \| _ { 1 } ^ { 2 } =$ ; confidence 0.590 | 45. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070104.png ; $\| f \| _ { 1 } ^ { 2 } = \operatorname { lim } _ { n \rightarrow \infty } \| f _ { n } \| _ { 1 } ^ { 2 } =$ ; confidence 0.590 | ||
Line 92: | Line 92: | ||
46. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026035.png ; $\partial _ { t } ^ { * }$ ; confidence 0.590 | 46. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026035.png ; $\partial _ { t } ^ { * }$ ; confidence 0.590 | ||
− | 47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013063.png ; $\langle f , g \rangle = \int _ { D } f g d A$ ; confidence 0.590 | + | 47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013063.png ; $\langle f , g \rangle = \int _ { D } f \overline{g} d A$ ; confidence 0.590 |
48. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006032.png ; $= \frac { 1 } { z - E _ { 0 } } + \frac { 1 } { z - E _ { 0 } } \int _ { 0 } ^ { \infty } d \lambda ( V \phi | \lambda \rangle \langle \lambda | G ( z ) \phi )$ ; confidence 0.590 | 48. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006032.png ; $= \frac { 1 } { z - E _ { 0 } } + \frac { 1 } { z - E _ { 0 } } \int _ { 0 } ^ { \infty } d \lambda ( V \phi | \lambda \rangle \langle \lambda | G ( z ) \phi )$ ; confidence 0.590 | ||
Line 98: | Line 98: | ||
49. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002010.png ; $d u = \alpha \wedge d \alpha ^ { n - 1 }$ ; confidence 0.590 | 49. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002010.png ; $d u = \alpha \wedge d \alpha ^ { n - 1 }$ ; confidence 0.590 | ||
− | 50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013095.png ; $ | + | 50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013095.png ; $n$ ; confidence 0.590 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004040.png ; $G ( c , c )$ ; confidence 0.590 | + | 51. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004040.png ; $G ( \mathfrak c , \mathfrak c )$ ; confidence 0.590 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011082.png ; $H _ { \Omega } ^ { n } ( U , \ | + | 52. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011082.png ; $H _ { \Omega } ^ { n } ( U , \widetilde { \mathcal O } )$ ; confidence 0.590 |
53. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003062.png ; $b \downarrow 0$ ; confidence 0.590 | 53. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003062.png ; $b \downarrow 0$ ; confidence 0.590 | ||
− | 54. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001074.png ; $X \in C ^ { | + | 54. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001074.png ; $X \in C ^ { o }$ ; confidence 0.590 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030034.png ; $\ | + | 55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030034.png ; $\mathfrak S ( T )$ ; confidence 0.590 |
56. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650234.png ; $d \in D$ ; confidence 0.590 | 56. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650234.png ; $d \in D$ ; confidence 0.590 | ||
Line 114: | Line 114: | ||
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006029.png ; $\lambda _ { 1 } , \dots , \lambda _ { n }$ ; confidence 0.590 | 57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006029.png ; $\lambda _ { 1 } , \dots , \lambda _ { n }$ ; confidence 0.590 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030135.png ; $^ { c }$ ; confidence 0.590 | + | 58. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030135.png ; $\operatorname {spin}^ { c }$ ; confidence 0.590 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597037.png ; $\ | + | 59. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597037.png ; $\widetilde { t }$ ; confidence 0.589 |
60. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002046.png ; $( \alpha _ { 1 } , \dots , \alpha _ { q } )$ ; confidence 0.589 | 60. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002046.png ; $( \alpha _ { 1 } , \dots , \alpha _ { q } )$ ; confidence 0.589 | ||
− | 61. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020107.png ; $\ | + | 61. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020107.png ; $\widehat { c } ^ { 1 } k \geq 0$ ; confidence 0.589 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012048.png ; $- \pi , \pi$ ; confidence 0.589 | + | 62. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012048.png ; $[- \pi , \pi ]$ ; confidence 0.589 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014035.png ; $ | + | 63. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014035.png ; $R_l = \{ ( i , j ) : a _ { i , j } = 1 \}$ ; confidence 0.589 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016070.png ; $F \subset L _ { 1 } ( S \times T )$ ; confidence 0.589 | + | 64. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016070.png ; $\mathcal F \subset L _ { 1 } ( S \times T )$ ; confidence 0.589 |
65. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220230.png ; $j = 0$ ; confidence 0.589 | 65. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220230.png ; $j = 0$ ; confidence 0.589 | ||
− | 66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005024.png ; $ | + | 66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005024.png ; $\operatorname {Ker} d f_x$ ; confidence 0.589 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031067.png ; $\ | + | 67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031067.png ; $\widehat { f } ( m ) = \int _ { \mathcal T ^ { n } } f ( x ) e ^ { - 2 \pi i x m } d x$ ; confidence 0.589 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k1300106.png ; $\langle T _ { n } \rangle = ( - A ^ { 2 } - A ^ { - 2 } ) ^ { n - 1 }$ ; confidence 0.589 | + | 68. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k1300106.png ; $\langle T _ { n } \rangle = ( - A ^ { 2 } - A ^ { - 2 } ) ^ { n - 1 }.$ ; confidence 0.589 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201106.png ; $t = ( t _ { j } )$ ; confidence 0.589 | + | 69. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201106.png ; $\mathbf t = ( t _ { j } )$ ; confidence 0.589 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340103.png ; $\ | + | 70. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340103.png ; $\gamma_j$ ; confidence 0.589 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006037.png ; $\mathfrak { V } ^ { \prime \prime } = ( A _ { 1 } ^ { \prime \prime } , A _ { 2 } ^ { \prime \prime } , H ^ { \prime \prime } , \Phi ^ { \prime \prime } , E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime \prime } , \ | + | 71. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006037.png ; $\mathfrak { V } ^ { \prime \prime } = ( A _ { 1 } ^ { \prime \prime } , A _ { 2 } ^ { \prime \prime } , \mathcal{H} ^ { \prime \prime } , \Phi ^ { \prime \prime } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime \prime } , \widetilde { \gamma } ^ { \prime \prime } )$ ; confidence 0.589 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200306.png ; $f : J \times G \rightarrow R ^ { m }$ ; confidence 0.589 | + | 72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200306.png ; $f : J \times G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.589 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500080.png ; $H _ { \epsilon } ^ { \prime } ( \xi ) = \operatorname { inf } \{ I ( \xi , \xi ^ { \prime } ) : \xi ^ { \prime } \in W _ { \epsilon } \}$ ; confidence 0.589 | + | 73. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500080.png ; $\mathcal H _ { \epsilon } ^ { \prime } ( \xi ) = \operatorname { inf } \left\{ I ( \xi , \xi ^ { \prime } ) : \xi ^ { \prime } \in W _ { \epsilon } \right\},$ ; confidence 0.589 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005020.png ; $ | + | 74. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005020.png ; $\operatorname {RM} ( 1 , m )$ ; confidence 0.589 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005044.png ; $d ^ { k } = - \operatorname { grad } _ { H _ { k } ^ { - 1 } } f ( x ^ { k } )$ ; confidence 0.589 | + | 75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005044.png ; $d ^ { k } = - \operatorname { grad } _ { H _ { k } ^ { - 1 } } f ( x ^ { k } ),$ ; confidence 0.589 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007037.png ; $3 ^ { 2 } \cdot 5 ^ { 2 } \cdot 11,3 ^ { 5 } \cdot 5 ^ { 2 } \cdot 13,3 ^ { 4 } \cdot 5 ^ { 2 } \cdot 13 ^ { 2 } , 3 ^ { 3 } \cdot 5 ^ { 3 } \cdot 13 ^ { 2 }$ ; confidence 0.589 | + | 76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007037.png ; $3 ^ { 2 } \cdot 5 ^ { 2 } \cdot 11,\; 3 ^ { 5 } \cdot 5 ^ { 2 } \cdot 13,\; 3 ^ { 4 } \cdot 5 ^ { 2 } \cdot 13 ^ { 2 } ,\; 3 ^ { 3 } \cdot 5 ^ { 3 } \cdot 13 ^ { 2 }.$ ; confidence 0.589 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010028.png ; $( b _ { i } a _ { j } + b _ { j } a _ { j i } - b _ { i } b _ { j } ) _ { i , j = 1 } ^ { s }$ ; confidence 0.589 | + | 77. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010028.png ; $( b _ { i } a _ { i j } + b _ { j } a _ { j i } - b _ { i } b _ { j } ) _ { i , j = 1 } ^ { s }$ ; confidence 0.589 |
78. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002070.png ; $P ^ { \prime } \subseteq P$ ; confidence 0.589 | 78. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002070.png ; $P ^ { \prime } \subseteq P$ ; confidence 0.589 | ||
− | 79. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110129.png ; $\frac { D v _ { i } } { D t } = \frac { \partial v _ { i } } { \partial t } + v _ { k } v _ { i | + | 79. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110129.png ; $\frac { D v _ { i } } { D t } = \frac { \partial v _ { i } } { \partial t } + v _ { k } v _ { i , k}$ ; confidence 0.589 |
80. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700052.png ; $( \lambda z ( x z ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } \cdot ( x z ^ { \prime } ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } ( ( z z ) z ^ { \prime } ) ) \not \equiv$ ; confidence 0.589 | 80. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700052.png ; $( \lambda z ( x z ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } \cdot ( x z ^ { \prime } ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } ( ( z z ) z ^ { \prime } ) ) \not \equiv$ ; confidence 0.589 | ||
− | 81. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001020.png ; $\square _ { k }$ ; confidence 0.588 | + | 81. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001020.png ; $\square _ { k }\operatorname {Mod}$ ; confidence 0.588 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008022.png ; $p _ { 1 } , \dots , p _ { s }$ ; confidence 0.588 | + | 82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008022.png ; $a, p _ { 1 } , \dots , p _ { s }$ ; confidence 0.588 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201609.png ; $U ^ { i } ( f ) = \sum _ { j = 1 } ^ { m _ { i } } f ( x _ { j } ^ { i } ) \cdot a _ { j } ^ { i }$ ; confidence 0.588 | + | 83. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201609.png ; $U ^ { i } ( f ) = \sum _ { j = 1 } ^ { m _ { i } } f ( x _ { j } ^ { i } ) \cdot a _ { j } ^ { i }.$ ; confidence 0.588 |
84. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005078.png ; $\sigma ^ { \prime \prime }$ ; confidence 0.588 | 84. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005078.png ; $\sigma ^ { \prime \prime }$ ; confidence 0.588 | ||
− | 85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150166.png ; $g : \Theta \rightarrow R$ ; confidence 0.588 | + | 85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150166.png ; $g : \Theta \rightarrow \mathbf R$ ; confidence 0.588 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002051.png ; $b : U \times U \rightarrow R$ ; confidence 0.588 | + | 86. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002051.png ; $b : U \times U \rightarrow \mathbf R$ ; confidence 0.588 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013010.png ; $M ( A _ { n } ) \cong \left\{ \begin{array} { l l } { Z _ { 2 } } & { \text { if } n \geq 4 , n \neq 6,7 } \\ { Z _ { 6 } } & { \text { if } n = 6,7 } \\ { \{ e \} } & { \text { if } n < 4 } \end{array} \right.$ ; confidence 0.588 | + | 87. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013010.png ; $M ( A _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf Z _ { 2 } } & { \text { if } n \geq 4 , n \neq 6,7, } \\ { \mathbf Z _ { 6 } } & { \text { if } n = 6,7, } \\ { \{ e \} } & { \text { if } n < 4. } \end{array} \right.$ ; confidence 0.588 |
88. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021062.png ; $A _ { i } A _ { j } = A _ { j } A _ { i }$ ; confidence 0.588 | 88. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021062.png ; $A _ { i } A _ { j } = A _ { j } A _ { i }$ ; confidence 0.588 | ||
− | 89. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840256.png ; $c ( A ) \subset R \cup \{ \infty \}$ ; confidence 0.588 | + | 89. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840256.png ; $c ( A ) \subset \mathbf R \cup \{ \infty \}$ ; confidence 0.588 |
90. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230146.png ; $d \pi _ { e } Z _ { e } = 0$ ; confidence 0.588 | 90. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230146.png ; $d \pi _ { e } Z _ { e } = 0$ ; confidence 0.588 | ||
− | 91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028064.png ; $F ( t ) = F _ { \phi } ( f ) = \int _ { \partial D _ { m } } f ( z ) \phi ( w ) \omega ( z , w )$ ; confidence 0.588 | + | 91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028064.png ; $F ( t ) = F _ { \phi } ( f ) = \int _ { \partial D _ { m } } f ( z ) \phi ( w ) \omega ( z , w ).$ ; confidence 0.588 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031038.png ; $H _ { | + | 92. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031038.png ; $H _ { d } ^ { k }$ ; confidence 0.588 |
93. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110191.png ; $( \infty , 0 , \ldots , 0 )$ ; confidence 0.588 | 93. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110191.png ; $( \infty , 0 , \ldots , 0 )$ ; confidence 0.588 | ||
− | 94. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240130.png ; $c _ { l } \in H ^ { 1 } ( G ( \overline { Q } / Q ) ; \operatorname { Sym } ^ { 2 } T _ { p } ( E ) )$ ; confidence 0.588 | + | 94. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240130.png ; $c _ { l } \in H ^ { 1 } ( G ( \overline { \mathbf Q } / \mathbf Q ) ; \operatorname { Sym } ^ { 2 } T _ { p } ( E ) )$ ; confidence 0.588 |
95. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080105.png ; $F ^ { n } ( E _ { z } ( a , R ) ) \subset F _ { z } ( a , R )$ ; confidence 0.588 | 95. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080105.png ; $F ^ { n } ( E _ { z } ( a , R ) ) \subset F _ { z } ( a , R )$ ; confidence 0.588 | ||
Line 196: | Line 196: | ||
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024036.png ; $N ( 0 , \Sigma )$ ; confidence 0.587 | 98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024036.png ; $N ( 0 , \Sigma )$ ; confidence 0.587 | ||
− | 99. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006070.png ; $ | + | 99. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006070.png ; $\uparrow$ ; confidence 0.587 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067860/n06786012.png ; $S ^ { \prime } ( R ^ { n } )$ ; confidence 0.587 | + | 100. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067860/n06786012.png ; $\mathcal S ^ { \prime } ( \mathbf R ^ { n } )$ ; confidence 0.587 |
101. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110173.png ; $a = J ^ { - 1 / 2 } b$ ; confidence 0.587 | 101. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110173.png ; $a = J ^ { - 1 / 2 } b$ ; confidence 0.587 | ||
− | 102. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f1200906.png ; $H ( C ^ { n } ) ^ { \prime }$ ; confidence 0.587 | + | 102. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f1200906.png ; $\mathcal H ( \mathbf C ^ { n } ) ^ { \prime }$ ; confidence 0.587 |
103. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221102.png ; $\nu = ( \nu _ { 1 } , \dots , \nu _ { k } )$ ; confidence 0.587 | 103. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221102.png ; $\nu = ( \nu _ { 1 } , \dots , \nu _ { k } )$ ; confidence 0.587 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132012.png ; $T _ { | + | 104. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132012.png ; $T _ { x } M$ ; confidence 0.587 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240307.png ; $SS _ { H } = \| \ | + | 105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240307.png ; $\operatorname {SS} _ { \mathcal H } = \| \widehat { \eta } _ { \Omega } - \widehat { \eta } _ { \omega } \| ^ { 2 }$ ; confidence 0.587 |
106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340154.png ; $x ( 0 ) \in L _ { - }$ ; confidence 0.587 | 106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340154.png ; $x ( 0 ) \in L _ { - }$ ; confidence 0.587 | ||
− | 107. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028038.png ; $B ( n ) = \Sigma ^ { n } D T ( n )$ ; confidence 0.587 | + | 107. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028038.png ; $B ( n ) = \Sigma ^ { n } D T ( n ),$ ; confidence 0.587 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028014.png ; $z \in T$ ; confidence 0.587 | + | 108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028014.png ; $z \in \mathbf T$ ; confidence 0.587 |
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030061.png ; $\lambda _ { m } ( \eta )$ ; confidence 0.587 | 109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030061.png ; $\lambda _ { m } ( \eta )$ ; confidence 0.587 | ||
− | 110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010133.png ; $\ | + | 110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010133.png ; $\widetilde{\mu} ( \zeta ) = \mu \left( \frac { 1 } { ( 1 + \langle \cdot , \zeta \rangle ) } \right).$ ; confidence 0.587 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090340.png ; $0 \leq i \in Z$ ; confidence 0.587 | + | 111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090340.png ; $0 \leq i \in \mathbf Z$ ; confidence 0.587 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220196.png ; $X _ { Z }$ ; confidence 0.587 | + | 112. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220196.png ; $X _ { \mathbf Z }$ ; confidence 0.587 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011032.png ; $b _ { j } ^ { | + | 113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011032.png ; $b _ { j } ^ { n }$ ; confidence 0.587 |
114. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003053.png ; $P _ { 4 }$ ; confidence 0.587 | 114. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003053.png ; $P _ { 4 }$ ; confidence 0.587 | ||
Line 230: | Line 230: | ||
115. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070104.png ; $\operatorname { SPSH } ( \Omega \times \Omega )$ ; confidence 0.587 | 115. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070104.png ; $\operatorname { SPSH } ( \Omega \times \Omega )$ ; confidence 0.587 | ||
− | 116. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o1300605.png ; $\mathfrak { V } = ( A _ { 1 } , A _ { 2 } , H , \Phi , E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \ | + | 116. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o1300605.png ; $\mathfrak { V } = ( A _ { 1 } , A _ { 2 } , \mathcal H , \Phi , \mathcal E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \widetilde { \gamma } ).$ ; confidence 0.587 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001021.png ; $k \in Z ^ { + }$ ; confidence 0.587 | + | 117. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001021.png ; $k \in \mathbf Z ^ { + }$ ; confidence 0.587 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005068.png ; $x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } ) = \sum _ { n \in Z } \frac { ( x _ { 1 } - x _ { 2 } ) ^ { n } } { x _ { 0 } ^ { n + 1 } } =$ ; confidence 0.587 | + | 118. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005068.png ; $x _ { 0 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } \right) = \sum _ { n \in \mathbf Z } \frac { ( x _ { 1 } - x _ { 2 } ) ^ { n } } { x _ { 0 } ^ { n + 1 } } =$ ; confidence 0.587 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180267.png ; $\otimes ^ { * } E$ ; confidence 0.587 | + | 119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180267.png ; $\otimes ^ { * } \mathcal E$ ; confidence 0.587 |
120. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007025.png ; $r \geq | \lambda |$ ; confidence 0.587 | 120. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007025.png ; $r \geq | \lambda |$ ; confidence 0.587 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110201.png ; $G _ { X } \leq C ( 1 + G _ { X } ^ { | + | 121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110201.png ; $G _ { X } \leq C ( 1 + G _ { X } ^ { \sigma } ( X - Y ) ) ^ { N } G _ { Y }.$ ; confidence 0.586 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012036.png ; $ | + | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012036.png ; $h_{i j} \geq 0$ ; confidence 0.586 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180507.png ; $\ | + | 123. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180507.png ; $\widetilde { N } = N \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.586 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520440.png ; $\ | + | 124. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520440.png ; $\widetilde { \xi }_i$ ; confidence 0.586 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024021.png ; $E ( y ) = X \beta$ ; confidence 0.586 | + | 125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024021.png ; $\mathsf E ( \mathbf y ) = \mathbf X \beta$ ; confidence 0.586 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019019.png ; $Q ( | + | 126. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019019.png ; $Q ( a - b ) = Q ( c - d )$ ; confidence 0.586 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006077.png ; $\left\{ \begin{array} { l } { \frac { d u } { d t } + A ( t , u ) u = f ( t , u ) , \quad t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } } \end{array} \right.$ ; confidence 0.586 | + | 127. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006077.png ; $\left\{ \begin{array} { l } { \frac { d u } { d t } + A ( t , u ) u = f ( t , u ) , \quad t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0 }, } \end{array} \right.$ ; confidence 0.586 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027011.png ; $S _ { n } = \sum _ { 1 } ^ { n } X _ { i } \text { | + | 128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027011.png ; $S _ { n } = \sum _ { 1 } ^ { n } X _ { i }\; \text { for } \ n \geq 1 , \text { and for } \ t \geq 0 ,\; N ( t ) = k \;\text { if } S _ { k } \leq t < S _ { k + 1 } \;\text { for } k = 0,1, \dots ,$ ; confidence 0.586 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160162.png ; $ | + | 129. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160162.png ; $\operatorname {BPP}$ ; confidence 0.586 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240164.png ; $\eta = E ( y )$ ; confidence 0.586 | + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240164.png ; $\eta = \mathsf E ( \mathbf y )$ ; confidence 0.586 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110121.png ; $\sigma _ { | + | 131. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110121.png ; $\sigma _ { x _ { 0 } , \xi _ { 0 } }$ ; confidence 0.586 |
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029035.png ; $\operatorname { dim } A _ { \mathfrak { p } } = \operatorname { dim } A - \operatorname { dim } A / \mathfrak { p }$ ; confidence 0.586 | 132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029035.png ; $\operatorname { dim } A _ { \mathfrak { p } } = \operatorname { dim } A - \operatorname { dim } A / \mathfrak { p }$ ; confidence 0.586 | ||
− | 133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200155.png ; $\alpha \in \Pi ^ { im }$ ; confidence 0.586 | + | 133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200155.png ; $\alpha \in \Pi ^ { \operatorname {im} }$ ; confidence 0.586 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419022.png ; $c \in R$ ; confidence 0.586 | + | 134. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419022.png ; $c \in \mathbf R$ ; confidence 0.586 |
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040243.png ; $K ( \varphi ) \approx L ( \varphi ) = \{ \kappa _ { j } ( \varphi ) \approx \lambda _ { j } ( \varphi ) : j \in J \}$ ; confidence 0.585 | 135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040243.png ; $K ( \varphi ) \approx L ( \varphi ) = \{ \kappa _ { j } ( \varphi ) \approx \lambda _ { j } ( \varphi ) : j \in J \}$ ; confidence 0.585 | ||
Line 274: | Line 274: | ||
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053032.png ; $\{ e u : u \in U \}$ ; confidence 0.585 | 137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053032.png ; $\{ e u : u \in U \}$ ; confidence 0.585 | ||
− | 138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301802.png ; $( L )$ ; confidence 0.585 | + | 138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301802.png ; $\operatorname {Alg}( L )$ ; confidence 0.585 |
139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140146.png ; $d t = d t _ { 2 } \wedge \ldots \wedge d t _ { n }$ ; confidence 0.585 | 139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140146.png ; $d t = d t _ { 2 } \wedge \ldots \wedge d t _ { n }$ ; confidence 0.585 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010100.png ; $\operatorname { Sp } ( 2 n , R )$ ; confidence 0.585 | + | 140. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010100.png ; $\operatorname { Sp } ( 2 n , \mathbf R )$ ; confidence 0.585 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190102.png ; $d : S \times S \rightarrow R$ ; confidence 0.585 | + | 141. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190102.png ; $d : S \times S \rightarrow \mathbf R$ ; confidence 0.585 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022065.png ; $H ( , \xi ) : D _ { \xi } \rightarrow R$ ; confidence 0.585 | + | 142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022065.png ; $H ( \cdot , \xi ) : D _ { \xi } \rightarrow R$ ; confidence 0.585 |
143. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980100.png ; $n = 1,2 , \dots$ ; confidence 0.585 | 143. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980100.png ; $n = 1,2 , \dots$ ; confidence 0.585 | ||
Line 288: | Line 288: | ||
144. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011040.png ; $s _ { j } \in C _ { j }$ ; confidence 0.585 | 144. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011040.png ; $s _ { j } \in C _ { j }$ ; confidence 0.585 | ||
− | 145. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696027.png ; $P \{ X - Y \geq s \} = F _ { 2 s } ( x ; \lambda )$ ; confidence 0.585 | + | 145. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696027.png ; $\mathsf P \{ X - Y \geq s \} = F _ { 2 s } ( x ; \lambda ).$ ; confidence 0.585 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023090.png ; $( x , y , y ^ { \prime } , \dots , y ^ { ( k ) } )$ ; confidence 0.585 | + | 146. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023090.png ; $( x , y , y ^ { \prime } , \dots , y ^ { ( k ) } ),$ ; confidence 0.585 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702066.png ; $H _ { l } ^ { i } ( \overline { X } ) = H ^ { i } ( X , Z _ { l } ) \otimes Q _ { l }$ ; confidence 0.585 | + | 147. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702066.png ; $H _ { l } ^ { i } ( \overline { X } ) = H ^ { i } ( \overline{X} , \mathbf Z _ { l } ) \otimes \mathbf Q _ { l }$ ; confidence 0.585 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013069.png ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in Z }$ ; confidence 0.585 | + | 148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013069.png ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in \mathbf Z }$ ; confidence 0.585 |
149. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010088.png ; $g = \left( \begin{array} { c c } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.585 | 149. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010088.png ; $g = \left( \begin{array} { c c } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.585 | ||
− | 150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170103.png ; $K ^ { 2 } | + | 150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170103.png ; $K ^ { 2 } \nearrow K ^ { 2 }\times I \searrow \operatorname {pt}$ ; confidence 0.585 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016048.png ; $\ | + | 151. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016048.png ; $\chi_{ \lambda I - T}$ ; confidence 0.585 |
152. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090106.png ; $g _ { n } \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.585 | 152. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090106.png ; $g _ { n } \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.585 | ||
− | 153. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015540/b01554015.png ; $ | + | 153. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015540/b01554015.png ; $Z = 0$ ; confidence 0.585 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040113.png ; $ | + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040113.png ; $d + 1$ ; confidence 0.585 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080194.png ; $A ( | + | 155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080194.png ; $A ( \widehat{K} )$ ; confidence 0.585 |
156. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026022.png ; $D _ { t } ^ { * }$ ; confidence 0.585 | 156. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026022.png ; $D _ { t } ^ { * }$ ; confidence 0.585 | ||
− | 157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200207.png ; $v _ { t } ( x ) = t ^ { - | + | 157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200207.png ; $v _ { t } ( x ) = t ^ { - n } v ( x / t )$ ; confidence 0.585 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004076.png ; $u _ { i } ^ { n + 1 } = \frac { 1 } { 2 } ( u _ { i } ^ { n } + \ | + | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004076.png ; $u _ { i } ^ { n + 1 } = \frac { 1 } { 2 } ( u _ { i } ^ { n } + \widehat { u } _ { i } ^ { + } ) + \frac { 1 } { 2 } \frac { \Delta t } { \Delta x } ( \widehat { f } _ { i - 1 } ^ { + } - \widehat { f } _ { i } ^ { + } ),$ ; confidence 0.584 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031069.png ; $\operatorname { lim } _ { R } S _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.584 | + | 159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031069.png ; $\operatorname { lim } _ { R } S _ { R } ^ { \delta } \,f ( x ) = f ( x )$ ; confidence 0.584 |
160. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602041.png ; $| \Delta P ( i \omega ) |$ ; confidence 0.584 | 160. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602041.png ; $| \Delta P ( i \omega ) |$ ; confidence 0.584 | ||
− | 161. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031049.png ; $n ( \epsilon , F _ { | + | 161. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031049.png ; $n ( \epsilon , F _ { d } ) \leq \kappa \cdot d \cdot \epsilon ^ { - 2 }$ ; confidence 0.584 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006038.png ; $\rho _ { N } ^ { TF }$ ; confidence 0.584 | + | 162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006038.png ; $\rho _ { N } ^ { \operatorname {TF} }$ ; confidence 0.584 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004035.png ; $( a , x ) - \Lambda _ { D _ { - } } ^ { * } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ^ { * } ( a , x ) - \Lambda _ { D _ { \infty } } ^ { * } ( a , x ) )$ ; confidence 0.584 | + | 163. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004035.png ; $\Lambda _ { D _ { + } } ^ { * } ( a , x ) - \Lambda _ { D _ { - } } ^ { * } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ^ { * } ( a , x ) - \Lambda _ { D _ { \infty } } ^ { * } ( a , x ) )$ ; confidence 0.584 |
164. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202906.png ; $M \rightarrow \operatorname { Aut } ( M )$ ; confidence 0.584 | 164. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202906.png ; $M \rightarrow \operatorname { Aut } ( M )$ ; confidence 0.584 | ||
Line 334: | Line 334: | ||
167. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026090.png ; $\mu _ { p }$ ; confidence 0.584 | 167. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026090.png ; $\mu _ { p }$ ; confidence 0.584 | ||
− | 168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008065.png ; $I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = | + | 168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008065.png ; $I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k )$ ; confidence 0.584 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009025.png ; $\cup _ { n \geq 0 } k ( \mu _ { p } | + | 169. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009025.png ; $\cup _ { n \geq 0 } k ( \mu _ { p ^ n} )$ ; confidence 0.584 |
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028019.png ; $a = 1$ ; confidence 0.584 | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028019.png ; $a = 1$ ; confidence 0.584 | ||
Line 342: | Line 342: | ||
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012077.png ; $\langle x _ { t } , y _ { t } , c _ { t } \rangle$ ; confidence 0.584 | 171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012077.png ; $\langle x _ { t } , y _ { t } , c _ { t } \rangle$ ; confidence 0.584 | ||
− | 172. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014082.png ; $q _ { B } ( v ) \geq 0$ ; confidence 0.584 | + | 172. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014082.png ; $q _ { \mathcal B } ( v ) \geq 0$ ; confidence 0.584 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240509.png ; $E [ Z _ { 32 } , Z _ { 33 } ] = 0$ ; confidence 0.584 | + | 173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240509.png ; $\mathsf E [ \mathbf Z _ { 32 } , \mathbf Z _ { 33 } ] = 0$ ; confidence 0.584 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003019.png ; $\Gamma \subset SL _ { 2 } ( Z )$ ; confidence 0.584 | + | 174. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003019.png ; $\Gamma \subset \operatorname {SL} _ { 2 } ( \mathbf Z )$ ; confidence 0.584 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300807.png ; $u ( x , t ) = U = f _ { g } ( \theta _ { 1 } , \ldots , \theta _ { g } )$ ; confidence 0.584 | + | 175. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300807.png ; $u ( x , t ) = U = f _ { g } ( \theta _ { 1 } , \ldots , \theta _ { g } ),$ ; confidence 0.584 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015063.png ; $d ^ { * } : \{ 0,1 \} ^ { n } \rightarrow R$ ; confidence 0.584 | + | 176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015063.png ; $d ^ { * } : \{ 0,1 \} ^ { n } \rightarrow \mathbf R$ ; confidence 0.584 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023064.png ; $= \sum _ { i = 0 } ^ { p - 1 } L ( x _ { i } ) L ^ { * } ( x _ { i } ) - \sum _ { i = 0 } ^ { q - 1 } L ( y _ { i } ) L ^ { * } ( y _ { i } )$ ; confidence 0.584 | + | 177. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023064.png ; $= \sum _ { i = 0 } ^ { p - 1 } L ( x _ { i } ) L ^ { * } ( x _ { i } ) - \sum _ { i = 0 } ^ { q - 1 } L ( y _ { i } ) L ^ { * } ( y _ { i } ).$ ; confidence 0.584 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009041.png ; $k _ { p }$ ; confidence 0.584 | + | 178. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009041.png ; $k _ { \mathfrak p }$ ; confidence 0.584 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110268.png ; $S ( m , | + | 179. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110268.png ; $S ( m , g _ { k } )$ ; confidence 0.584 |
180. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064062.png ; $W _ { \tau } ( k )$ ; confidence 0.583 | 180. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064062.png ; $W _ { \tau } ( k )$ ; confidence 0.583 | ||
− | 181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050053.png ; $\{ | + | 181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050053.png ; $\{ \operatorname {l} ( T , x ) : x \in \mathbf R \}$ ; confidence 0.583 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650460.png ; $D$ ; confidence 0.583 | + | 182. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650460.png ; $\mathbf D$ ; confidence 0.583 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007035.png ; $\theta ( t ) - t = \frac { 1 } { 2 \pi } P | + | 183. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007035.png ; $\theta ( t ) - t = \frac { 1 } { 2 \pi } \operatorname {P} \cdot \operatorname {V}\cdot \int _ { 0 } ^ { 2 \pi } \operatorname { log } \rho ( \theta ( s ) ) \operatorname { cot } \frac { t - s } { 2 } d s,$ ; confidence 0.583 |
184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002014.png ; $g ( u _ { 1 } )$ ; confidence 0.583 | 184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002014.png ; $g ( u _ { 1 } )$ ; confidence 0.583 | ||
− | 185. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008064.png ; $t | + | 185. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008064.png ; $t \sim $ ; confidence 0.583 |
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036016.png ; $p _ { x } , p _ { y } , p _ { z }$ ; confidence 0.583 | 186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036016.png ; $p _ { x } , p _ { y } , p _ { z }$ ; confidence 0.583 | ||
− | 187. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027035.png ; $K _ { n , p } ( t ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } D _ { k } ( t ) =$ ; confidence 0.583 | + | 187. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027035.png ; $K _ { n ,\, p } ( t ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } D _ { k } ( t ) =$ ; confidence 0.583 |
188. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840322.png ; $U ( 0 ) = I _ { n }$ ; confidence 0.583 | 188. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840322.png ; $U ( 0 ) = I _ { n }$ ; confidence 0.583 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745206.png ; $A \ | + | 189. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745206.png ; $A \subseteq P$ ; confidence 0.583 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240108.png ; $y _ { i } = \alpha + \beta t _ { i } + \gamma | + | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240108.png ; $y _ { i } = \alpha + \beta t _ { i } + \gamma t_{i} ^ { 2 } + e _ { i }$ ; confidence 0.583 |
191. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021093.png ; $\frac { \partial u } { \partial \lambda } ( z , \lambda _ { 1 } ) = ( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.583 | 191. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021093.png ; $\frac { \partial u } { \partial \lambda } ( z , \lambda _ { 1 } ) = ( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.583 | ||
− | 192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160113.png ; $x _ { | + | 192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160113.png ; $x _ { ij }$ ; confidence 0.583 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070107.png ; $\ | + | 193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070107.png ; $\widetilde { H } ^ { 1 } ( \Gamma , k , \mathbf v ; P ( k ) )$ ; confidence 0.583 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024028.png ; $\dot { x } ( t - g _ { 1 } ( t ) ) , \ldots , \dot { x } ( t - | + | 194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024028.png ; $\dot { x } ( t - g _ { 1 } ( t ) ) , \ldots , \dot { x } ( t - g_{l} ( t ) ) ).$ ; confidence 0.583 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002049.png ; $x = ( x _ { 1 } , \dots , x _ { m } ) ^ { T }$ ; confidence 0.583 | + | 195. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002049.png ; $\mathbf x = ( x _ { 1 } , \dots , x _ { m } ) ^ { T }$ ; confidence 0.583 |
196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020116.png ; $S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.583 | 196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020116.png ; $S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.583 | ||
− | 197. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001026.png ; $L ^ { 1 } ( T ^ { n } )$ ; confidence 0.583 | + | 197. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001026.png ; $L ^ { 1 } ( \mathbf T ^ { n } )$ ; confidence 0.583 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022053.png ; $ | + | 198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022053.png ; $\mathcal U$ ; confidence 0.583 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230100.png ; $ | + | 199. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230100.png ; $\phi ^ { + }$ ; confidence 0.582 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759021.png ; $ | + | 200. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759021.png ; $\operatorname {ord} ( D )$ ; confidence 0.582 |
201. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110263.png ; $a ^ { w } : H ( m m _ { 1 } , G ) \rightarrow H ( m _ { 1 } , G )$ ; confidence 0.582 | 201. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110263.png ; $a ^ { w } : H ( m m _ { 1 } , G ) \rightarrow H ( m _ { 1 } , G )$ ; confidence 0.582 | ||
− | 202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015058.png ; $\operatorname { lim } _ { n \rightarrow \infty } E _ { P } [ ( d _ { n } ^ { * } - d ^ { * } ) ^ { 2 } ] = 0$ ; confidence 0.582 | + | 202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015058.png ; $\operatorname { lim } _ { n \rightarrow \infty } \mathsf E _ { \mathsf P } [ ( d _ { n } ^ { * } - d ^ { * } ) ^ { 2 } ] = 0$ ; confidence 0.582 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202407.png ; $( \psi [ 1 ] \varphi ) y = \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) y$ ; confidence 0.582 | + | 203. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202407.png ; $( \psi [ 1 ] \varphi ) _ y = \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ y.$ ; confidence 0.582 |
204. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080172.png ; $\omega ^ { 0 } = \int \Sigma _ { g } \langle \delta A , \delta \overline { A } \rangle$ ; confidence 0.582 | 204. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080172.png ; $\omega ^ { 0 } = \int \Sigma _ { g } \langle \delta A , \delta \overline { A } \rangle$ ; confidence 0.582 | ||
− | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040592.png ; $S _ { P }$ ; confidence 0.582 | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040592.png ; $\operatorname {Mod}_{\mathcal S _ { P }}$ ; confidence 0.582 |
206. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060126.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = ( f ( \lambda _ { 1 } , \lambda _ { 2 } ) ) ^ { r }$ ; confidence 0.582 | 206. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060126.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = ( f ( \lambda _ { 1 } , \lambda _ { 2 } ) ) ^ { r }$ ; confidence 0.582 | ||
− | 207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012018.png ; $B = | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012018.png ; $B = I$ ; confidence 0.582 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036034.png ; $\epsilon ( | + | 208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036034.png ; $\epsilon ( a , b , c , d )$ ; confidence 0.582 |
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300105.png ; $n > 10 ^ { 10 }$ ; confidence 0.582 | 209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300105.png ; $n > 10 ^ { 10 }$ ; confidence 0.582 | ||
− | 210. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007036.png ; $ | + | 210. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007036.png ; $\mathcal{Z} _ { m + 1 } ^ { \pi }$ ; confidence 0.582 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240169.png ; $\beta = 0$ ; confidence 0.582 | + | 211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240169.png ; $\beta . = 0$ ; confidence 0.582 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300703.png ; $\operatorname { lim } _ { r \rightarrow \infty } \int _ { x = r } | \frac { \partial v } { \partial r } - i k v | ^ { 2 } d s = 0$ ; confidence 0.581 | + | 212. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300703.png ; $\operatorname { lim } _ { r \rightarrow \infty } \int _ { |x| = r } \left| \frac { \partial v } { \partial r } - i k v \right| ^ { 2 } d s = 0,$ ; confidence 0.581 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001011.png ; $ | + | 213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001011.png ; $a$ ; confidence 0.581 |
214. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014013.png ; $\theta = \theta ( a _ { 0 } , a _ { 1 } ) > 1$ ; confidence 0.581 | 214. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014013.png ; $\theta = \theta ( a _ { 0 } , a _ { 1 } ) > 1$ ; confidence 0.581 | ||
Line 432: | Line 432: | ||
216. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005022.png ; $r \leq s \mu$ ; confidence 0.581 | 216. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005022.png ; $r \leq s \mu$ ; confidence 0.581 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550707.png ; $H ^ { | + | 217. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550707.png ; $H ^ { r } ( M , \mathbf C ) \cong \bigoplus \sum_ { p + q = r } H ^ { p , q } ( M ),$ ; confidence 0.581 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050256.png ; $P _ { C } ^ { \# } ( n )$ ; confidence 0.581 | + | 218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050256.png ; $P _ { \mathcal{C} } ^ { \# } ( n )$ ; confidence 0.581 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005011.png ; $\delta ( a b ) = a \delta ( b ) + b \delta ( | + | 219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005011.png ; $\delta ( a b ) = a \delta ( b ) + b \delta ( a )$ ; confidence 0.581 |
220. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008092.png ; $M A ( G )$ ; confidence 0.581 | 220. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008092.png ; $M A ( G )$ ; confidence 0.581 | ||
Line 446: | Line 446: | ||
223. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009060.png ; $T _ { p }$ ; confidence 0.580 | 223. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009060.png ; $T _ { p }$ ; confidence 0.580 | ||
− | 224. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020194.png ; $\underline { | + | 224. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020194.png ; $\underline { v } = g ( \overline { u } _ { 1 } )$ ; confidence 0.580 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040657.png ; $h ( F _ { S _ { P } } \mathfrak { M } ^ { * } | + | 225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040657.png ; $h ( F _ { \mathcal S _ { P } } \mathfrak { M } ^ { * L} ) = F _ { \mathcal S _ { P } } \mathfrak { N } ^ { * L}$ ; confidence 0.580 |
226. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690080.png ; $S \in A ^ { + }$ ; confidence 0.580 | 226. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690080.png ; $S \in A ^ { + }$ ; confidence 0.580 | ||
− | 227. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png ; $b _ { 2 } ( | + | 227. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png ; $b _ { 2 } ( \mathcal{S} ) \leq 1$ ; confidence 0.580 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005018.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580 | + | 228. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005018.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau ,$ ; confidence 0.580 |
229. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006029.png ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$ ; confidence 0.580 | 229. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006029.png ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$ ; confidence 0.580 | ||
Line 460: | Line 460: | ||
230. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200227.png ; $\phi ( z ) = z ^ { k } + a _ { 1 } z ^ { k - 1 } + \ldots + a _ { k }$ ; confidence 0.580 | 230. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200227.png ; $\phi ( z ) = z ^ { k } + a _ { 1 } z ^ { k - 1 } + \ldots + a _ { k }$ ; confidence 0.580 | ||
− | 231. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c11025044.png ; $\Delta _ { | + | 231. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c11025044.png ; $\Delta _ { n }$ ; confidence 0.580 |
232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009060.png ; $h ( z ) = 1 + c _ { 1 } z + c _ { 2 } z ^ { 2 } + \ldots$ ; confidence 0.580 | 232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009060.png ; $h ( z ) = 1 + c _ { 1 } z + c _ { 2 } z ^ { 2 } + \ldots$ ; confidence 0.580 | ||
− | 233. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010023.png ; $ | + | 233. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010023.png ; $a_{ 0 } = 0$ ; confidence 0.580 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004047.png ; $\ | + | 234. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004047.png ; $\overset{ \rightharpoonup} { x } \cdot \overset{ \rightharpoonup} { v }$ ; confidence 0.580 |
235. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010029.png ; $c _ { i } \neq c _ { j }$ ; confidence 0.580 | 235. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010029.png ; $c _ { i } \neq c _ { j }$ ; confidence 0.580 | ||
− | 236. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084010.png ; $A ^ { | + | 236. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084010.png ; $A ^ { * }$ ; confidence 0.580 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019014.png ; $ | + | 237. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019014.png ; $\operatorname {ind} ( D )$ ; confidence 0.580 |
238. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005056.png ; $u ^ { q }$ ; confidence 0.580 | 238. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005056.png ; $u ^ { q }$ ; confidence 0.580 | ||
Line 478: | Line 478: | ||
239. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002068.png ; $T P ^ { 1 }$ ; confidence 0.579 | 239. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002068.png ; $T P ^ { 1 }$ ; confidence 0.579 | ||
− | 240. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008091.png ; $= \| | + | 240. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008091.png ; $\| \varphi \|_{ MA(G)} = \| M_\varphi \|$ ; confidence 0.579 |
241. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018016.png ; $e ^ { \xi ( u ) } = 1 + u \xi ( u )$ ; confidence 0.579 | 241. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018016.png ; $e ^ { \xi ( u ) } = 1 + u \xi ( u )$ ; confidence 0.579 | ||
− | 242. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h1300506.png ; $u ( x , 0 ) = | + | 242. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h1300506.png ; $u ( x , 0 ) = u_0 ( x ),$ ; confidence 0.579 |
243. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026068.png ; $\Omega = ( 1,0,0 , \dots )$ ; confidence 0.579 | 243. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026068.png ; $\Omega = ( 1,0,0 , \dots )$ ; confidence 0.579 | ||
− | 244. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220229.png ; $CH ^ { i } ( X , j )$ ; confidence 0.579 | + | 244. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220229.png ; $\operatorname {CH} ^ { i } ( X , j )$ ; confidence 0.579 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200123.png ; $\geq \frac { 1 } { 8 } ( \frac { n - 1 } { 8 e ( m + n ) } ) ^ { n } \operatorname { min } | b _ { 1 } + \ldots + b _ { j } |$ ; confidence 0.579 | + | 245. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200123.png ; $\geq \frac { 1 } { 8 } \left( \frac { n - 1 } { 8 e ( m + n ) } \right) ^ { n } \operatorname { min }_ j | b _ { 1 } + \ldots + b _ { j } |.$ ; confidence 0.579 |
246. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008050.png ; $T _ { m } = \epsilon t _ { m }$ ; confidence 0.579 | 246. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008050.png ; $T _ { m } = \epsilon t _ { m }$ ; confidence 0.579 | ||
− | 247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006034.png ; $u ( t ) = e ^ { - t A } u _ { 0 } + \int _ { 0 } ^ { t } e ^ { - ( t - s ) A } f ( s ) d s$ ; confidence 0.579 | + | 247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006034.png ; $u ( t ) = e ^ { - t A } u _ { 0 } + \int _ { 0 } ^ { t } e ^ { - ( t - s ) A } f ( s ) d s,$ ; confidence 0.579 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050114.png ; $B ( z ) = C \prod _ { j = 1 } ^ { \kappa } \frac { z - \ | + | 248. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050114.png ; $B ( z ) = C \prod _ { j = 1 } ^ { \kappa } \frac { z - \alpha_ j } { 1 - \overline { \alpha }_ j z },$ ; confidence 0.579 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006032.png ; $x = [ x _ { 1 } \ldots x _ { n } ] ^ { T }$ ; confidence 0.579 | + | 249. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006032.png ; $\mathbf x = [ x _ { 1 } \ldots x _ { n } ] ^ { T }$ ; confidence 0.579 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002067.png ; $| x \vee y | \preceq | x | \vee | y | \preceq | x | | y |$ ; confidence 0.579 | + | 250. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002067.png ; $| x \vee y | \preceq | x | \vee | y | \preceq | x | | y |,$ ; confidence 0.579 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006042.png ; $\sum _ { j = 1 } ^ { n } a _ { i , j } x _ { j } = \lambda x _ { i }$ ; confidence 0.579 | + | 251. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006042.png ; $\sum _ { j = 1 } ^ { n } a _ { i ,\, j }\, x _ { j } = \lambda x _ { i }$ ; confidence 0.579 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010070.png ; $\{ | + | 252. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010070.png ; $\{ \emptyset , \{ \emptyset \} , \{ \emptyset , \{ \emptyset \} \} \}, \dots$ ; confidence 0.579 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002031.png ; $N = N ( q , r ) \in N$ ; confidence 0.578 | + | 253. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002031.png ; $N = N ( q , r ) \in \mathbf N$ ; confidence 0.578 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006042.png ; $\operatorname { | + | 254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006042.png ; $\operatorname { Succ } ( x ) = \{ y : x <_ P y \}$ ; confidence 0.578 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011028.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } [ \prod _ { m = - \infty } ^ { \infty } ( z - ( z _ { 0 } - m l ) ) ] =$ ; confidence 0.578 | + | 255. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011028.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } \left[ \prod _ { m = - \infty } ^ { \infty } ( z - ( z _ { 0 } - m l ) ) \right] =$ ; confidence 0.578 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110130.png ; $\frac { D v } { D t } = \frac { \partial v } { \partial t } + ( v | + | 256. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110130.png ; $\frac { D \mathbf{v} } { D t } = \frac { \partial \mathbf{v} } { \partial t } + ( \mathbf{v} \cdot \nabla ) \mathbf v .$ ; confidence 0.578 |
257. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001042.png ; $O ^ { \sim } ( n )$ ; confidence 0.578 | 257. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001042.png ; $O ^ { \sim } ( n )$ ; confidence 0.578 | ||
Line 516: | Line 516: | ||
258. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002012.png ; $y _ { j } > y _ { k }$ ; confidence 0.578 | 258. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002012.png ; $y _ { j } > y _ { k }$ ; confidence 0.578 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005088.png ; $( p - n + i _ { 1 } ) \cdot \mu _ { i _ { 1 } , \dots , i _ { r } } - ( i _ { 1 } - i _ { 2 } ) \cdot \mu _ { i _ { 2 } , \dots , i _ { r } }$ ; confidence 0.578 | + | 259. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005088.png ; $( p - n + i _ { 1 } ) \cdot \mu _ { i _ { 1 } , \dots , i _ { r } } - ( i _ { 1 } - i _ { 2 } ) \cdot \mu _ { i _ { 2 } , \dots , i _ { r } } \dots $ ; confidence 0.578 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002034.png ; $\mu ^ { \prime } ( d x ) = \operatorname { exp } | + | 260. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002034.png ; $\mu ^ { \prime } ( d x ) = \operatorname { exp } \langle \alpha , x \rangle \mu ( d x )$ ; confidence 0.578 |
261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044091.png ; $h \in G$ ; confidence 0.578 | 261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044091.png ; $h \in G$ ; confidence 0.578 | ||
− | 262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002049.png ; $ | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002049.png ; $\mathbf{O}$ ; confidence 0.578 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400105.png ; $\varrho = e ^ { p } : B \rightarrow C ^ { * }$ ; confidence 0.578 | + | 263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400105.png ; $\varrho = e ^ { p } : B \rightarrow \mathbf C ^ { * }$ ; confidence 0.578 |
264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040117.png ; $1 , \dots , | \lambda |$ ; confidence 0.578 | 264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040117.png ; $1 , \dots , | \lambda |$ ; confidence 0.578 | ||
− | 265. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024026.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) )$ ; confidence 0.578 | + | 265. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024026.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) ),$ ; confidence 0.578 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042028.png ; $( C , \otimes , \Phi , \underline { 1 } , l , r )$ ; confidence 0.578 | + | 266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042028.png ; $( \mathcal C , \otimes , \Phi , \underline { 1 } , l , r )$ ; confidence 0.578 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012072.png ; $\pi = | + | 267. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012072.png ; $\pi = 1_ Y - D ( \phi )$ ; confidence 0.578 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201607.png ; $p _ { i k | + | 268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201607.png ; $p _ { i k ,\, j} = p _ { k i ,\, j}$ ; confidence 0.578 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040456.png ; $h ( \psi _ { 0 } ) , \ldots , h ( \psi _ { n | + | 269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040456.png ; $h ( \psi _ { 0 } ) , \ldots , h ( \psi _ { n - 1} ) \in F$ ; confidence 0.578 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070105.png ; $1 _ { | + | 270. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070105.png ; $1 _ { n } = 0$ ; confidence 0.578 |
271. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034047.png ; $S l _ { 2 } ( C )$ ; confidence 0.578 | 271. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034047.png ; $S l _ { 2 } ( C )$ ; confidence 0.578 | ||
− | 272. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054085.png ; $\{ | + | 272. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054085.png ; $\{ \cdot , \cdot \}_p$ ; confidence 0.577 |
273. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100180.png ; $\{ 1 , \ldots , n \}$ ; confidence 0.577 | 273. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100180.png ; $\{ 1 , \ldots , n \}$ ; confidence 0.577 | ||
− | 274. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011056.png ; $\frac { 1 } { n } G _ { p , n } \stackrel { \omega } { \rightarrow } G$ ; confidence 0.577 | + | 274. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011056.png ; $\frac { 1 } { n } G _ { p , n } \stackrel { \omega } { \rightarrow } G,$ ; confidence 0.577 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017056.png ; $N _ { \epsilon } ^ { \prime }$ ; confidence 0.577 | + | 275. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017056.png ; $\mathcal N _ { \epsilon } ^ { \prime }$ ; confidence 0.577 |
276. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016043.png ; $\mu _ { R } ( M ) \leq$ ; confidence 0.577 | 276. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016043.png ; $\mu _ { R } ( M ) \leq$ ; confidence 0.577 | ||
Line 554: | Line 554: | ||
277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005075.png ; $V = \left( \begin{array} { l l } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.577 | 277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005075.png ; $V = \left( \begin{array} { l l } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.577 | ||
− | 278. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016056.png ; $S _ { t } = c _ { 0 } + c _ { 1 } u _ { t } + c _ { 1 } \lambda u _ { t - 1 } + c _ { 1 } \lambda ^ { 2 } u _ { t - 2 } + \ldots + \mu _ { t }$ ; confidence 0.577 | + | 278. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016056.png ; $S _ { t } = c _ { 0 } + c _ { 1 } u _ { t } + c _ { 1 } \lambda u _ { t - 1 } + c _ { 1 } \lambda ^ { 2 } u _ { t - 2 } + \ldots + \mu _ { t },$ ; confidence 0.577 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210135.png ; $\{ P _ { | + | 279. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210135.png ; $\{ P _ { n , \theta } \}$ ; confidence 0.577 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q1300509.png ; $QS ( R )$ ; confidence 0.577 | + | 280. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q1300509.png ; $\operatorname {QS} ( \mathbf R )$ ; confidence 0.577 |
281. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054065.png ; $\Delta ^ { 2 } F$ ; confidence 0.577 | 281. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054065.png ; $\Delta ^ { 2 } F$ ; confidence 0.577 | ||
− | 282. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w1200704.png ; $g : R ^ { 2 n } \rightarrow R$ ; confidence 0.577 | + | 282. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w1200704.png ; $g : \mathbf R ^ { 2 n } \rightarrow \mathbf R$ ; confidence 0.577 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024060.png ; $A _ { i }$ ; confidence 0.577 | + | 283. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024060.png ; $A _ { i j }$ ; confidence 0.577 |
284. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102207.png ; $i = 0,1 , \ldots$ ; confidence 0.577 | 284. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102207.png ; $i = 0,1 , \ldots$ ; confidence 0.577 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008031.png ; $\lambda : R ^ { n } \rightarrow R ^ { q }$ ; confidence 0.577 | + | 285. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008031.png ; $\lambda : \mathbf R ^ { n } \rightarrow \mathbf R ^ { q }$ ; confidence 0.577 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020234.png ; $v _ { | + | 286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020234.png ; $v _ { M } = v ^ { * }$ ; confidence 0.577 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180495.png ; $= \ | + | 287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180495.png ; $= \widetilde { N }$ ; confidence 0.576 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040037.png ; $\pi ( g \times ^ { | + | 288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040037.png ; $\pi ( g \times ^ { \varrho } \mathbf f ) = g H$ ; confidence 0.576 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014073.png ; $v \in N ^ { Q } | + | 289. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014073.png ; $v \in \mathbf N ^ { Q _ 0}$ ; confidence 0.576 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004022.png ; $K _ { 7 | + | 290. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004022.png ; $K _ { 7 , 7}$ ; confidence 0.576 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001021.png ; $c : X \rightarrow \{ 0,1 \}$ ; confidence 0.576 | + | 291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001021.png ; $c : \mathcal X \rightarrow \{ 0,1 \}$ ; confidence 0.576 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200106.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { | + | 292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200106.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } |$ ; confidence 0.576 |
293. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012079.png ; $g : B _ { R } \rightarrow R _ { R }$ ; confidence 0.576 | 293. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012079.png ; $g : B _ { R } \rightarrow R _ { R }$ ; confidence 0.576 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000117.png ; $H _ { \epsilon } ^ { \prime \prime } \leq H _ { \epsilon / 2 }$ ; confidence 0.576 | + | 294. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000117.png ; $\mathcal H _ { \epsilon } ^ { \prime \prime } \leq \mathcal H _ { \epsilon / 2 },$ ; confidence 0.576 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006045.png ; $\rho \ | + | 295. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006045.png ; $\rho ^ { \operatorname {TF} } _{ Z }$ ; confidence 0.576 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005066.png ; $H _ { new } = H - \frac { H y y ^ { T } H } { y ^ { T } H y } + \frac { s s ^ { T } } { s ^ { T } y } + \phi | + | 296. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005066.png ; $H _ { \operatorname {new} } = H - \frac { H y y ^ { T } H } { y ^ { T } H y } + \frac { s s ^ { T } } { s ^ { T } y } + \phi \cdot w v ^ { T },$ ; confidence 0.576 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015027.png ; $( T _ { f } ) = \operatorname { dim } \operatorname { Ker } T _ { f } - \operatorname { dim } \text { Coker } T _ { f }$ ; confidence 0.576 | + | 297. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015027.png ; $\operatorname {Index}( T _ { f } ) = \operatorname { dim } \operatorname { Ker } T _ { f } - \operatorname { dim } \text { Coker } T _ { f }$ ; confidence 0.576 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022036.png ; $V _ { 1 } = \rho _ { 1 } \oplus \rho _ { | + | 298. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022036.png ; $V _ { 1 } = \rho _ { 1 } \oplus \rho _ { 196883}$ ; confidence 0.576 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080125.png ; $( u , v ) + = \int _ { D } \int _ { D } B ( x , y ) u ( y ) \overline { v ( x ) } d y d x \text { if } H _ { 0 } = L ^ { 2 } ( D )$ ; confidence 0.576 | + | 299. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080125.png ; $( u , v )_ + = \int _ { D } \int _ { D } B ( x , y ) u ( y ) \overline { v ( x ) } d y d x \;\text { if } H _ { 0 } = L ^ { 2 } ( D ),$ ; confidence 0.576 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013022.png ; $f ( X ) = X ^ { q ^ { n } } + \sum _ { i = 0 } ^ { n - 1 } ( - 1 ) ^ { n - i } c _ { n , i } X ^ { q ^ { i } } \in K [ X ]$ ; confidence 0.576 | + | 300. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013022.png ; $f ( X ) = X ^ { q ^ { n } } + \sum _ { i = 0 } ^ { n - 1 } ( - 1 ) ^ { n - i } c _ { n , i } X ^ { q ^ { i } } \in K [ X ].$ ; confidence 0.576 |
Latest revision as of 02:15, 11 June 2020
List
1. ; $B _ { j } ( t , x , D _ { x } ) u = 0 , \text { on } [ 0 , T ] \times \partial \Omega ,\quad j = 1 , \ldots , m,$ ; confidence 0.592
2. ; $L : X _ { P } \rightarrow Y _ { Q }$ ; confidence 0.592
3. ; $X \in \mathbf R$ ; confidence 0.592
4. ; $\mathfrak { g } ^ { * } / G$ ; confidence 0.592
5. ; $r \in [ m + 1 , m + n ( 3 + \pi / k ) ]$ ; confidence 0.592
6. ; $d \leq 3$ ; confidence 0.592
7. ; $( \text { Epi } , \text { Mono } ) =$ ; confidence 0.592
8. ; $\widetilde { f } : = \mathcal F f$ ; confidence 0.592
9. ; $s _ { n } = - B _ { n } ^ { - 1 } F ( x _ { n } ) =$ ; confidence 0.592
10. ; $\| e ^ { i \xi A } \| \leq C ( 1 + | \xi | ) ^ { s }$ ; confidence 0.592
11. ; $\mathbf F _ { q } [ z ]$ ; confidence 0.592
12. ; $d _ { k } < 0$ ; confidence 0.592
13. ; $U _ { 1 , \mathfrak p }$ ; confidence 0.592
14. ; $z ^ { - k }$ ; confidence 0.591
15. ; $S ^ { ( r ) } ( f )$ ; confidence 0.591
16. ; $\approx$ ; confidence 0.591
17. ; $d _ { k } < 1$ ; confidence 0.591
18. ; $S _ { C } = \operatorname { Mod } ( ? , C ) / E _ { C }$ ; confidence 0.591
19. ; $i = 1 , \dots , M$ ; confidence 0.591
20. ; $p ( x ) = \overline{1}$ ; confidence 0.591
21. ; $\operatorname {JBW} ^ { * }$ ; confidence 0.591
22. ; $d : G \rightarrow \mathcal C$ ; confidence 0.591
23. ; $\operatorname { gcd } ( p _ { 1 } , \dots , p _ { k } , q ) = 1$ ; confidence 0.591
24. ; $j = 1 , \ldots , m$ ; confidence 0.591
25. ; $\pi ^ { \prime } = 1 _ { Y } - D ( \phi ^ { \prime } )$ ; confidence 0.591
26. ; $\Gamma X$ ; confidence 0.591
27. ; $\Lambda _ { \operatorname {S5} } T$ ; confidence 0.591
28. ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \widehat{\otimes} n }$ ; confidence 0.591
29. ; $I \subset \mathbf{C}$ ; confidence 0.591
30. ; $f * ( x _ { n } )$ ; confidence 0.591
31. ; $\Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z ),$ ; confidence 0.591
32. ; $a_\lambda = \operatorname { det } ( x _ { i } ^ { \lambda_j } ).$ ; confidence 0.591
33. ; $\mathsf P ( X \leq \lambda - t ) \leq \operatorname { exp } \left( - \frac { \phi ( - t / \lambda ) \lambda ^ { 2 } } { \overline { \Delta } } \right) \leq \operatorname { exp } \left( - \frac { t ^ { 2 } } { 2 \overline { \Delta } } \right).$ ; confidence 0.591
34. ; $\Lambda _ { 2 m + 1 } = \Lambda_{ - ( m + 1 ) , m}$ ; confidence 0.591
35. ; $B _ { \kappa }$ ; confidence 0.591
36. ; $H \cap g ^ { - 1 } H g = \{ 1 \}$ ; confidence 0.591
37. ; $\mu _ { c }$ ; confidence 0.591
38. ; $f _ { x } ( y ) = f ( y - x )$ ; confidence 0.591
39. ; $Y = Z$ ; confidence 0.590
40. ; $U \sim \mathcal U _ { p , p }$ ; confidence 0.590
41. ; $V _ { \text { simp } } ( M ) \neq \emptyset$ ; confidence 0.590
42. ; $M _ { 2 }$ ; confidence 0.590
43. ; $h _ { 1 } , \dots , h _ { \operatorname {l} }$ ; confidence 0.590
44. ; $\mathsf E \mu _ { n } ( x )$ ; confidence 0.590
45. ; $\| f \| _ { 1 } ^ { 2 } = \operatorname { lim } _ { n \rightarrow \infty } \| f _ { n } \| _ { 1 } ^ { 2 } =$ ; confidence 0.590
46. ; $\partial _ { t } ^ { * }$ ; confidence 0.590
47. ; $\langle f , g \rangle = \int _ { D } f \overline{g} d A$ ; confidence 0.590
48. ; $= \frac { 1 } { z - E _ { 0 } } + \frac { 1 } { z - E _ { 0 } } \int _ { 0 } ^ { \infty } d \lambda ( V \phi | \lambda \rangle \langle \lambda | G ( z ) \phi )$ ; confidence 0.590
49. ; $d u = \alpha \wedge d \alpha ^ { n - 1 }$ ; confidence 0.590
50. ; $n$ ; confidence 0.590
51. ; $G ( \mathfrak c , \mathfrak c )$ ; confidence 0.590
52. ; $H _ { \Omega } ^ { n } ( U , \widetilde { \mathcal O } )$ ; confidence 0.590
53. ; $b \downarrow 0$ ; confidence 0.590
54. ; $X \in C ^ { o }$ ; confidence 0.590
55. ; $\mathfrak S ( T )$ ; confidence 0.590
56. ; $d \in D$ ; confidence 0.590
57. ; $\lambda _ { 1 } , \dots , \lambda _ { n }$ ; confidence 0.590
58. ; $\operatorname {spin}^ { c }$ ; confidence 0.590
59. ; $\widetilde { t }$ ; confidence 0.589
60. ; $( \alpha _ { 1 } , \dots , \alpha _ { q } )$ ; confidence 0.589
61. ; $\widehat { c } ^ { 1 } k \geq 0$ ; confidence 0.589
62. ; $[- \pi , \pi ]$ ; confidence 0.589
63. ; $R_l = \{ ( i , j ) : a _ { i , j } = 1 \}$ ; confidence 0.589
64. ; $\mathcal F \subset L _ { 1 } ( S \times T )$ ; confidence 0.589
65. ; $j = 0$ ; confidence 0.589
66. ; $\operatorname {Ker} d f_x$ ; confidence 0.589
67. ; $\widehat { f } ( m ) = \int _ { \mathcal T ^ { n } } f ( x ) e ^ { - 2 \pi i x m } d x$ ; confidence 0.589
68. ; $\langle T _ { n } \rangle = ( - A ^ { 2 } - A ^ { - 2 } ) ^ { n - 1 }.$ ; confidence 0.589
69. ; $\mathbf t = ( t _ { j } )$ ; confidence 0.589
70. ; $\gamma_j$ ; confidence 0.589
71. ; $\mathfrak { V } ^ { \prime \prime } = ( A _ { 1 } ^ { \prime \prime } , A _ { 2 } ^ { \prime \prime } , \mathcal{H} ^ { \prime \prime } , \Phi ^ { \prime \prime } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime \prime } , \widetilde { \gamma } ^ { \prime \prime } )$ ; confidence 0.589
72. ; $f : J \times G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.589
73. ; $\mathcal H _ { \epsilon } ^ { \prime } ( \xi ) = \operatorname { inf } \left\{ I ( \xi , \xi ^ { \prime } ) : \xi ^ { \prime } \in W _ { \epsilon } \right\},$ ; confidence 0.589
74. ; $\operatorname {RM} ( 1 , m )$ ; confidence 0.589
75. ; $d ^ { k } = - \operatorname { grad } _ { H _ { k } ^ { - 1 } } f ( x ^ { k } ),$ ; confidence 0.589
76. ; $3 ^ { 2 } \cdot 5 ^ { 2 } \cdot 11,\; 3 ^ { 5 } \cdot 5 ^ { 2 } \cdot 13,\; 3 ^ { 4 } \cdot 5 ^ { 2 } \cdot 13 ^ { 2 } ,\; 3 ^ { 3 } \cdot 5 ^ { 3 } \cdot 13 ^ { 2 }.$ ; confidence 0.589
77. ; $( b _ { i } a _ { i j } + b _ { j } a _ { j i } - b _ { i } b _ { j } ) _ { i , j = 1 } ^ { s }$ ; confidence 0.589
78. ; $P ^ { \prime } \subseteq P$ ; confidence 0.589
79. ; $\frac { D v _ { i } } { D t } = \frac { \partial v _ { i } } { \partial t } + v _ { k } v _ { i , k}$ ; confidence 0.589
80. ; $( \lambda z ( x z ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } \cdot ( x z ^ { \prime } ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } ( ( z z ) z ^ { \prime } ) ) \not \equiv$ ; confidence 0.589
81. ; $\square _ { k }\operatorname {Mod}$ ; confidence 0.588
82. ; $a, p _ { 1 } , \dots , p _ { s }$ ; confidence 0.588
83. ; $U ^ { i } ( f ) = \sum _ { j = 1 } ^ { m _ { i } } f ( x _ { j } ^ { i } ) \cdot a _ { j } ^ { i }.$ ; confidence 0.588
84. ; $\sigma ^ { \prime \prime }$ ; confidence 0.588
85. ; $g : \Theta \rightarrow \mathbf R$ ; confidence 0.588
86. ; $b : U \times U \rightarrow \mathbf R$ ; confidence 0.588
87. ; $M ( A _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf Z _ { 2 } } & { \text { if } n \geq 4 , n \neq 6,7, } \\ { \mathbf Z _ { 6 } } & { \text { if } n = 6,7, } \\ { \{ e \} } & { \text { if } n < 4. } \end{array} \right.$ ; confidence 0.588
88. ; $A _ { i } A _ { j } = A _ { j } A _ { i }$ ; confidence 0.588
89. ; $c ( A ) \subset \mathbf R \cup \{ \infty \}$ ; confidence 0.588
90. ; $d \pi _ { e } Z _ { e } = 0$ ; confidence 0.588
91. ; $F ( t ) = F _ { \phi } ( f ) = \int _ { \partial D _ { m } } f ( z ) \phi ( w ) \omega ( z , w ).$ ; confidence 0.588
92. ; $H _ { d } ^ { k }$ ; confidence 0.588
93. ; $( \infty , 0 , \ldots , 0 )$ ; confidence 0.588
94. ; $c _ { l } \in H ^ { 1 } ( G ( \overline { \mathbf Q } / \mathbf Q ) ; \operatorname { Sym } ^ { 2 } T _ { p } ( E ) )$ ; confidence 0.588
95. ; $F ^ { n } ( E _ { z } ( a , R ) ) \subset F _ { z } ( a , R )$ ; confidence 0.588
96. ; $( W _ { u } f ) ( x , t ) = ( f ^ { * } u _ { t } ) ( x )$ ; confidence 0.588
97. ; $[ \operatorname { log } a ] _ { k }$ ; confidence 0.588
98. ; $N ( 0 , \Sigma )$ ; confidence 0.587
99. ; $\uparrow$ ; confidence 0.587
100. ; $\mathcal S ^ { \prime } ( \mathbf R ^ { n } )$ ; confidence 0.587
101. ; $a = J ^ { - 1 / 2 } b$ ; confidence 0.587
102. ; $\mathcal H ( \mathbf C ^ { n } ) ^ { \prime }$ ; confidence 0.587
103. ; $\nu = ( \nu _ { 1 } , \dots , \nu _ { k } )$ ; confidence 0.587
104. ; $T _ { x } M$ ; confidence 0.587
105. ; $\operatorname {SS} _ { \mathcal H } = \| \widehat { \eta } _ { \Omega } - \widehat { \eta } _ { \omega } \| ^ { 2 }$ ; confidence 0.587
106. ; $x ( 0 ) \in L _ { - }$ ; confidence 0.587
107. ; $B ( n ) = \Sigma ^ { n } D T ( n ),$ ; confidence 0.587
108. ; $z \in \mathbf T$ ; confidence 0.587
109. ; $\lambda _ { m } ( \eta )$ ; confidence 0.587
110. ; $\widetilde{\mu} ( \zeta ) = \mu \left( \frac { 1 } { ( 1 + \langle \cdot , \zeta \rangle ) } \right).$ ; confidence 0.587
111. ; $0 \leq i \in \mathbf Z$ ; confidence 0.587
112. ; $X _ { \mathbf Z }$ ; confidence 0.587
113. ; $b _ { j } ^ { n }$ ; confidence 0.587
114. ; $P _ { 4 }$ ; confidence 0.587
115. ; $\operatorname { SPSH } ( \Omega \times \Omega )$ ; confidence 0.587
116. ; $\mathfrak { V } = ( A _ { 1 } , A _ { 2 } , \mathcal H , \Phi , \mathcal E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \widetilde { \gamma } ).$ ; confidence 0.587
117. ; $k \in \mathbf Z ^ { + }$ ; confidence 0.587
118. ; $x _ { 0 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } \right) = \sum _ { n \in \mathbf Z } \frac { ( x _ { 1 } - x _ { 2 } ) ^ { n } } { x _ { 0 } ^ { n + 1 } } =$ ; confidence 0.587
119. ; $\otimes ^ { * } \mathcal E$ ; confidence 0.587
120. ; $r \geq | \lambda |$ ; confidence 0.587
121. ; $G _ { X } \leq C ( 1 + G _ { X } ^ { \sigma } ( X - Y ) ) ^ { N } G _ { Y }.$ ; confidence 0.586
122. ; $h_{i j} \geq 0$ ; confidence 0.586
123. ; $\widetilde { N } = N \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.586
124. ; $\widetilde { \xi }_i$ ; confidence 0.586
125. ; $\mathsf E ( \mathbf y ) = \mathbf X \beta$ ; confidence 0.586
126. ; $Q ( a - b ) = Q ( c - d )$ ; confidence 0.586
127. ; $\left\{ \begin{array} { l } { \frac { d u } { d t } + A ( t , u ) u = f ( t , u ) , \quad t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0 }, } \end{array} \right.$ ; confidence 0.586
128. ; $S _ { n } = \sum _ { 1 } ^ { n } X _ { i }\; \text { for } \ n \geq 1 , \text { and for } \ t \geq 0 ,\; N ( t ) = k \;\text { if } S _ { k } \leq t < S _ { k + 1 } \;\text { for } k = 0,1, \dots ,$ ; confidence 0.586
129. ; $\operatorname {BPP}$ ; confidence 0.586
130. ; $\eta = \mathsf E ( \mathbf y )$ ; confidence 0.586
131. ; $\sigma _ { x _ { 0 } , \xi _ { 0 } }$ ; confidence 0.586
132. ; $\operatorname { dim } A _ { \mathfrak { p } } = \operatorname { dim } A - \operatorname { dim } A / \mathfrak { p }$ ; confidence 0.586
133. ; $\alpha \in \Pi ^ { \operatorname {im} }$ ; confidence 0.586
134. ; $c \in \mathbf R$ ; confidence 0.586
135. ; $K ( \varphi ) \approx L ( \varphi ) = \{ \kappa _ { j } ( \varphi ) \approx \lambda _ { j } ( \varphi ) : j \in J \}$ ; confidence 0.585
136. ; $N > Z$ ; confidence 0.585
137. ; $\{ e u : u \in U \}$ ; confidence 0.585
138. ; $\operatorname {Alg}( L )$ ; confidence 0.585
139. ; $d t = d t _ { 2 } \wedge \ldots \wedge d t _ { n }$ ; confidence 0.585
140. ; $\operatorname { Sp } ( 2 n , \mathbf R )$ ; confidence 0.585
141. ; $d : S \times S \rightarrow \mathbf R$ ; confidence 0.585
142. ; $H ( \cdot , \xi ) : D _ { \xi } \rightarrow R$ ; confidence 0.585
143. ; $n = 1,2 , \dots$ ; confidence 0.585
144. ; $s _ { j } \in C _ { j }$ ; confidence 0.585
145. ; $\mathsf P \{ X - Y \geq s \} = F _ { 2 s } ( x ; \lambda ).$ ; confidence 0.585
146. ; $( x , y , y ^ { \prime } , \dots , y ^ { ( k ) } ),$ ; confidence 0.585
147. ; $H _ { l } ^ { i } ( \overline { X } ) = H ^ { i } ( \overline{X} , \mathbf Z _ { l } ) \otimes \mathbf Q _ { l }$ ; confidence 0.585
148. ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in \mathbf Z }$ ; confidence 0.585
149. ; $g = \left( \begin{array} { c c } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.585
150. ; $K ^ { 2 } \nearrow K ^ { 2 }\times I \searrow \operatorname {pt}$ ; confidence 0.585
151. ; $\chi_{ \lambda I - T}$ ; confidence 0.585
152. ; $g _ { n } \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.585
153. ; $Z = 0$ ; confidence 0.585
154. ; $d + 1$ ; confidence 0.585
155. ; $A ( \widehat{K} )$ ; confidence 0.585
156. ; $D _ { t } ^ { * }$ ; confidence 0.585
157. ; $v _ { t } ( x ) = t ^ { - n } v ( x / t )$ ; confidence 0.585
158. ; $u _ { i } ^ { n + 1 } = \frac { 1 } { 2 } ( u _ { i } ^ { n } + \widehat { u } _ { i } ^ { + } ) + \frac { 1 } { 2 } \frac { \Delta t } { \Delta x } ( \widehat { f } _ { i - 1 } ^ { + } - \widehat { f } _ { i } ^ { + } ),$ ; confidence 0.584
159. ; $\operatorname { lim } _ { R } S _ { R } ^ { \delta } \,f ( x ) = f ( x )$ ; confidence 0.584
160. ; $| \Delta P ( i \omega ) |$ ; confidence 0.584
161. ; $n ( \epsilon , F _ { d } ) \leq \kappa \cdot d \cdot \epsilon ^ { - 2 }$ ; confidence 0.584
162. ; $\rho _ { N } ^ { \operatorname {TF} }$ ; confidence 0.584
163. ; $\Lambda _ { D _ { + } } ^ { * } ( a , x ) - \Lambda _ { D _ { - } } ^ { * } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ^ { * } ( a , x ) - \Lambda _ { D _ { \infty } } ^ { * } ( a , x ) )$ ; confidence 0.584
164. ; $M \rightarrow \operatorname { Aut } ( M )$ ; confidence 0.584
165. ; $y = ( y ^ { 1 } , \dots , y ^ { m } )$ ; confidence 0.584
166. ; $\| f _ { n } \| \rightarrow \| f \|$ ; confidence 0.584
167. ; $\mu _ { p }$ ; confidence 0.584
168. ; $I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k )$ ; confidence 0.584
169. ; $\cup _ { n \geq 0 } k ( \mu _ { p ^ n} )$ ; confidence 0.584
170. ; $a = 1$ ; confidence 0.584
171. ; $\langle x _ { t } , y _ { t } , c _ { t } \rangle$ ; confidence 0.584
172. ; $q _ { \mathcal B } ( v ) \geq 0$ ; confidence 0.584
173. ; $\mathsf E [ \mathbf Z _ { 32 } , \mathbf Z _ { 33 } ] = 0$ ; confidence 0.584
174. ; $\Gamma \subset \operatorname {SL} _ { 2 } ( \mathbf Z )$ ; confidence 0.584
175. ; $u ( x , t ) = U = f _ { g } ( \theta _ { 1 } , \ldots , \theta _ { g } ),$ ; confidence 0.584
176. ; $d ^ { * } : \{ 0,1 \} ^ { n } \rightarrow \mathbf R$ ; confidence 0.584
177. ; $= \sum _ { i = 0 } ^ { p - 1 } L ( x _ { i } ) L ^ { * } ( x _ { i } ) - \sum _ { i = 0 } ^ { q - 1 } L ( y _ { i } ) L ^ { * } ( y _ { i } ).$ ; confidence 0.584
178. ; $k _ { \mathfrak p }$ ; confidence 0.584
179. ; $S ( m , g _ { k } )$ ; confidence 0.584
180. ; $W _ { \tau } ( k )$ ; confidence 0.583
181. ; $\{ \operatorname {l} ( T , x ) : x \in \mathbf R \}$ ; confidence 0.583
182. ; $\mathbf D$ ; confidence 0.583
183. ; $\theta ( t ) - t = \frac { 1 } { 2 \pi } \operatorname {P} \cdot \operatorname {V}\cdot \int _ { 0 } ^ { 2 \pi } \operatorname { log } \rho ( \theta ( s ) ) \operatorname { cot } \frac { t - s } { 2 } d s,$ ; confidence 0.583
184. ; $g ( u _ { 1 } )$ ; confidence 0.583
185. ; $t \sim $ ; confidence 0.583
186. ; $p _ { x } , p _ { y } , p _ { z }$ ; confidence 0.583
187. ; $K _ { n ,\, p } ( t ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } D _ { k } ( t ) =$ ; confidence 0.583
188. ; $U ( 0 ) = I _ { n }$ ; confidence 0.583
189. ; $A \subseteq P$ ; confidence 0.583
190. ; $y _ { i } = \alpha + \beta t _ { i } + \gamma t_{i} ^ { 2 } + e _ { i }$ ; confidence 0.583
191. ; $\frac { \partial u } { \partial \lambda } ( z , \lambda _ { 1 } ) = ( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.583
192. ; $x _ { ij }$ ; confidence 0.583
193. ; $\widetilde { H } ^ { 1 } ( \Gamma , k , \mathbf v ; P ( k ) )$ ; confidence 0.583
194. ; $\dot { x } ( t - g _ { 1 } ( t ) ) , \ldots , \dot { x } ( t - g_{l} ( t ) ) ).$ ; confidence 0.583
195. ; $\mathbf x = ( x _ { 1 } , \dots , x _ { m } ) ^ { T }$ ; confidence 0.583
196. ; $S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.583
197. ; $L ^ { 1 } ( \mathbf T ^ { n } )$ ; confidence 0.583
198. ; $\mathcal U$ ; confidence 0.583
199. ; $\phi ^ { + }$ ; confidence 0.582
200. ; $\operatorname {ord} ( D )$ ; confidence 0.582
201. ; $a ^ { w } : H ( m m _ { 1 } , G ) \rightarrow H ( m _ { 1 } , G )$ ; confidence 0.582
202. ; $\operatorname { lim } _ { n \rightarrow \infty } \mathsf E _ { \mathsf P } [ ( d _ { n } ^ { * } - d ^ { * } ) ^ { 2 } ] = 0$ ; confidence 0.582
203. ; $( \psi [ 1 ] \varphi ) _ y = \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ y.$ ; confidence 0.582
204. ; $\omega ^ { 0 } = \int \Sigma _ { g } \langle \delta A , \delta \overline { A } \rangle$ ; confidence 0.582
205. ; $\operatorname {Mod}_{\mathcal S _ { P }}$ ; confidence 0.582
206. ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = ( f ( \lambda _ { 1 } , \lambda _ { 2 } ) ) ^ { r }$ ; confidence 0.582
207. ; $B = I$ ; confidence 0.582
208. ; $\epsilon ( a , b , c , d )$ ; confidence 0.582
209. ; $n > 10 ^ { 10 }$ ; confidence 0.582
210. ; $\mathcal{Z} _ { m + 1 } ^ { \pi }$ ; confidence 0.582
211. ; $\beta . = 0$ ; confidence 0.582
212. ; $\operatorname { lim } _ { r \rightarrow \infty } \int _ { |x| = r } \left| \frac { \partial v } { \partial r } - i k v \right| ^ { 2 } d s = 0,$ ; confidence 0.581
213. ; $a$ ; confidence 0.581
214. ; $\theta = \theta ( a _ { 0 } , a _ { 1 } ) > 1$ ; confidence 0.581
215. ; $( t ^ { * } ) ^ { - 1 } \circ ( t - r ) ^ { * } \beta _ { 1 } = k \beta _ { 2 }$ ; confidence 0.581
216. ; $r \leq s \mu$ ; confidence 0.581
217. ; $H ^ { r } ( M , \mathbf C ) \cong \bigoplus \sum_ { p + q = r } H ^ { p , q } ( M ),$ ; confidence 0.581
218. ; $P _ { \mathcal{C} } ^ { \# } ( n )$ ; confidence 0.581
219. ; $\delta ( a b ) = a \delta ( b ) + b \delta ( a )$ ; confidence 0.581
220. ; $M A ( G )$ ; confidence 0.581
221. ; $\left( \begin{array} { c } { [ n ] } \\ { ( n + 1 ) / 2 } \end{array} \right)$ ; confidence 0.581
222. ; $F = - k _ { B } T \operatorname { ln } \lambda _ { + } =$ ; confidence 0.581
223. ; $T _ { p }$ ; confidence 0.580
224. ; $\underline { v } = g ( \overline { u } _ { 1 } )$ ; confidence 0.580
225. ; $h ( F _ { \mathcal S _ { P } } \mathfrak { M } ^ { * L} ) = F _ { \mathcal S _ { P } } \mathfrak { N } ^ { * L}$ ; confidence 0.580
226. ; $S \in A ^ { + }$ ; confidence 0.580
227. ; $b _ { 2 } ( \mathcal{S} ) \leq 1$ ; confidence 0.580
228. ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau ,$ ; confidence 0.580
229. ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$ ; confidence 0.580
230. ; $\phi ( z ) = z ^ { k } + a _ { 1 } z ^ { k - 1 } + \ldots + a _ { k }$ ; confidence 0.580
231. ; $\Delta _ { n }$ ; confidence 0.580
232. ; $h ( z ) = 1 + c _ { 1 } z + c _ { 2 } z ^ { 2 } + \ldots$ ; confidence 0.580
233. ; $a_{ 0 } = 0$ ; confidence 0.580
234. ; $\overset{ \rightharpoonup} { x } \cdot \overset{ \rightharpoonup} { v }$ ; confidence 0.580
235. ; $c _ { i } \neq c _ { j }$ ; confidence 0.580
236. ; $A ^ { * }$ ; confidence 0.580
237. ; $\operatorname {ind} ( D )$ ; confidence 0.580
238. ; $u ^ { q }$ ; confidence 0.580
239. ; $T P ^ { 1 }$ ; confidence 0.579
240. ; $\| \varphi \|_{ MA(G)} = \| M_\varphi \|$ ; confidence 0.579
241. ; $e ^ { \xi ( u ) } = 1 + u \xi ( u )$ ; confidence 0.579
242. ; $u ( x , 0 ) = u_0 ( x ),$ ; confidence 0.579
243. ; $\Omega = ( 1,0,0 , \dots )$ ; confidence 0.579
244. ; $\operatorname {CH} ^ { i } ( X , j )$ ; confidence 0.579
245. ; $\geq \frac { 1 } { 8 } \left( \frac { n - 1 } { 8 e ( m + n ) } \right) ^ { n } \operatorname { min }_ j | b _ { 1 } + \ldots + b _ { j } |.$ ; confidence 0.579
246. ; $T _ { m } = \epsilon t _ { m }$ ; confidence 0.579
247. ; $u ( t ) = e ^ { - t A } u _ { 0 } + \int _ { 0 } ^ { t } e ^ { - ( t - s ) A } f ( s ) d s,$ ; confidence 0.579
248. ; $B ( z ) = C \prod _ { j = 1 } ^ { \kappa } \frac { z - \alpha_ j } { 1 - \overline { \alpha }_ j z },$ ; confidence 0.579
249. ; $\mathbf x = [ x _ { 1 } \ldots x _ { n } ] ^ { T }$ ; confidence 0.579
250. ; $| x \vee y | \preceq | x | \vee | y | \preceq | x | | y |,$ ; confidence 0.579
251. ; $\sum _ { j = 1 } ^ { n } a _ { i ,\, j }\, x _ { j } = \lambda x _ { i }$ ; confidence 0.579
252. ; $\{ \emptyset , \{ \emptyset \} , \{ \emptyset , \{ \emptyset \} \} \}, \dots$ ; confidence 0.579
253. ; $N = N ( q , r ) \in \mathbf N$ ; confidence 0.578
254. ; $\operatorname { Succ } ( x ) = \{ y : x <_ P y \}$ ; confidence 0.578
255. ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } \left[ \prod _ { m = - \infty } ^ { \infty } ( z - ( z _ { 0 } - m l ) ) \right] =$ ; confidence 0.578
256. ; $\frac { D \mathbf{v} } { D t } = \frac { \partial \mathbf{v} } { \partial t } + ( \mathbf{v} \cdot \nabla ) \mathbf v .$ ; confidence 0.578
257. ; $O ^ { \sim } ( n )$ ; confidence 0.578
258. ; $y _ { j } > y _ { k }$ ; confidence 0.578
259. ; $( p - n + i _ { 1 } ) \cdot \mu _ { i _ { 1 } , \dots , i _ { r } } - ( i _ { 1 } - i _ { 2 } ) \cdot \mu _ { i _ { 2 } , \dots , i _ { r } } \dots $ ; confidence 0.578
260. ; $\mu ^ { \prime } ( d x ) = \operatorname { exp } \langle \alpha , x \rangle \mu ( d x )$ ; confidence 0.578
261. ; $h \in G$ ; confidence 0.578
262. ; $\mathbf{O}$ ; confidence 0.578
263. ; $\varrho = e ^ { p } : B \rightarrow \mathbf C ^ { * }$ ; confidence 0.578
264. ; $1 , \dots , | \lambda |$ ; confidence 0.578
265. ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) ),$ ; confidence 0.578
266. ; $( \mathcal C , \otimes , \Phi , \underline { 1 } , l , r )$ ; confidence 0.578
267. ; $\pi = 1_ Y - D ( \phi )$ ; confidence 0.578
268. ; $p _ { i k ,\, j} = p _ { k i ,\, j}$ ; confidence 0.578
269. ; $h ( \psi _ { 0 } ) , \ldots , h ( \psi _ { n - 1} ) \in F$ ; confidence 0.578
270. ; $1 _ { n } = 0$ ; confidence 0.578
271. ; $S l _ { 2 } ( C )$ ; confidence 0.578
272. ; $\{ \cdot , \cdot \}_p$ ; confidence 0.577
273. ; $\{ 1 , \ldots , n \}$ ; confidence 0.577
274. ; $\frac { 1 } { n } G _ { p , n } \stackrel { \omega } { \rightarrow } G,$ ; confidence 0.577
275. ; $\mathcal N _ { \epsilon } ^ { \prime }$ ; confidence 0.577
276. ; $\mu _ { R } ( M ) \leq$ ; confidence 0.577
277. ; $V = \left( \begin{array} { l l } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.577
278. ; $S _ { t } = c _ { 0 } + c _ { 1 } u _ { t } + c _ { 1 } \lambda u _ { t - 1 } + c _ { 1 } \lambda ^ { 2 } u _ { t - 2 } + \ldots + \mu _ { t },$ ; confidence 0.577
279. ; $\{ P _ { n , \theta } \}$ ; confidence 0.577
280. ; $\operatorname {QS} ( \mathbf R )$ ; confidence 0.577
281. ; $\Delta ^ { 2 } F$ ; confidence 0.577
282. ; $g : \mathbf R ^ { 2 n } \rightarrow \mathbf R$ ; confidence 0.577
283. ; $A _ { i j }$ ; confidence 0.577
284. ; $i = 0,1 , \ldots$ ; confidence 0.577
285. ; $\lambda : \mathbf R ^ { n } \rightarrow \mathbf R ^ { q }$ ; confidence 0.577
286. ; $v _ { M } = v ^ { * }$ ; confidence 0.577
287. ; $= \widetilde { N }$ ; confidence 0.576
288. ; $\pi ( g \times ^ { \varrho } \mathbf f ) = g H$ ; confidence 0.576
289. ; $v \in \mathbf N ^ { Q _ 0}$ ; confidence 0.576
290. ; $K _ { 7 , 7}$ ; confidence 0.576
291. ; $c : \mathcal X \rightarrow \{ 0,1 \}$ ; confidence 0.576
292. ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } |$ ; confidence 0.576
293. ; $g : B _ { R } \rightarrow R _ { R }$ ; confidence 0.576
294. ; $\mathcal H _ { \epsilon } ^ { \prime \prime } \leq \mathcal H _ { \epsilon / 2 },$ ; confidence 0.576
295. ; $\rho ^ { \operatorname {TF} } _{ Z }$ ; confidence 0.576
296. ; $H _ { \operatorname {new} } = H - \frac { H y y ^ { T } H } { y ^ { T } H y } + \frac { s s ^ { T } } { s ^ { T } y } + \phi \cdot w v ^ { T },$ ; confidence 0.576
297. ; $\operatorname {Index}( T _ { f } ) = \operatorname { dim } \operatorname { Ker } T _ { f } - \operatorname { dim } \text { Coker } T _ { f }$ ; confidence 0.576
298. ; $V _ { 1 } = \rho _ { 1 } \oplus \rho _ { 196883}$ ; confidence 0.576
299. ; $( u , v )_ + = \int _ { D } \int _ { D } B ( x , y ) u ( y ) \overline { v ( x ) } d y d x \;\text { if } H _ { 0 } = L ^ { 2 } ( D ),$ ; confidence 0.576
300. ; $f ( X ) = X ^ { q ^ { n } } + \sum _ { i = 0 } ^ { n - 1 } ( - 1 ) ^ { n - i } c _ { n , i } X ^ { q ^ { i } } \in K [ X ].$ ; confidence 0.576
Maximilian Janisch/latexlist/latex/NoNroff/53. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/53&oldid=44541