Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/49"
(AUTOMATIC EDIT of page 49 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005094.png ; $q \in L _ { 1,2 } : = \{ q : q = \overline { q } , \int _ { - \infty } ^ { \infty } ( 1 + x ^ { 2 } ) | q ( x ) | d x < \infty \}$ ; confidence 0.659 | + | 1. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005094.png ; $q \in L _ { 1,2 } : = \left\{ q : q = \overline { q } , \int _ { - \infty } ^ { \infty } ( 1 + x ^ { 2 } ) | q ( x ) | d x < \infty \right\}.$ ; confidence 0.659 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663075.png ; $\Omega ^ { k } ( f ^ { ( s ) } , \delta ) \leq M \delta ^ { r - s } , \quad \delta > 0$ ; confidence 0.659 | + | 2. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663075.png ; $\Omega ^ { k } ( f ^ { ( s ) } , \delta ) \leq M \delta ^ { r - s } , \quad \delta > 0,$ ; confidence 0.659 |
3. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009017.png ; $j = 1 , \dots , n - 1$ ; confidence 0.659 | 3. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009017.png ; $j = 1 , \dots , n - 1$ ; confidence 0.659 | ||
Line 8: | Line 8: | ||
4. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002018.png ; $P | \phi \rangle / \| P | \phi \rangle \|$ ; confidence 0.659 | 4. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002018.png ; $P | \phi \rangle / \| P | \phi \rangle \|$ ; confidence 0.659 | ||
− | 5. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005093.png ; $\square ^ { 1 } | + | 5. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005093.png ; $\square ^ { 1 } S _ { m }$ ; confidence 0.659 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202808.png ; $E = \{ E _ { n } , \sigma : \Sigma E _ { n } \rightarrow E _ { n | + | 6. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202808.png ; $\mathbf{E} = \{ E _ { n } , \sigma : \Sigma E _ { n } \rightarrow E _ { n + 1} \}$ ; confidence 0.659 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011038.png ; $S ^ { * }$ ; confidence 0.659 | + | 7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011038.png ; $\mathcal{S} ^ { * }$ ; confidence 0.659 |
8. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020218.png ; $\kappa ( F , \overline { D } \square ^ { n + 1 } ) = k$ ; confidence 0.659 | 8. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020218.png ; $\kappa ( F , \overline { D } \square ^ { n + 1 } ) = k$ ; confidence 0.659 | ||
Line 22: | Line 22: | ||
11. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080116.png ; $\gamma = 7 / 4$ ; confidence 0.659 | 11. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080116.png ; $\gamma = 7 / 4$ ; confidence 0.659 | ||
− | 12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029024.png ; $x \mapsto \varepsilon _ { | + | 12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029024.png ; $x \mapsto \varepsilon _ { x } ^ { \mathcal{C}U } ( f )$ ; confidence 0.659 |
13. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064420/m06442032.png ; $Z \in H$ ; confidence 0.659 | 13. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064420/m06442032.png ; $Z \in H$ ; confidence 0.659 | ||
− | 14. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260219.png ; $x _ { | + | 14. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260219.png ; $x _ { n } \leq y _ { n }$ ; confidence 0.659 |
15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200107.png ; $\Sigma ^ { \prime }$ ; confidence 0.659 | 15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200107.png ; $\Sigma ^ { \prime }$ ; confidence 0.659 | ||
Line 34: | Line 34: | ||
17. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001025.png ; $\Phi _ { 2 }$ ; confidence 0.659 | 17. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001025.png ; $\Phi _ { 2 }$ ; confidence 0.659 | ||
− | 18. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030590/d03059031.png ; $y _ { 1 } , \ldots , y _ { | + | 18. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030590/d03059031.png ; $y _ { 1 } , \ldots , y _ { n }$ ; confidence 0.659 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026014.png ; $y$ ; confidence 0.658 | + | 19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026014.png ; $\widehat{y}$ ; confidence 0.658 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013016.png ; $B = \nabla \times A ^ { | + | 20. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013016.png ; $\mathbf B = \nabla \times \mathbf A ^ { \pm }$ ; confidence 0.658 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110060/h11006021.png ; $D \subset R ^ { d }$ ; confidence 0.658 | + | 21. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110060/h11006021.png ; $D \subset \mathbf R ^ { d }$ ; confidence 0.658 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013025.png ; $f ( | + | 22. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013025.png ; $f ( N_{ *} ) = 0$ ; confidence 0.658 |
23. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006072.png ; $a _ { i , j } \neq 0$ ; confidence 0.658 | 23. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006072.png ; $a _ { i , j } \neq 0$ ; confidence 0.658 | ||
− | 24. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029087.png ; $( X , T )$ ; confidence 0.658 | + | 24. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029087.png ; $( X , \mathcal{T} )$ ; confidence 0.658 |
25. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007031.png ; $\alpha \in S ^ { 2 }$ ; confidence 0.658 | 25. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007031.png ; $\alpha \in S ^ { 2 }$ ; confidence 0.658 | ||
Line 52: | Line 52: | ||
26. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014088.png ; $Q = ( Q _ { 0 } , Q _ { 1 } )$ ; confidence 0.658 | 26. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014088.png ; $Q = ( Q _ { 0 } , Q _ { 1 } )$ ; confidence 0.658 | ||
− | 27. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004059.png ; $\sigma = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \rho ^ { \prime } d \rho ^ { \prime } [ j ] \ | + | 27. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004059.png ; $\sigma = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \rho ^ { \prime } d \rho ^ { \prime } [ j ] \bigwedge d\zeta .$ ; confidence 0.658 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011031.png ; $x \in | + | 28. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011031.png ; $x \in K_j $ ; confidence 0.658 |
29. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040144.png ; $G ^ { t }$ ; confidence 0.658 | 29. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040144.png ; $G ^ { t }$ ; confidence 0.658 | ||
− | 30. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023079.png ; $E ( L ) = ( E ^ { 1 } ( L ) , \ldots , E ^ { m } ( L ) )$ ; confidence 0.658 | + | 30. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023079.png ; $\mathcal E ( L ) = ( \mathcal E ^ { 1 } ( L ) , \ldots , \mathcal E ^ { m } ( L ) )$ ; confidence 0.658 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020030.png ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } \phi ( z _ { j } )$ ; confidence 0.658 | + | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020030.png ; $g _ 2 ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } \phi ( z _ { j } )$ ; confidence 0.658 |
32. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302506.png ; $s = 0 , \dots , n - 1$ ; confidence 0.658 | 32. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302506.png ; $s = 0 , \dots , n - 1$ ; confidence 0.658 | ||
− | 33. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110100/h11010016.png ; $J _ { j }$ ; confidence 0.658 | + | 33. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110100/h11010016.png ; $J _ {i j }$ ; confidence 0.658 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003064.png ; $f \in DB _ { 1 }$ ; confidence 0.658 | + | 34. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003064.png ; $f \in \operatorname{DB} _ { 1 }$ ; confidence 0.658 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010064.png ; $\varphi \in C _ { 00 } ( G ; C )$ ; confidence 0.658 | + | 35. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010064.png ; $\varphi \in C _ { 00 } ( G ; \mathbf C )$ ; confidence 0.658 |
36. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011019.png ; $\Gamma ( b _ { j } - s )$ ; confidence 0.658 | 36. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011019.png ; $\Gamma ( b _ { j } - s )$ ; confidence 0.658 | ||
− | 37. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006012.png ; $\sum _ { A \in 2 | + | 37. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006012.png ; $\sum _ { A \in 2 ^ \Xi } m ( A ) = 1$ ; confidence 0.658 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230103.png ; $\Omega ( M )$ ; confidence 0.657 | + | 38. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230103.png ; $\operatorname{Der} \Omega ( M )$ ; confidence 0.657 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023032.png ; $\partial f ( x ) = \partial _ { c } ( f + ( 2 T ) ^ { - 1 } | + | 39. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023032.png ; $\partial f ( x ) = \partial _ { c } \left( f + ( 2 T ) ^ { - 1 } \| \cdot \| ^ { 2 } \right) ( x ) - T ^ { - 1 } x , \quad x \in H,$ ; confidence 0.657 |
40. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004045.png ; $( \Omega _ { + } - 1 ) g _ { 0 } \psi ( t ) =$ ; confidence 0.657 | 40. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004045.png ; $( \Omega _ { + } - 1 ) g _ { 0 } \psi ( t ) =$ ; confidence 0.657 | ||
− | 41. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e0350008.png ; $N _ { \epsilon } ( C , X ) = \operatorname { inf } \{ n : \exists x _ { 1 } , \ldots , x _ { n } , x _ { i } \in X : C \subset \ | + | 41. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e0350008.png ; $N _ { \epsilon } ( C , X ) = \operatorname { inf } \left\{ n : \exists x _ { 1 } , \ldots , x _ { n } , x _ { i } \in X : C \subset \bigcup _ { i = 1 } ^ { n } B ( x _ { i } , \epsilon ) \right\}$ ; confidence 0.657 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015013.png ; $\operatorname { Ker } ( Ad )$ ; confidence 0.657 | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015013.png ; $\operatorname { Ker } ( \operatorname{Ad} )$ ; confidence 0.657 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006015.png ; $ | + | 43. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006015.png ; $a \equiv 5 ( \operatorname { mod } 8 )$ ; confidence 0.657 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } f ( \sum _ { j \in I | + | 44. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } f \left( \sum _ { j \in I \bigcap [ 1 , n ] } x _ { j } \right) .$ ; confidence 0.657 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200408.png ; $\Lambda _ { D _ { + } } ( a , x ) + \Lambda _ { D _ { - } } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ( a , x ) + \Lambda _ { D _ { \infty } } ( a , x ) )$ ; confidence 0.657 | + | 45. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200408.png ; $\Lambda _ { D _ { + } } ( a , x ) + \Lambda _ { D _ { - } } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ( a , x ) + \Lambda _ { D _ { \infty } } ( a , x ) ).$ ; confidence 0.657 |
46. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015013.png ; $x \in A \mapsto [ x , a ] \in A$ ; confidence 0.657 | 46. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015013.png ; $x \in A \mapsto [ x , a ] \in A$ ; confidence 0.657 | ||
− | 47. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022034.png ; $0 \leq S \leq T \in L ( X )$ ; confidence 0.657 | + | 47. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022034.png ; $0 \leq S \leq T \in \mathcal L ( X )$ ; confidence 0.657 |
48. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120120.png ; $F \in \operatorname { Lip } 1$ ; confidence 0.657 | 48. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120120.png ; $F \in \operatorname { Lip } 1$ ; confidence 0.657 | ||
Line 98: | Line 98: | ||
49. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011013.png ; $\varphi ( 3,3,3 ) = 3 ^ { 3 ^ { 3 ^ { 3 } } }$ ; confidence 0.657 | 49. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011013.png ; $\varphi ( 3,3,3 ) = 3 ^ { 3 ^ { 3 ^ { 3 } } }$ ; confidence 0.657 | ||
− | 50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025047.png ; $C ^ { \prime } | + | 50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025047.png ; $C ^ { \prime _{ AB}}$ ; confidence 0.657 |
51. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013025.png ; $H ( \theta , X ) = X - \alpha$ ; confidence 0.657 | 51. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013025.png ; $H ( \theta , X ) = X - \alpha$ ; confidence 0.657 | ||
− | 52. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005021.png ; $s \in [ 0 , T$ ; confidence 0.657 | + | 52. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005021.png ; $s \in [ 0 , T]$ ; confidence 0.657 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020193.png ; $Y _ { t } = h ( B _ { \operatorname { min } | + | 53. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020193.png ; $Y _ { t } = h ( B _ { \operatorname { min } ( t , \tau )} )$ ; confidence 0.657 |
54. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022046.png ; $0 = r _ { 0 } < r _ { 1 } < \ldots < r _ { m } = n - 1$ ; confidence 0.657 | 54. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022046.png ; $0 = r _ { 0 } < r _ { 1 } < \ldots < r _ { m } = n - 1$ ; confidence 0.657 | ||
Line 114: | Line 114: | ||
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040320.png ; $\epsilon _ { i , 0 } ( x , y , z , w ) \approx \epsilon _ { i , 1 } ( x , y , z , w )$ ; confidence 0.656 | 57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040320.png ; $\epsilon _ { i , 0 } ( x , y , z , w ) \approx \epsilon _ { i , 1 } ( x , y , z , w )$ ; confidence 0.656 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180100.png ; $u _ { 0 } = x _ { | + | 58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180100.png ; $u _ { 0 } = x _ { n },$ ; confidence 0.656 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190172.png ; $W$ ; confidence 0.656 | + | 59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190172.png ; $W^{-}$ ; confidence 0.656 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055060/k0550606.png ; $\omega = i \partial \overline { \partial } p = i \sum \frac { \partial ^ { 2 } p } { \partial z _ { \alpha } \partial z _ { \beta } } d z _ { \alpha } \ | + | 60. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055060/k0550606.png ; $\omega = i \partial \overline { \partial } p = i \sum \frac { \partial ^ { 2 } p } { \partial z _ { \alpha } \partial \overline{z} _ { \beta } } d z _ { \alpha } \bigwedge d \overline{z} _ { \beta },$ ; confidence 0.656 |
61. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110740/b11074032.png ; $A _ { j }$ ; confidence 0.656 | 61. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110740/b11074032.png ; $A _ { j }$ ; confidence 0.656 | ||
− | 62. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009016.png ; $( \pi _ { X } , \rho _ { X } ) : T _ { X } \cap Y \rightarrow X \times | + | 62. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009016.png ; $( \pi _ { X } , \rho _ { X } ) : T _ { X } \cap Y \rightarrow X \times ]0 , \infty [$ ; confidence 0.656 |
63. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110130.png ; $\mu _ { N _ { k } } ( x ) = \sum _ { i = 1 } ^ { k } \mu _ { i N _ { i } } ( x )$ ; confidence 0.656 | 63. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110130.png ; $\mu _ { N _ { k } } ( x ) = \sum _ { i = 1 } ^ { k } \mu _ { i N _ { i } } ( x )$ ; confidence 0.656 | ||
Line 128: | Line 128: | ||
64. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300503.png ; $0 \leq r \leq m / 2 - 1$ ; confidence 0.656 | 64. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300503.png ; $0 \leq r \leq m / 2 - 1$ ; confidence 0.656 | ||
− | 65. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011039.png ; $h _ { j } ^ { | + | 65. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011039.png ; $h _ { j } ^ { * }$ ; confidence 0.656 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090108.png ; $H _ { n , r } ^ { ( k ) } ( x )$ ; confidence 0.656 | + | 66. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090108.png ; $H _ { n , r } ^ { ( k ) } ( \mathbf x )$ ; confidence 0.656 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003023.png ; $X \in U _ { q } ( \mathfrak { g } )$ ; confidence 0.656 | + | 67. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003023.png ; $X \in \mathcal U _ { q } ( \mathfrak { g } )$ ; confidence 0.656 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043800/g043800105.png ; $G | + | 68. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043800/g043800105.png ; $G / K$ ; confidence 0.655 |
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004098.png ; $\varphi \in S$ ; confidence 0.655 | 69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004098.png ; $\varphi \in S$ ; confidence 0.655 | ||
Line 140: | Line 140: | ||
70. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600233.png ; $K _ { p }$ ; confidence 0.655 | 70. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600233.png ; $K _ { p }$ ; confidence 0.655 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007039.png ; $\rho ( p , q , t ) = e ^ { i ( p D + q X + t | + | 71. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007039.png ; $\rho ( p , q , t ) = e ^ { i ( p \mathcal D + q \mathcal X + t I ) }$ ; confidence 0.655 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006069.png ; $V ^ { H }$ ; confidence 0.655 | + | 72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006069.png ; $V ^ { \text{H} }$ ; confidence 0.655 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040141.png ; $F _ { K } ( S _ { 1 } , S _ { 2 } ) = \operatorname { inf } \{ M ( U ) + M ( V ) : U + \partial V = S _ { 1 } - S _ { 2 } \}$ ; confidence 0.655 | + | 73. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040141.png ; $\mathcal F _ { K } ( S _ { 1 } , S _ { 2 } ) = \operatorname { inf } \{ \mathbf M ( U ) + \mathbf M ( V ) : U + \partial V = S _ { 1 } - S _ { 2 } \},$ ; confidence 0.655 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032052.png ; $E ( N ) = 4 JK$ ; confidence 0.655 | + | 74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032052.png ; $\mathsf E ( N ) = 4 JK$ ; confidence 0.655 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016018.png ; $\{ | + | 75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016018.png ; $\{ u_i ( t ) \}$ ; confidence 0.655 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017019.png ; $G = * A _ { i } | + | 76. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017019.png ; $G = * A _ { i } / N ( r )$ ; confidence 0.655 |
77. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t1302109.png ; $u ( b ) = u _ { b }$ ; confidence 0.655 | 77. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t1302109.png ; $u ( b ) = u _ { b }$ ; confidence 0.655 | ||
Line 156: | Line 156: | ||
78. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014057.png ; $N ( x )$ ; confidence 0.655 | 78. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014057.png ; $N ( x )$ ; confidence 0.655 | ||
− | 79. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211015.png ; $P \{ \chi _ { k - 1 } ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha ) \} = \alpha$ ; confidence 0.655 | + | 79. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211015.png ; $\mathsf P \{ \chi _ { k - 1 } ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha ) \} = \alpha .$ ; confidence 0.655 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064067.png ; $ | + | 80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064067.png ; $a = 1 + k = \operatorname { exp } ( s )$ ; confidence 0.655 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003024.png ; $0 < C _ { \psi } = 2 \pi \int _ { 0 } ^ { \infty } \frac { | \ | + | 81. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003024.png ; $0 < C _ { \psi } = 2 \pi \int _ { 0 } ^ { \infty } \frac { \left| \widehat { \psi } ( a \omega ) \right| ^ { 2 } } { a } d a < \infty ,$ ; confidence 0.655 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204208.png ; $\Phi _ { V , W , Z } : ( V \ | + | 82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204208.png ; $\Phi _ { V , W , Z } : ( V \bigotimes W ) \bigotimes Z \rightarrow V \bigotimes ( W \bigotimes Z )$ ; confidence 0.655 |
83. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026810/c02681011.png ; $Y _ { 1 } , \ldots , Y _ { n }$ ; confidence 0.655 | 83. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026810/c02681011.png ; $Y _ { 1 } , \ldots , Y _ { n }$ ; confidence 0.655 | ||
− | 84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034020.png ; $K _ { | + | 84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034020.png ; $K _ { n } ( D ^ { \circ } )$ ; confidence 0.655 |
85. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e1202008.png ; $d ( C _ { i } , C _ { j } ) = \sqrt { \sum _ { k = 1 } ^ { r } ( x _ { j k } - x _ { i k } ) ^ { 2 } }$ ; confidence 0.655 | 85. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e1202008.png ; $d ( C _ { i } , C _ { j } ) = \sqrt { \sum _ { k = 1 } ^ { r } ( x _ { j k } - x _ { i k } ) ^ { 2 } }$ ; confidence 0.655 | ||
− | 86. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025040.png ; $( \delta ( x ) , \text { vp } 1 / x ) \notin M _ { 1 } ( R )$ ; confidence 0.654 | + | 86. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025040.png ; $( \delta ( x ) , \text { vp } 1 / x ) \notin \mathcal M _ { 1 } ( \mathbf R )$ ; confidence 0.654 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700022.png ; $I \equiv \lambda x x$ ; confidence 0.654 | + | 87. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700022.png ; $\mathbf I \equiv \lambda x x$ ; confidence 0.654 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024074.png ; $ | + | 88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024074.png ; $P_ i$ ; confidence 0.654 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003071.png ; $f \in DB _ { 1 } ^ { * }$ ; confidence 0.654 | + | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003071.png ; $f \in \operatorname{DB} _ { 1 } ^ { * }$ ; confidence 0.654 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042015.png ; $( \otimes ) \otimes : C \times C \times C \rightarrow C$ ; confidence 0.654 | + | 90. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042015.png ; $( \otimes ) \otimes :\mathcal C \times \mathcal C \times \mathcal C \rightarrow \mathcal C$ ; confidence 0.654 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j1300404.png ; $v ^ { - 1 } P _ { L _ { + } } ( v , z ) - v P _ { | + | 91. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j1300404.png ; $v ^ { - 1 } P _ { L _ { + } } ( v , z ) - v P _ { L_- } ( v , z ) = z P _ { L _ { 0 } } ( v , z ),$ ; confidence 0.654 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130118.png ; $A _ { | + | 92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130118.png ; $A _ { p , \alpha }$ ; confidence 0.654 |
93. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s12030014.png ; $X ^ { h G } = \operatorname { Map } _ { G } ( E _ { G } , X )$ ; confidence 0.654 | 93. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s12030014.png ; $X ^ { h G } = \operatorname { Map } _ { G } ( E _ { G } , X )$ ; confidence 0.654 | ||
− | 94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023084.png ; $P ( | XX ^ { \prime } | = 0 ) = 0$ ; confidence 0.654 | + | 94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023084.png ; $\mathsf P ( | XX ^ { \prime } | = 0 ) = 0$ ; confidence 0.654 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007034.png ; $( R ^ { m + 1 } )$ ; confidence 0.654 | + | 95. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007034.png ; $\operatorname{Clif}( \mathbf R ^ { m + 1 } )$ ; confidence 0.654 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a1202406.png ; $\sum _ { p } v _ { p } ( f ) \operatorname { log } ( p ) + v _ { \infty } ( f ) = 0$ ; confidence 0.654 | + | 96. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a1202406.png ; $\sum _ { p } v _ { p } ( f ) \operatorname { log } ( p ) + v _ { \infty } ( f ) = 0,$ ; confidence 0.654 |
97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066017.png ; $Q _ { n } ( z , \tau )$ ; confidence 0.654 | 97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066017.png ; $Q _ { n } ( z , \tau )$ ; confidence 0.654 | ||
− | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017030.png ; $f \in L _ { | + | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017030.png ; $f \in L _ { \alpha } ^ { p }$ ; confidence 0.654 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005031.png ; $f ( x , k ) = e ^ { i k x } + \int _ { | + | 99. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005031.png ; $f ( x , k ) = e ^ { i k x } + \int _ { x } ^ { \infty } A _ { + } ( x , y ) e ^ { i k y } d y,$ ; confidence 0.654 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230114.png ; $R ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } R _ { | + | 100. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230114.png ; $R ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } R _ { ij } z ^ { i } w ^ { * j }.$ ; confidence 0.654 |
101. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026045.png ; $\operatorname { deg } _ { B } [ f , \Omega , y ] = \operatorname { deg } _ { B } [ f , \Omega _ { 1 } , y ] + \operatorname { deg } _ { B } [ f , \Omega _ { 2 } , y ]$ ; confidence 0.654 | 101. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026045.png ; $\operatorname { deg } _ { B } [ f , \Omega , y ] = \operatorname { deg } _ { B } [ f , \Omega _ { 1 } , y ] + \operatorname { deg } _ { B } [ f , \Omega _ { 2 } , y ]$ ; confidence 0.654 | ||
Line 210: | Line 210: | ||
105. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200907.png ; $q _ { A } : A \rightarrow T M$ ; confidence 0.653 | 105. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200907.png ; $q _ { A } : A \rightarrow T M$ ; confidence 0.653 | ||
− | 106. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013048.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , ) : F \rightarrow X$ ; confidence 0.653 | + | 106. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013048.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . ) : \mathcal F \rightarrow \mathcal X .$ ; confidence 0.653 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003045.png ; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \ | + | 107. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003045.png ; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \widetilde { M } )$ ; confidence 0.653 |
108. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007035.png ; $w \rightarrow \sigma = s + i t = e ^ { - ( w - \phi _ { 0 } ) \pi }$ ; confidence 0.653 | 108. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007035.png ; $w \rightarrow \sigma = s + i t = e ^ { - ( w - \phi _ { 0 } ) \pi }$ ; confidence 0.653 | ||
Line 220: | Line 220: | ||
110. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012054.png ; $\sum _ { i } f _ { i } h _ { i }$ ; confidence 0.653 | 110. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012054.png ; $\sum _ { i } f _ { i } h _ { i }$ ; confidence 0.653 | ||
− | 111. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202501.png ; $\{ E _ { n | + | 111. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202501.png ; $\{ E _ { n + 1} \}$ ; confidence 0.653 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180400.png ; $C ^ { \infty } ( \ | + | 112. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180400.png ; $C ^ { \infty } ( \widetilde { M } )$ ; confidence 0.653 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620197.png ; $q ( x ) = \sum _ { | + | 113. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620197.png ; $q ( x ) = \sum _ { n = 1 } ^ { \infty } f ( x - x _ { n } )$ ; confidence 0.653 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014058.png ; $\forall 1 \leq i \leq r : R _ { i } \subseteq M ^ { 2 } \vee R _ { i } \ | + | 114. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014058.png ; $\forall 1 \leq i \leq r : R _ { i } \subseteq M ^ { 2 } \vee R _ { i } \bigcap M ^ { 2 } = \emptyset$ ; confidence 0.653 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180481.png ; $( \ | + | 115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180481.png ; $( \widetilde { N } , \widetilde{g} )$ ; confidence 0.653 |
116. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300504.png ; $e _ { 0 } \equiv 1$ ; confidence 0.653 | 116. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300504.png ; $e _ { 0 } \equiv 1$ ; confidence 0.653 | ||
− | 117. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004046.png ; $= ( \Omega _ { + } - 1 ) g _ { 0 } P _ { + } \psi ( t ) + ( \Omega _ { + } - 1 ) g _ { 0 } P _ { - } \psi ( t )$ ; confidence 0.653 | + | 117. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004046.png ; $= ( \Omega _ { + } - 1 ) g _ { 0 } P _ { + } \psi ( t ) + ( \Omega _ { + } - 1 ) g _ { 0 } P _ { - } \psi ( t ).$ ; confidence 0.653 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180159.png ; $g ^ { - 1 } ( \theta \otimes \varphi ) = \langle \theta , \gamma ^ { - 1 } ( \varphi ) \rangle \in R$ ; confidence 0.653 | + | 118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180159.png ; $g ^ { - 1 } ( \theta \otimes \varphi ) = \langle \theta , \gamma ^ { - 1 } ( \varphi ) \rangle \in \mathcal R $ ; confidence 0.653 |
119. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202005.png ; $M _ { 1 } ( k ) = \operatorname { min } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.653 | 119. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202005.png ; $M _ { 1 } ( k ) = \operatorname { min } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.653 | ||
− | 120. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013024.png ; $n ( t ) = N ( t ) - | + | 120. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013024.png ; $n ( t ) = N ( t ) - N_ {*}$ ; confidence 0.653 |
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016038.png ; $A a$ ; confidence 0.653 | 121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016038.png ; $A a$ ; confidence 0.653 | ||
Line 246: | Line 246: | ||
123. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040105.png ; $v \pm 1$ ; confidence 0.653 | 123. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040105.png ; $v \pm 1$ ; confidence 0.653 | ||
− | 124. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001055.png ; $E \cap M = Iso$ ; confidence 0.653 | + | 124. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001055.png ; $E \cap M = \operatorname{Iso}$ ; confidence 0.653 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020017.png ; $\{ K ( a , b ) \} _ { span }$ ; confidence 0.653 | + | 125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020017.png ; $\{ K ( a , b ) \} _ { \operatorname{span} }$ ; confidence 0.653 |
126. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696018.png ; $F _ { n } ( x ; \lambda ) = 0$ ; confidence 0.653 | 126. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696018.png ; $F _ { n } ( x ; \lambda ) = 0$ ; confidence 0.653 | ||
− | 127. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003049.png ; $Q \in ca ( \Omega , F )$ ; confidence 0.653 | + | 127. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003049.png ; $Q \in \operatorname{ca} ( \Omega , \mathcal{F} )$ ; confidence 0.653 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090160.png ; $\langle g x , y \rangle = \langle x , g ^ { T } y \rangle , \quad \forall g \in G$ ; confidence 0.652 | + | 128. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090160.png ; $\langle g x , y \rangle = \left\langle x , g ^ { T } y \right\rangle , \quad \forall g \in G,$ ; confidence 0.652 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007015.png ; $r \rightarrow \infty , \frac { x } { r } = \alpha ^ { \prime }$ ; confidence 0.652 | + | 129. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007015.png ; $r \rightarrow \infty , \frac { x } { r } = \alpha ^ { \prime },$ ; confidence 0.652 |
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016049.png ; $\alpha _ { k }$ ; confidence 0.652 | 130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016049.png ; $\alpha _ { k }$ ; confidence 0.652 | ||
Line 264: | Line 264: | ||
132. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170214.png ; $\pi _ { 1 } ( K ) \rightarrow \pi _ { 1 } ( L )$ ; confidence 0.652 | 132. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170214.png ; $\pi _ { 1 } ( K ) \rightarrow \pi _ { 1 } ( L )$ ; confidence 0.652 | ||
− | 133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290137.png ; $G ( \mathfrak { q } ) = \oplus _ { n | + | 133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290137.png ; $G ( \mathfrak { q } ) = \oplus _ { n \geq 0} \mathfrak { q } ^ { n } / \mathfrak { q } ^ { n + 1 }$ ; confidence 0.652 |
134. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012036.png ; $C _ { 1234 }$ ; confidence 0.652 | 134. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012036.png ; $C _ { 1234 }$ ; confidence 0.652 | ||
Line 270: | Line 270: | ||
135. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024021.png ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} = m$ ; confidence 0.652 | 135. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024021.png ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} = m$ ; confidence 0.652 | ||
− | 136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007077.png ; $ | + | 136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007077.png ; $Z \mathcal C $ ; confidence 0.652 |
137. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150139.png ; $\varphi H G$ ; confidence 0.652 | 137. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150139.png ; $\varphi H G$ ; confidence 0.652 | ||
− | 138. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003040.png ; $( Z f ) ( t + 1 , w ) = e ^ { 2 \pi i w } ( Z f ) ( t , w )$ ; confidence 0.652 | + | 138. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003040.png ; $( Z f ) ( t + 1 , w ) = e ^ { 2 \pi i w } ( Z f ) ( t , w ).$ ; confidence 0.652 |
139. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320126.png ; $\varphi _ { 0 } : U \rightarrow V$ ; confidence 0.652 | 139. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320126.png ; $\varphi _ { 0 } : U \rightarrow V$ ; confidence 0.652 | ||
Line 284: | Line 284: | ||
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240462.png ; $t _ { 1 } , \ldots , t _ { p }$ ; confidence 0.651 | 142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240462.png ; $t _ { 1 } , \ldots , t _ { p }$ ; confidence 0.651 | ||
− | 143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201006.png ; $ | + | 143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201006.png ; $\mathbf E$ ; confidence 0.651 |
144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170137.png ; $C ^ { 2 } \times I$ ; confidence 0.651 | 144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170137.png ; $C ^ { 2 } \times I$ ; confidence 0.651 | ||
Line 290: | Line 290: | ||
145. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021020.png ; $f : S \rightarrow S$ ; confidence 0.651 | 145. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021020.png ; $f : S \rightarrow S$ ; confidence 0.651 | ||
− | 146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016052.png ; $ | + | 146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016052.png ; $N_ 0 $ ; confidence 0.651 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200306.png ; $( G )$ ; confidence 0.651 | + | 147. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200306.png ; $\operatorname{Fun}( G )$ ; confidence 0.651 |
148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006060.png ; $P \rightarrow \operatorname { PrSu } ( P )$ ; confidence 0.651 | 148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006060.png ; $P \rightarrow \operatorname { PrSu } ( P )$ ; confidence 0.651 | ||
− | 149. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014070/a0140704.png ; $ | + | 149. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014070/a0140704.png ; $\circ $ ; confidence 0.651 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062053.png ; $\phi ( , \lambda ) + m _ { 0 } ( \lambda ) \theta ( , \lambda ) \in L ^ { 2 } ( 0 , \infty )$ ; confidence 0.651 | + | 150. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062053.png ; $\phi ( . , \lambda ) + m _ { 0 } ( \lambda ) \theta ( . , \lambda ) \in L ^ { 2 } ( 0 , \infty ),$ ; confidence 0.651 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840321.png ; $J U ( t ) = i H ( t ) U ( t )$ ; confidence 0.651 | + | 151. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840321.png ; $J \dot{U} ( t ) = i H ( t ) U ( t )$ ; confidence 0.651 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240137.png ; $B$ ; confidence 0.651 | + | 152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240137.png ; $\operatorname{B}$ ; confidence 0.651 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202302.png ; $ | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202302.png ; $\partial D$ ; confidence 0.651 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001058.png ; $n | + | 154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001058.png ; $n \leq 15$ ; confidence 0.651 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240158.png ; $E ( y _ { i } ) = \eta _ { i }$ ; confidence 0.651 | + | 155. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240158.png ; $\mathsf E ( y _ { i } ) = \eta _ { i }$ ; confidence 0.651 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202304.png ; $\int _ { \partial D } f z _ { 1 } ^ { m } d z _ { 1 } = 0 , \quad m = 0,1 , \dots$ ; confidence 0.651 | + | 156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202304.png ; $\int _ { \partial D } f z _ { 1 } ^ { m } d z _ { 1 } = 0 , \quad m = 0,1 , \dots ,$ ; confidence 0.651 |
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070126.png ; $v \mapsto u ( v )$ ; confidence 0.651 | 157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070126.png ; $v \mapsto u ( v )$ ; confidence 0.651 | ||
− | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120122.png ; $\phi : V \rightarrow A ^ { r }$ ; confidence 0.651 | + | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120122.png ; $\phi : V \rightarrow \mathbf A ^ { r }$ ; confidence 0.651 |
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017019.png ; $B _ { t }$ ; confidence 0.651 | 159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017019.png ; $B _ { t }$ ; confidence 0.651 | ||
Line 322: | Line 322: | ||
161. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003052.png ; $b \| c$ ; confidence 0.651 | 161. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003052.png ; $b \| c$ ; confidence 0.651 | ||
− | 162. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100125.png ; $\{ \square _ { \chi } u : \chi \in \ | + | 162. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100125.png ; $\left\{ \square _ { \chi } u : \chi \in \widehat { G } \right\}$ ; confidence 0.651 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008082.png ; $= \{ z \in \Delta : \operatorname { lim } _ { \omega \rightarrow | + | 163. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008082.png ; $= \left\{ z \in \Delta : \operatorname { lim } _ { \omega \rightarrow a } [ \rho ( z , \omega ) - \rho ( 0 , \omega ) ] < \frac { 1 } { 2 } \operatorname { log } R \right\}.$ ; confidence 0.651 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010190.png ; $( \Omega , F , P )$ ; confidence 0.650 | + | 164. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010190.png ; $( \Omega , \mathcal F , \mathsf P )$ ; confidence 0.650 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038070/f0380706.png ; $ | + | 165. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038070/f0380706.png ; $\operatorname{I}$ ; confidence 0.650 |
166. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980165.png ; $k = 0,1 , \ldots$ ; confidence 0.650 | 166. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980165.png ; $k = 0,1 , \ldots$ ; confidence 0.650 | ||
Line 336: | Line 336: | ||
168. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202104.png ; $p _ { m } ( x )$ ; confidence 0.650 | 168. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202104.png ; $p _ { m } ( x )$ ; confidence 0.650 | ||
− | 169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018069.png ; $ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018069.png ; $\mathsf{CA} _ { \omega }$ ; confidence 0.650 |
170. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014041.png ; $s , t \in T$ ; confidence 0.650 | 170. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014041.png ; $s , t \in T$ ; confidence 0.650 | ||
Line 342: | Line 342: | ||
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013035.png ; $\theta _ { n }$ ; confidence 0.650 | 171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013035.png ; $\theta _ { n }$ ; confidence 0.650 | ||
− | 172. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520317.png ; $a ( | + | 172. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520317.png ; $a ( y_j )$ ; confidence 0.650 |
173. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305092.png ; $l \neq \text { char } k$ ; confidence 0.650 | 173. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305092.png ; $l \neq \text { char } k$ ; confidence 0.650 | ||
Line 350: | Line 350: | ||
175. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752012.png ; $M _ { m \times n } ( K )$ ; confidence 0.650 | 175. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752012.png ; $M _ { m \times n } ( K )$ ; confidence 0.650 | ||
− | 176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001090.png ; $E = \{ z \in C ^ { n } : \rho ( z ) < 0 \}$ ; confidence 0.650 | + | 176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001090.png ; $E = \{ z \in \mathbf C ^ { n } : \rho ( z ) < 0 \}$ ; confidence 0.650 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007017.png ; $BS ( 2,3 ) = \langle | + | 177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007017.png ; $\operatorname{BS} ( 2,3 ) = \langle a , b | a ^ { - 1 } b ^ { 2 } a = b ^ { 3 } \rangle$ ; confidence 0.650 |
178. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090165.png ; $\Gamma = \operatorname { Gal } ( k _ { \chi , \infty } / k _ { \chi } ) \cong \operatorname { Gal } ( k _ { \chi } ( \mu _ { p } \infty ) / k _ { \chi } ( \mu _ { p } ) )$ ; confidence 0.650 | 178. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090165.png ; $\Gamma = \operatorname { Gal } ( k _ { \chi , \infty } / k _ { \chi } ) \cong \operatorname { Gal } ( k _ { \chi } ( \mu _ { p } \infty ) / k _ { \chi } ( \mu _ { p } ) )$ ; confidence 0.650 | ||
− | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053082.png ; $G = GL _ { n } ( F _ { q } )$ ; confidence 0.650 | + | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053082.png ; $G = \operatorname{GL} _ { n } ( \mathbf{F} _ { q } )$ ; confidence 0.650 |
180. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014050/a01405026.png ; $B _ { 2 }$ ; confidence 0.650 | 180. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014050/a01405026.png ; $B _ { 2 }$ ; confidence 0.650 | ||
− | 181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001084.png ; $SL ( 2 , R )$ ; confidence 0.650 | + | 181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001084.png ; $\operatorname{SL} ( 2 , \mathbf R )$ ; confidence 0.650 |
182. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020028.png ; $\mathfrak { g } \ni X , Y \mapsto \{ j X , j Y \} - j ( [ X , Y ] )$ ; confidence 0.650 | 182. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020028.png ; $\mathfrak { g } \ni X , Y \mapsto \{ j X , j Y \} - j ( [ X , Y ] )$ ; confidence 0.650 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038025.png ; $x \in R ^ { 2 }$ ; confidence 0.650 | + | 183. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038025.png ; $x \in \mathbf R ^ { 2 }$ ; confidence 0.650 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020050.png ; $\sigma$ ; confidence 0.650 | + | 184. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020050.png ; $\sigma t $ ; confidence 0.650 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210136.png ; $\{ P _ { n | + | 185. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210136.png ; $\{ P _ { n , \theta _ { n }} \}$ ; confidence 0.650 |
186. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014064.png ; $r = t$ ; confidence 0.650 | 186. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014064.png ; $r = t$ ; confidence 0.650 | ||
− | 187. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018087.png ; $R _ { | + | 187. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018087.png ; $\mathbf R _ { d}$ ; confidence 0.649 |
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016037.png ; $( A A , a a )$ ; confidence 0.649 | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016037.png ; $( A A , a a )$ ; confidence 0.649 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110128.png ; $N _ { i | + | 189. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110128.png ; $N _ { i k }$ ; confidence 0.649 |
190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005071.png ; $K _ { S } ( w , z )$ ; confidence 0.649 | 190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005071.png ; $K _ { S } ( w , z )$ ; confidence 0.649 | ||
− | 191. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010154.png ; $\pi _ { 1 } T ^ { 4 } = 0$ ; confidence 0.649 | + | 191. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010154.png ; $\operatorname{Wh} \pi _ { 1 } T ^ { 4 } = 0$ ; confidence 0.649 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024086.png ; $K _ { 2 n - 2 } ( Q )$ ; confidence 0.649 | + | 192. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024086.png ; $K _ { 2 n - 2 } ( \mathbf Q )$ ; confidence 0.649 |
193. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009029.png ; $n = 0,1 , \ldots$ ; confidence 0.649 | 193. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009029.png ; $n = 0,1 , \ldots$ ; confidence 0.649 | ||
− | 194. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300303.png ; $u ( x , 0 ) = | + | 194. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300303.png ; $u ( x , 0 ) = u_ 0 ( x )$ ; confidence 0.649 |
195. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190133.png ; $T \ni m$ ; confidence 0.649 | 195. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190133.png ; $T \ni m$ ; confidence 0.649 | ||
Line 392: | Line 392: | ||
196. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300704.png ; $a _ { i } + a _ { i + 1 } = a _ { i + 2 }$ ; confidence 0.649 | 196. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300704.png ; $a _ { i } + a _ { i + 1 } = a _ { i + 2 }$ ; confidence 0.649 | ||
− | 197. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006056.png ; $| F | = \left( \begin{array} { l } { x } \\ { k } \end{array} \right)$ ; confidence 0.649 | + | 197. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006056.png ; $| \mathcal F | = \left( \begin{array} { l } { x } \\ { k } \end{array} \right)$ ; confidence 0.649 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232708.png ; $\overline { \overline { A } } = \ | + | 198. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232708.png ; $\overline { \overline { A } } = \overline { A }$ ; confidence 0.649 |
199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200178.png ; $\Lambda \in \mathfrak { h } ^ { * }$ ; confidence 0.649 | 199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200178.png ; $\Lambda \in \mathfrak { h } ^ { * }$ ; confidence 0.649 | ||
− | 200. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011066.png ; $f ( k , n ) \sim A k ^ { - ( 1 + q ) }$ ; confidence 0.649 | + | 200. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011066.png ; $f _{( k , n )} \sim A k ^ { - ( 1 + q ) }$ ; confidence 0.649 |
201. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001048.png ; $O ^ { \sim } ( n \operatorname { log } q )$ ; confidence 0.649 | 201. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001048.png ; $O ^ { \sim } ( n \operatorname { log } q )$ ; confidence 0.649 | ||
− | 202. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049010.png ; $x = [ ( \nu _ { 1 } - 2 ) / \nu _ { 1 } ] | + | 202. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049010.png ; $x = [ ( \nu _ { 1 } - 2 ) / \nu _ { 1 } ] . [ \nu _ { 2 } / ( \nu _ { 2 } + 2 ) ]$ ; confidence 0.649 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011039.png ; $\ | + | 203. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011039.png ; $\overset{\rightharpoonup} { e }$ ; confidence 0.649 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180373.png ; $ | + | 204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180373.png ; $q_ 1 + \ldots + q_ m > 0$ ; confidence 0.649 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012086.png ; $L ( \mu , \Sigma | Y _ { aug } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu , q _ { | + | 205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012086.png ; $L ( \mu , \Sigma | Y _ { \operatorname{aug} } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu , q _ { i } ) f ( q _ { i } | \nu )$ ; confidence 0.649 |
206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110130.png ; $a ( x , \xi , h )$ ; confidence 0.649 | 206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110130.png ; $a ( x , \xi , h )$ ; confidence 0.649 | ||
− | 207. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301409.png ; $p \in R _ { + } : = [ 0 , \infty )$ ; confidence 0.649 | + | 207. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301409.png ; $p \in \mathbf R _ { + } : = [ 0 , \infty )$ ; confidence 0.649 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013042.png ; $g = n \frac { \hbar } { 2 e } , \quad n = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.649 | + | 208. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013042.png ; $g = n \frac { \hbar } { 2 e } , \quad n = 0 , \pm 1 , \pm 2 , \ldots .$ ; confidence 0.649 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016046.png ; $\partial _ { r } ( r J ^ { - 1 } \partial _ { r } J ) + \partial _ { z } ( r J ^ { - 1 } \partial _ { z } J ) = 0$ ; confidence 0.648 | + | 209. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016046.png ; $\partial _ { r } ( r J ^ { - 1 } \partial _ { r } J ) + \partial _ { z } ( r J ^ { - 1 } \partial _ { z } J ) = 0,$ ; confidence 0.648 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090106.png ; $y _ { \lambda } = \sum _ { \pi \in C ( t ) } \operatorname { sg } ( \pi ) \pi$ ; confidence 0.648 | + | 210. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090106.png ; $y _ { \lambda } = \sum _ { \pi \in C ( t ) } \operatorname { sg } ( \pi ) \pi ,$ ; confidence 0.648 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061049.png ; $R ^ { | + | 211. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061049.png ; $R ^ { n }$ ; confidence 0.648 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020023.png ; $\theta ( z ) = b ( z ) | + | 212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020023.png ; $\theta ( z ) = b ( z ) . s ( z )$ ; confidence 0.648 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019043.png ; $F = ( 2 \pi \hbar ) ^ { - 6 N } \int _ { R ^ { 3 N } \times R ^ { 3 N } } e ^ { i ( \sigma X + r P ) / \hbar } \phi ( \sigma , \tau ) d \sigma d \tau$ ; confidence 0.648 | + | 213. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019043.png ; $F = ( 2 \pi \hbar ) ^ { - 6 N } \int _ { \mathbf R ^ { 3 N } \times \mathbf R ^ { 3 N } } e ^ { i ( \sigma .X + r. P ) / \hbar } \phi ( \sigma , \tau ) d \sigma d \tau$ ; confidence 0.648 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230107.png ; $C _ { l } = ( \frac { u _ { i } v _ { j } ^ { * } } { f _ { i } - a _ { j } ^ { * } } ) , u _ { i } , v _ { i } \in C ^ { 1 \times r }$ ; confidence 0.648 | + | 214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230107.png ; $C _ { l } = \left( \frac { u _ { i } v _ { j } ^ { * } } { f _ { i } - a _ { j } ^ { * } } \right) , u _ { i } , v _ { i } \in \mathcal C ^ { 1 \times r }.$ ; confidence 0.648 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013015.png ; $e ^ { i k x }$ ; confidence 0.648 | + | 215. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013015.png ; $e ^ { i \mathbf k . \mathbf x }$ ; confidence 0.648 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051081.png ; $H _ { + } ^ { - 1 } = ( I - \frac { s y ^ { T } } { y ^ { T } s } ) H _ { c } ^ { - 1 } ( I - \frac { y s ^ { T } } { y ^ { T } s } ) + \frac { s s ^ { T } } { y ^ { T } s }$ ; confidence 0.648 | + | 216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051081.png ; $H _ { + } ^ { - 1 } = \left( I - \frac { s y ^ { T } } { y ^ { T } s } \right) H _ { c } ^ { - 1 } \left( I - \frac { y s ^ { T } } { y ^ { T } s } \right) + \frac { s s ^ { T } } { y ^ { T } s }.$ ; confidence 0.648 |
217. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201507.png ; $x \in X$ ; confidence 0.648 | 217. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201507.png ; $x \in X$ ; confidence 0.648 | ||
− | 218. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002011.png ; $X = \sum _ { A \in S } I _ { A }$ ; confidence 0.648 | + | 218. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002011.png ; $X = \sum _ { A \in \mathcal S } I _ { A }$ ; confidence 0.648 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007063.png ; $U \in SGL _ { 6 } ( Z ( C _ { 6 } \times C _ { 6 } ) )$ ; confidence 0.648 | + | 219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007063.png ; $U \in v\operatorname{SGL} _ { 6 } ( \mathbf Z ( C _ { 6 } \times C _ { 6 } ) )$ ; confidence 0.648 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301406.png ; $ | + | 220. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301406.png ; $q_Q ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j },$ ; confidence 0.648 |
221. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110261.png ; $a \in S ( m , G )$ ; confidence 0.648 | 221. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110261.png ; $a \in S ( m , G )$ ; confidence 0.648 | ||
− | 222. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012056.png ; $C | + | 222. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012056.png ; $C \equiv 0$ ; confidence 0.648 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001036.png ; $S _ { N } \| / N ^ { ( n - 1 ) / 2 }$ ; confidence 0.648 | + | 223. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001036.png ; $\| S _ { N } \| / N ^ { ( n - 1 ) / 2 }$ ; confidence 0.648 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009037.png ; $( 1 + | + | 224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009037.png ; $( 1 + a ^ { 2 } ) \frac { d \tau } { \tau } = ( p _ { 3 } ( \xi , \tau ) - a i ) \frac { d \xi } { \xi },$ ; confidence 0.647 |
225. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004083.png ; $0.2$ ; confidence 0.647 | 225. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004083.png ; $0.2$ ; confidence 0.647 | ||
− | 226. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100110.png ; $\ | + | 226. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100110.png ; $\epsilon_{i + 1}$ ; confidence 0.647 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220175.png ; $z _ { D } : B ^ { m } ( X ) \rightarrow H _ { M } ^ { 2 m + 1 } ( | + | 227. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220175.png ; $z _ { \mathcal D } : B ^ { m } ( X ) \rightarrow H _ { \mathcal M } ^ { 2 m + 1 } ( X_{ / \mathbf R} , \mathbf R ( m + 1 ) )$ ; confidence 0.647 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002052.png ; $\ | + | 228. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002052.png ; $\widehat { m } = X$ ; confidence 0.647 |
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006082.png ; $W \subset Y$ ; confidence 0.647 | 229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006082.png ; $W \subset Y$ ; confidence 0.647 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032025.png ; $E _ { \theta } ( S _ { N } ) = P _ { \theta } ( S _ { N } = 1 ) = 1 - P _ { \theta } ( S _ { n } = 0 ) = 1 - ( 1 - \theta ) ^ { n }$ ; confidence 0.647 | + | 230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032025.png ; $\mathsf E _ { \theta } ( S _ { N } ) = \mathsf P _ { \theta } ( S _ { N } = 1 ) = 1 - \mathsf P _ { \theta } ( S _ { n } = 0 ) = 1 - ( 1 - \theta ) ^ { n }$ ; confidence 0.647 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140107.png ; $( \exists x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) \text { and } ( \forall x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x ( \neg \varphi ) } \end{array} \right)$ ; confidence 0.647 | + | 231. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140107.png ; $( \exists x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) \text { and } ( \forall x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x ( \neg \varphi ) } \end{array} \right),$ ; confidence 0.647 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752091.png ; $M _ { m \times n } ( \ | + | 232. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752091.png ; $M _ { m \times n } ( \widetilde{ K } )$ ; confidence 0.646 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026015.png ; $U _ { 0 } ^ { n } = U _ { J } ^ { n } = 0 , \quad 1 \leq n \leq N$ ; confidence 0.646 | + | 233. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026015.png ; $U _ { 0 } ^ { n } = U _ { J } ^ { n } = 0 , \quad 1 \leq n \leq N,$ ; confidence 0.646 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420149.png ; $V = k 1 \oplus g \subset U ( g )$ ; confidence 0.646 | + | 234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420149.png ; $V = k 1 \oplus \mathfrak g \subset U ( \mathfrak g )$ ; confidence 0.646 |
235. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005019.png ; $\sum _ { j = 1 } ^ { t } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.646 | 235. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005019.png ; $\sum _ { j = 1 } ^ { t } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.646 | ||
− | 236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043026.png ; $Ad : B \otimes B \rightarrow B$ ; confidence 0.646 | + | 236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043026.png ; $\operatorname{Ad} : B \otimes B \rightarrow B$ ; confidence 0.646 |
237. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001069.png ; $E = E ^ { * * }$ ; confidence 0.646 | 237. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001069.png ; $E = E ^ { * * }$ ; confidence 0.646 | ||
Line 476: | Line 476: | ||
238. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008031.png ; $P _ { A }$ ; confidence 0.646 | 238. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008031.png ; $P _ { A }$ ; confidence 0.646 | ||
− | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200136.png ; $( . | + | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200136.png ; $( . | . )$ ; confidence 0.646 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028033.png ; $\sum ^ { \infty } | + | 240. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028033.png ; $\sum ^ { \infty } Z$ ; confidence 0.646 |
241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202009.png ; $m \geq n + 1$ ; confidence 0.646 | 241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202009.png ; $m \geq n + 1$ ; confidence 0.646 | ||
Line 484: | Line 484: | ||
242. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301306.png ; $r , \theta , \phi$ ; confidence 0.646 | 242. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301306.png ; $r , \theta , \phi$ ; confidence 0.646 | ||
− | 243. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003063.png ; $( \omega , 0 )$ ; confidence 0.646 | + | 243. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003063.png ; $\operatorname{Eis} ( \omega , 0 )$ ; confidence 0.646 |
244. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120125.png ; $x \in V ( M ^ { \prime } )$ ; confidence 0.646 | 244. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120125.png ; $x \in V ( M ^ { \prime } )$ ; confidence 0.646 | ||
Line 490: | Line 490: | ||
245. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014011.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { 2 m } )$ ; confidence 0.646 | 245. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014011.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { 2 m } )$ ; confidence 0.646 | ||
− | 246. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006046.png ; $F ( x ) : = \sum _ { j = 1 } ^ { J } s _ { j } e ^ { - k _ { j } x } + \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } [ 1 - S ( k ) ] e ^ { i k x } d k$ ; confidence 0.646 | + | 246. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006046.png ; $F ( x ) : = \sum _ { j = 1 } ^ { J } s _ { j } e ^ { - k _ { j } x } + \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } [ 1 - S ( k ) ] e ^ { i k x } d k.$ ; confidence 0.646 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011032.png ; $B ( 0,1 ) \subseteq C$ ; confidence 0.646 | + | 247. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011032.png ; $B ( 0,1 ) \subseteq \mathbf C$ ; confidence 0.646 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010032.png ; $\square ^ { \prime \prime } \Gamma _ { r k } ^ { t } = \{ \square _ { r k } ^ { t } \} - \frac { 1 } { 2 } g ^ { t s } ( \gamma _ { k } m _ { r s } + \gamma _ { r } m _ { s k } - \gamma _ { s } m _ { r k } )$ ; confidence 0.646 | + | 248. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010032.png ; $\square ^ { \prime \prime } \Gamma _ { r k } ^ { t } = \{ \square _ { r k } ^ { t } \} - \frac { 1 } { 2 } g ^ { t s } ( \gamma _ { k } m _ { r s } + \gamma _ { r } m _ { s k } - \gamma _ { s } m _ { r k } ),$ ; confidence 0.646 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001015.png ; $S _ { B } ( f ; x ) = \sum _ { k \in B } \ | + | 249. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001015.png ; $S _ { B } ( f ; x ) = \sum _ { k \in B } \widehat { f } ( k ) e ^ { i k x }.$ ; confidence 0.646 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022033.png ; $\| u \| _ { p , m , T } = \sum _ { | \alpha | \leq m } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.645 | + | 250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022033.png ; $\| u \| _ { p , m , T } = \sum _ { | \alpha | \leq m } \| D ^ { \alpha } u \| _ { p , T },$ ; confidence 0.645 |
251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047018.png ; $( T - \lambda l ) ^ { \nu ( \lambda ) } X$ ; confidence 0.645 | 251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047018.png ; $( T - \lambda l ) ^ { \nu ( \lambda ) } X$ ; confidence 0.645 | ||
− | 252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080104.png ; $i , j \in Z _ { + }$ ; confidence 0.645 | + | 252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080104.png ; $i , j \in \mathbf Z _ { + },$ ; confidence 0.645 |
253. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020208.png ; $k \in R ^ { \prime }$ ; confidence 0.645 | 253. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020208.png ; $k \in R ^ { \prime }$ ; confidence 0.645 | ||
− | 254. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009086.png ; $x = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.645 | + | 254. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009086.png ; $\mathbf x = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.645 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003053.png ; $x _ { | + | 255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003053.png ; $x _ { n } \nearrow x _ { 0 }$ ; confidence 0.645 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008011.png ; $\xi = ( \xi _ { 1 } , \ldots , \xi _ { m } ) \in R ^ { m }$ ; confidence 0.645 | + | 256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008011.png ; $\xi = ( \xi _ { 1 } , \ldots , \xi _ { m } ) \in \mathbf R ^ { m }$ ; confidence 0.645 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007047.png ; $1 | + | 257. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007047.png ; $L^{1/2}$ ; confidence 0.645 |
258. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040119.png ; $1 \leq s < s _ { 0 }$ ; confidence 0.645 | 258. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040119.png ; $1 \leq s < s _ { 0 }$ ; confidence 0.645 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001083.png ; $A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { k ^ { 2 } V } { 4 \pi } ( 1 + \beta _ { p q } \alpha _ { q } \alpha _ { p } ^ { \prime } ) \text { if } \Gamma u = u _ { N } , k a \ll 1$ ; confidence 0.645 | + | 259. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001083.png ; $A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { k ^ { 2 } V } { 4 \pi } ( 1 + \beta _ { p q } \alpha _ { q } \alpha _ { p } ^ { \prime } ) \text { if } \Gamma u = u _ { N } , k a \ll 1,$ ; confidence 0.645 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008029.png ; $W ( q ^ { r } p ^ { s } ) = ( Q ^ { r } P ^ { s } ) | + | 260. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008029.png ; $W ( q ^ { r } p ^ { s } ) = ( Q ^ { r } P ^ { s } )_S $ ; confidence 0.645 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015035.png ; $g ( S ) \cap S \neq | + | 261. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015035.png ; $g ( S ) \cap S \neq \emptyset$ ; confidence 0.645 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030013.png ; $\theta _ { X } : ( T V , d ) \rightarrow | + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030013.png ; $\theta _ { X } : ( T V , d ) \rightarrow C_{*} \Omega X$ ; confidence 0.645 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011053.png ; $G _ { | + | 263. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011053.png ; $G _ { n } ( . )$ ; confidence 0.645 |
264. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290190.png ; $k = R _ { 0 }$ ; confidence 0.645 | 264. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290190.png ; $k = R _ { 0 }$ ; confidence 0.645 | ||
− | 265. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024029.png ; $[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) ] : =$ ; confidence 0.645 | + | 265. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024029.png ; $\left[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) \right] : =$ ; confidence 0.645 |
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021078.png ; $\mu \in \mathfrak { h } ^ { * }$ ; confidence 0.645 | 266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021078.png ; $\mu \in \mathfrak { h } ^ { * }$ ; confidence 0.645 | ||
− | 267. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009053.png ; $f ( x , t ) = \frac { 2 } { \omega _ { n } } \int _ { R ^ { n - 1 } } \frac { t f ( y , 0 ) } { ( | x - y | ^ { 2 } + t ^ { 2 } ) ^ { n / 2 } } d y$ ; confidence 0.645 | + | 267. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009053.png ; $f ( x , t ) = \frac { 2 } { \omega _ { n } } \int _ { \mathbf{R} ^ { n - 1 } } \frac { t f ( y , 0 ) } { ( | x - y | ^ { 2 } + t ^ { 2 } ) ^ { n / 2 } } d y,$ ; confidence 0.645 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a1100404.png ; $ | + | 268. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a1100404.png ; $\kappa = 0$ ; confidence 0.645 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022022.png ; $\operatorname { Re } ( s ) > 1 + i | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022022.png ; $\operatorname { Re } ( s ) > 1 + i / 2$ ; confidence 0.645 |
270. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080117.png ; $d S = Q d E$ ; confidence 0.645 | 270. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080117.png ; $d S = Q d E$ ; confidence 0.645 | ||
− | 271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240139.png ; $\square ( E , Q )$ ; confidence 0.645 | + | 271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240139.png ; $\square ( E , \mathbf Q )$ ; confidence 0.645 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201005.png ; $S ( t ) = e ^ { - t A } = \sum _ { m = 0 } ^ { \infty } \frac { ( - t A ) ^ { m } } { m ! }$ ; confidence 0.645 | + | 272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201005.png ; $S ( t ) = e ^ { - t A } = \sum _ { m = 0 } ^ { \infty } \frac { ( - t A ) ^ { m } } { m ! },$ ; confidence 0.645 |
273. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002027.png ; $i = 1 , \ldots , d$ ; confidence 0.645 | 273. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002027.png ; $i = 1 , \ldots , d$ ; confidence 0.645 | ||
Line 548: | Line 548: | ||
274. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012052.png ; $0 \neq q \in C$ ; confidence 0.644 | 274. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012052.png ; $0 \neq q \in C$ ; confidence 0.644 | ||
− | 275. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601095.png ; $\pi _ { 1 } = Z _ { 5 }$ ; confidence 0.644 | + | 275. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601095.png ; $\pi _ { 1 } = \mathbf Z _ { 5 }$ ; confidence 0.644 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500089.png ; $A _ { | + | 276. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500089.png ; $\mathcal A _ { \epsilon }$ ; confidence 0.644 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050197.png ; $p ( n ) = a ( p ^ { n } )$ ; confidence 0.644 | + | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050197.png ; $\mathbf{ p} ( n ) = a ( p ^ { n } )$ ; confidence 0.644 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022034.png ; $a b ^ { s }$ ; confidence 0.644 | + | 278. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022034.png ; $a.b ^ { s }$ ; confidence 0.644 |
279. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234028.png ; $i = 1 , \dots , r - 1$ ; confidence 0.644 | 279. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234028.png ; $i = 1 , \dots , r - 1$ ; confidence 0.644 | ||
Line 560: | Line 560: | ||
280. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004015.png ; $C ^ { \infty _ { 0 } } ( \Omega )$ ; confidence 0.644 | 280. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004015.png ; $C ^ { \infty _ { 0 } } ( \Omega )$ ; confidence 0.644 | ||
− | 281. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006011.png ; $= \frac { 3 } { 5 } \gamma \int _ { R ^ { 3 } } \rho ( x ) ^ { 5 / 3 } d x - \int _ { R ^ { 3 } } V ( x ) \rho ( x ) d x +$ ; confidence 0.644 | + | 281. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006011.png ; $:= \frac { 3 } { 5 } \gamma \int _ { \mathbf R ^ { 3 } } \rho ( x ) ^ { 5 / 3 } d x - \int _ { \mathbf R ^ { 3 } } V ( x ) \rho ( x ) d x +$ ; confidence 0.644 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009061.png ; $( P \times g ) / G$ ; confidence 0.644 | + | 282. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009061.png ; $( P \times \mathfrak g ) / G$ ; confidence 0.644 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030073.png ; $\sigma ( A ) = \sigma _ { Bloch } = \ | + | 283. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030073.png ; $\sigma ( \mathcal A ) = \sigma _ { \operatorname{Bloch} } = \bigcup _ { m = 1 } ^ { \infty } \left[ \operatorname { min } _ { \eta \in Y ^ { \prime } } \lambda _ { m } ( \eta ) , \operatorname { max } _ { \eta \in Y ^ { \prime } } \lambda _ { m } ( \eta ) \right].$ ; confidence 0.644 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013021.png ; $h$ ; confidence 0.644 | + | 284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013021.png ; $\mathfrak h $ ; confidence 0.644 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w1201803.png ; $R _ { + } ^ { N } = \{ t = ( t _ { 1 } , \dots , t _ { N } ) : t _ { i } \geq 0 \}$ ; confidence 0.644 | + | 285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w1201803.png ; $\mathbf R _ { + } ^ { N } = \{ t = ( t _ { 1 } , \dots , t _ { N } ) : t _ { i } \geq 0 \}$ ; confidence 0.644 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005011.png ; $( a _ { k } ) _ { k } | + | 286. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005011.png ; $( a _ { k } ) _ { k \geq 0}$ ; confidence 0.644 |
287. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033680/d03368013.png ; $B ( F )$ ; confidence 0.644 | 287. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033680/d03368013.png ; $B ( F )$ ; confidence 0.644 | ||
− | 288. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006070.png ; $\operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ) = \operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \ | + | 288. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006070.png ; $\operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ) = \operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \widetilde { \gamma } ).$ ; confidence 0.644 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036017.png ; $P ( p _ { x } , p _ { y } , p _ { z } ) d p _ { x } d p _ { y } d p _ { z }$ ; confidence 0.644 | + | 289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036017.png ; $\mathsf P ( p _ { x } , p _ { y } , p _ { z } ) d p _ { x } d p _ { y } d p _ { z }$ ; confidence 0.644 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300101.png ; $Z [ x ]$ ; confidence 0.644 | + | 290. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300101.png ; $\mathbf Z [ x ]$ ; confidence 0.644 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100276.png ; $ | + | 291. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100276.png ; $1/2$ ; confidence 0.644 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009011.png ; $W _ { 2 } ^ { | + | 292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009011.png ; $W _ { 2 } ^ { s } ( \mathbf R _ { x } ) = H ^ { s } ( \mathbf R _ { x } )$ ; confidence 0.644 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055050.png ; $ | + | 293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055050.png ; $C_{ * } ( M )$ ; confidence 0.644 |
294. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042020/f042020108.png ; $X ^ { \prime \prime }$ ; confidence 0.643 | 294. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042020/f042020108.png ; $X ^ { \prime \prime }$ ; confidence 0.643 | ||
− | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240358.png ; $E ( Z _ { 1 } ) = \Theta$ ; confidence 0.643 | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240358.png ; $\mathsf E ( \mathbf Z _ { 1 } ) = \Theta$ ; confidence 0.643 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006028.png ; $D ( A ) = \{ u \in [ H ^ { 1 } ( \Omega ] ^ { p } : u ( x ) \in P ( x ) \text { a.e. on } \partial \Omega \}$ ; confidence 0.643 | + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006028.png ; $D ( \mathcal{A} ) = \left\{ u \in [ H ^ { 1 } ( \Omega ] ^ { p } : u ( x ) \in P ( x ) \text { a.e. on } \partial \Omega \right\}.$ ; confidence 0.643 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080170.png ; $\partial _ { | + | 297. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080170.png ; $\partial _ { a } A = 0 \text { and } \partial \overline { A } = ( 1 / \kappa ) A \mu _ { a } ^ { 0 }.$ ; confidence 0.643 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004026.png ; $\Delta t ^ { | + | 298. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004026.png ; $\Delta t ^ { n }$ ; confidence 0.643 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c023110151.png ; $K = | + | 299. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c023110151.png ; $K = \mathbf Z$ ; confidence 0.643 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406046.png ; $ | + | 300. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406046.png ; $s_i$ ; confidence 0.643 |
Latest revision as of 10:55, 15 May 2020
List
1. ; $q \in L _ { 1,2 } : = \left\{ q : q = \overline { q } , \int _ { - \infty } ^ { \infty } ( 1 + x ^ { 2 } ) | q ( x ) | d x < \infty \right\}.$ ; confidence 0.659
2. ; $\Omega ^ { k } ( f ^ { ( s ) } , \delta ) \leq M \delta ^ { r - s } , \quad \delta > 0,$ ; confidence 0.659
3. ; $j = 1 , \dots , n - 1$ ; confidence 0.659
4. ; $P | \phi \rangle / \| P | \phi \rangle \|$ ; confidence 0.659
5. ; $\square ^ { 1 } S _ { m }$ ; confidence 0.659
6. ; $\mathbf{E} = \{ E _ { n } , \sigma : \Sigma E _ { n } \rightarrow E _ { n + 1} \}$ ; confidence 0.659
7. ; $\mathcal{S} ^ { * }$ ; confidence 0.659
8. ; $\kappa ( F , \overline { D } \square ^ { n + 1 } ) = k$ ; confidence 0.659
9. ; $S = X _ { 1 } + \ldots + X _ { n }$ ; confidence 0.659
10. ; $Q \in N$ ; confidence 0.659
11. ; $\gamma = 7 / 4$ ; confidence 0.659
12. ; $x \mapsto \varepsilon _ { x } ^ { \mathcal{C}U } ( f )$ ; confidence 0.659
13. ; $Z \in H$ ; confidence 0.659
14. ; $x _ { n } \leq y _ { n }$ ; confidence 0.659
15. ; $\Sigma ^ { \prime }$ ; confidence 0.659
16. ; $n = 2,3 , \dots$ ; confidence 0.659
17. ; $\Phi _ { 2 }$ ; confidence 0.659
18. ; $y _ { 1 } , \ldots , y _ { n }$ ; confidence 0.659
19. ; $\widehat{y}$ ; confidence 0.658
20. ; $\mathbf B = \nabla \times \mathbf A ^ { \pm }$ ; confidence 0.658
21. ; $D \subset \mathbf R ^ { d }$ ; confidence 0.658
22. ; $f ( N_{ *} ) = 0$ ; confidence 0.658
23. ; $a _ { i , j } \neq 0$ ; confidence 0.658
24. ; $( X , \mathcal{T} )$ ; confidence 0.658
25. ; $\alpha \in S ^ { 2 }$ ; confidence 0.658
26. ; $Q = ( Q _ { 0 } , Q _ { 1 } )$ ; confidence 0.658
27. ; $\sigma = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \rho ^ { \prime } d \rho ^ { \prime } [ j ] \bigwedge d\zeta .$ ; confidence 0.658
28. ; $x \in K_j $ ; confidence 0.658
29. ; $G ^ { t }$ ; confidence 0.658
30. ; $\mathcal E ( L ) = ( \mathcal E ^ { 1 } ( L ) , \ldots , \mathcal E ^ { m } ( L ) )$ ; confidence 0.658
31. ; $g _ 2 ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } \phi ( z _ { j } )$ ; confidence 0.658
32. ; $s = 0 , \dots , n - 1$ ; confidence 0.658
33. ; $J _ {i j }$ ; confidence 0.658
34. ; $f \in \operatorname{DB} _ { 1 }$ ; confidence 0.658
35. ; $\varphi \in C _ { 00 } ( G ; \mathbf C )$ ; confidence 0.658
36. ; $\Gamma ( b _ { j } - s )$ ; confidence 0.658
37. ; $\sum _ { A \in 2 ^ \Xi } m ( A ) = 1$ ; confidence 0.658
38. ; $\operatorname{Der} \Omega ( M )$ ; confidence 0.657
39. ; $\partial f ( x ) = \partial _ { c } \left( f + ( 2 T ) ^ { - 1 } \| \cdot \| ^ { 2 } \right) ( x ) - T ^ { - 1 } x , \quad x \in H,$ ; confidence 0.657
40. ; $( \Omega _ { + } - 1 ) g _ { 0 } \psi ( t ) =$ ; confidence 0.657
41. ; $N _ { \epsilon } ( C , X ) = \operatorname { inf } \left\{ n : \exists x _ { 1 } , \ldots , x _ { n } , x _ { i } \in X : C \subset \bigcup _ { i = 1 } ^ { n } B ( x _ { i } , \epsilon ) \right\}$ ; confidence 0.657
42. ; $\operatorname { Ker } ( \operatorname{Ad} )$ ; confidence 0.657
43. ; $a \equiv 5 ( \operatorname { mod } 8 )$ ; confidence 0.657
44. ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } f \left( \sum _ { j \in I \bigcap [ 1 , n ] } x _ { j } \right) .$ ; confidence 0.657
45. ; $\Lambda _ { D _ { + } } ( a , x ) + \Lambda _ { D _ { - } } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ( a , x ) + \Lambda _ { D _ { \infty } } ( a , x ) ).$ ; confidence 0.657
46. ; $x \in A \mapsto [ x , a ] \in A$ ; confidence 0.657
47. ; $0 \leq S \leq T \in \mathcal L ( X )$ ; confidence 0.657
48. ; $F \in \operatorname { Lip } 1$ ; confidence 0.657
49. ; $\varphi ( 3,3,3 ) = 3 ^ { 3 ^ { 3 ^ { 3 } } }$ ; confidence 0.657
50. ; $C ^ { \prime _{ AB}}$ ; confidence 0.657
51. ; $H ( \theta , X ) = X - \alpha$ ; confidence 0.657
52. ; $s \in [ 0 , T]$ ; confidence 0.657
53. ; $Y _ { t } = h ( B _ { \operatorname { min } ( t , \tau )} )$ ; confidence 0.657
54. ; $0 = r _ { 0 } < r _ { 1 } < \ldots < r _ { m } = n - 1$ ; confidence 0.657
55. ; $y \notin f ( \overline { \Omega } \backslash ( \Omega _ { 1 } \cup \Omega _ { 2 } ) )$ ; confidence 0.656
56. ; $\operatorname { lk } ( L )$ ; confidence 0.656
57. ; $\epsilon _ { i , 0 } ( x , y , z , w ) \approx \epsilon _ { i , 1 } ( x , y , z , w )$ ; confidence 0.656
58. ; $u _ { 0 } = x _ { n },$ ; confidence 0.656
59. ; $W^{-}$ ; confidence 0.656
60. ; $\omega = i \partial \overline { \partial } p = i \sum \frac { \partial ^ { 2 } p } { \partial z _ { \alpha } \partial \overline{z} _ { \beta } } d z _ { \alpha } \bigwedge d \overline{z} _ { \beta },$ ; confidence 0.656
61. ; $A _ { j }$ ; confidence 0.656
62. ; $( \pi _ { X } , \rho _ { X } ) : T _ { X } \cap Y \rightarrow X \times ]0 , \infty [$ ; confidence 0.656
63. ; $\mu _ { N _ { k } } ( x ) = \sum _ { i = 1 } ^ { k } \mu _ { i N _ { i } } ( x )$ ; confidence 0.656
64. ; $0 \leq r \leq m / 2 - 1$ ; confidence 0.656
65. ; $h _ { j } ^ { * }$ ; confidence 0.656
66. ; $H _ { n , r } ^ { ( k ) } ( \mathbf x )$ ; confidence 0.656
67. ; $X \in \mathcal U _ { q } ( \mathfrak { g } )$ ; confidence 0.656
68. ; $G / K$ ; confidence 0.655
69. ; $\varphi \in S$ ; confidence 0.655
70. ; $K _ { p }$ ; confidence 0.655
71. ; $\rho ( p , q , t ) = e ^ { i ( p \mathcal D + q \mathcal X + t I ) }$ ; confidence 0.655
72. ; $V ^ { \text{H} }$ ; confidence 0.655
73. ; $\mathcal F _ { K } ( S _ { 1 } , S _ { 2 } ) = \operatorname { inf } \{ \mathbf M ( U ) + \mathbf M ( V ) : U + \partial V = S _ { 1 } - S _ { 2 } \},$ ; confidence 0.655
74. ; $\mathsf E ( N ) = 4 JK$ ; confidence 0.655
75. ; $\{ u_i ( t ) \}$ ; confidence 0.655
76. ; $G = * A _ { i } / N ( r )$ ; confidence 0.655
77. ; $u ( b ) = u _ { b }$ ; confidence 0.655
78. ; $N ( x )$ ; confidence 0.655
79. ; $\mathsf P \{ \chi _ { k - 1 } ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha ) \} = \alpha .$ ; confidence 0.655
80. ; $a = 1 + k = \operatorname { exp } ( s )$ ; confidence 0.655
81. ; $0 < C _ { \psi } = 2 \pi \int _ { 0 } ^ { \infty } \frac { \left| \widehat { \psi } ( a \omega ) \right| ^ { 2 } } { a } d a < \infty ,$ ; confidence 0.655
82. ; $\Phi _ { V , W , Z } : ( V \bigotimes W ) \bigotimes Z \rightarrow V \bigotimes ( W \bigotimes Z )$ ; confidence 0.655
83. ; $Y _ { 1 } , \ldots , Y _ { n }$ ; confidence 0.655
84. ; $K _ { n } ( D ^ { \circ } )$ ; confidence 0.655
85. ; $d ( C _ { i } , C _ { j } ) = \sqrt { \sum _ { k = 1 } ^ { r } ( x _ { j k } - x _ { i k } ) ^ { 2 } }$ ; confidence 0.655
86. ; $( \delta ( x ) , \text { vp } 1 / x ) \notin \mathcal M _ { 1 } ( \mathbf R )$ ; confidence 0.654
87. ; $\mathbf I \equiv \lambda x x$ ; confidence 0.654
88. ; $P_ i$ ; confidence 0.654
89. ; $f \in \operatorname{DB} _ { 1 } ^ { * }$ ; confidence 0.654
90. ; $( \otimes ) \otimes :\mathcal C \times \mathcal C \times \mathcal C \rightarrow \mathcal C$ ; confidence 0.654
91. ; $v ^ { - 1 } P _ { L _ { + } } ( v , z ) - v P _ { L_- } ( v , z ) = z P _ { L _ { 0 } } ( v , z ),$ ; confidence 0.654
92. ; $A _ { p , \alpha }$ ; confidence 0.654
93. ; $X ^ { h G } = \operatorname { Map } _ { G } ( E _ { G } , X )$ ; confidence 0.654
94. ; $\mathsf P ( | XX ^ { \prime } | = 0 ) = 0$ ; confidence 0.654
95. ; $\operatorname{Clif}( \mathbf R ^ { m + 1 } )$ ; confidence 0.654
96. ; $\sum _ { p } v _ { p } ( f ) \operatorname { log } ( p ) + v _ { \infty } ( f ) = 0,$ ; confidence 0.654
97. ; $Q _ { n } ( z , \tau )$ ; confidence 0.654
98. ; $f \in L _ { \alpha } ^ { p }$ ; confidence 0.654
99. ; $f ( x , k ) = e ^ { i k x } + \int _ { x } ^ { \infty } A _ { + } ( x , y ) e ^ { i k y } d y,$ ; confidence 0.654
100. ; $R ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } R _ { ij } z ^ { i } w ^ { * j }.$ ; confidence 0.654
101. ; $\operatorname { deg } _ { B } [ f , \Omega , y ] = \operatorname { deg } _ { B } [ f , \Omega _ { 1 } , y ] + \operatorname { deg } _ { B } [ f , \Omega _ { 2 } , y ]$ ; confidence 0.654
102. ; $f _ { s _ { i } w }$ ; confidence 0.654
103. ; $e ^ { w } ( T , V )$ ; confidence 0.653
104. ; $\Delta ( x , y ) = \{ \delta _ { 0 } ( x , y ) , \ldots , \delta _ { m - 1 } ( x , y ) \}$ ; confidence 0.653
105. ; $q _ { A } : A \rightarrow T M$ ; confidence 0.653
106. ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . ) : \mathcal F \rightarrow \mathcal X .$ ; confidence 0.653
107. ; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \widetilde { M } )$ ; confidence 0.653
108. ; $w \rightarrow \sigma = s + i t = e ^ { - ( w - \phi _ { 0 } ) \pi }$ ; confidence 0.653
109. ; $P _ { 0 } ^ { ( 1 ) } = P _ { 0 } \otimes I \otimes \ldots$ ; confidence 0.653
110. ; $\sum _ { i } f _ { i } h _ { i }$ ; confidence 0.653
111. ; $\{ E _ { n + 1} \}$ ; confidence 0.653
112. ; $C ^ { \infty } ( \widetilde { M } )$ ; confidence 0.653
113. ; $q ( x ) = \sum _ { n = 1 } ^ { \infty } f ( x - x _ { n } )$ ; confidence 0.653
114. ; $\forall 1 \leq i \leq r : R _ { i } \subseteq M ^ { 2 } \vee R _ { i } \bigcap M ^ { 2 } = \emptyset$ ; confidence 0.653
115. ; $( \widetilde { N } , \widetilde{g} )$ ; confidence 0.653
116. ; $e _ { 0 } \equiv 1$ ; confidence 0.653
117. ; $= ( \Omega _ { + } - 1 ) g _ { 0 } P _ { + } \psi ( t ) + ( \Omega _ { + } - 1 ) g _ { 0 } P _ { - } \psi ( t ).$ ; confidence 0.653
118. ; $g ^ { - 1 } ( \theta \otimes \varphi ) = \langle \theta , \gamma ^ { - 1 } ( \varphi ) \rangle \in \mathcal R $ ; confidence 0.653
119. ; $M _ { 1 } ( k ) = \operatorname { min } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.653
120. ; $n ( t ) = N ( t ) - N_ {*}$ ; confidence 0.653
121. ; $A a$ ; confidence 0.653
122. ; $a \in [ - 1,1 ]$ ; confidence 0.653
123. ; $v \pm 1$ ; confidence 0.653
124. ; $E \cap M = \operatorname{Iso}$ ; confidence 0.653
125. ; $\{ K ( a , b ) \} _ { \operatorname{span} }$ ; confidence 0.653
126. ; $F _ { n } ( x ; \lambda ) = 0$ ; confidence 0.653
127. ; $Q \in \operatorname{ca} ( \Omega , \mathcal{F} )$ ; confidence 0.653
128. ; $\langle g x , y \rangle = \left\langle x , g ^ { T } y \right\rangle , \quad \forall g \in G,$ ; confidence 0.652
129. ; $r \rightarrow \infty , \frac { x } { r } = \alpha ^ { \prime },$ ; confidence 0.652
130. ; $\alpha _ { k }$ ; confidence 0.652
131. ; $\pi ( T )$ ; confidence 0.652
132. ; $\pi _ { 1 } ( K ) \rightarrow \pi _ { 1 } ( L )$ ; confidence 0.652
133. ; $G ( \mathfrak { q } ) = \oplus _ { n \geq 0} \mathfrak { q } ^ { n } / \mathfrak { q } ^ { n + 1 }$ ; confidence 0.652
134. ; $C _ { 1234 }$ ; confidence 0.652
135. ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} = m$ ; confidence 0.652
136. ; $Z \mathcal C $ ; confidence 0.652
137. ; $\varphi H G$ ; confidence 0.652
138. ; $( Z f ) ( t + 1 , w ) = e ^ { 2 \pi i w } ( Z f ) ( t , w ).$ ; confidence 0.652
139. ; $\varphi _ { 0 } : U \rightarrow V$ ; confidence 0.652
140. ; $E _ { i } \xi : = e _ { i } \xi$ ; confidence 0.652
141. ; $L ( s , E _ { 15 } )$ ; confidence 0.651
142. ; $t _ { 1 } , \ldots , t _ { p }$ ; confidence 0.651
143. ; $\mathbf E$ ; confidence 0.651
144. ; $C ^ { 2 } \times I$ ; confidence 0.651
145. ; $f : S \rightarrow S$ ; confidence 0.651
146. ; $N_ 0 $ ; confidence 0.651
147. ; $\operatorname{Fun}( G )$ ; confidence 0.651
148. ; $P \rightarrow \operatorname { PrSu } ( P )$ ; confidence 0.651
149. ; $\circ $ ; confidence 0.651
150. ; $\phi ( . , \lambda ) + m _ { 0 } ( \lambda ) \theta ( . , \lambda ) \in L ^ { 2 } ( 0 , \infty ),$ ; confidence 0.651
151. ; $J \dot{U} ( t ) = i H ( t ) U ( t )$ ; confidence 0.651
152. ; $\operatorname{B}$ ; confidence 0.651
153. ; $\partial D$ ; confidence 0.651
154. ; $n \leq 15$ ; confidence 0.651
155. ; $\mathsf E ( y _ { i } ) = \eta _ { i }$ ; confidence 0.651
156. ; $\int _ { \partial D } f z _ { 1 } ^ { m } d z _ { 1 } = 0 , \quad m = 0,1 , \dots ,$ ; confidence 0.651
157. ; $v \mapsto u ( v )$ ; confidence 0.651
158. ; $\phi : V \rightarrow \mathbf A ^ { r }$ ; confidence 0.651
159. ; $B _ { t }$ ; confidence 0.651
160. ; $\alpha _ { 1 } \ldots \alpha _ { t }$ ; confidence 0.651
161. ; $b \| c$ ; confidence 0.651
162. ; $\left\{ \square _ { \chi } u : \chi \in \widehat { G } \right\}$ ; confidence 0.651
163. ; $= \left\{ z \in \Delta : \operatorname { lim } _ { \omega \rightarrow a } [ \rho ( z , \omega ) - \rho ( 0 , \omega ) ] < \frac { 1 } { 2 } \operatorname { log } R \right\}.$ ; confidence 0.651
164. ; $( \Omega , \mathcal F , \mathsf P )$ ; confidence 0.650
165. ; $\operatorname{I}$ ; confidence 0.650
166. ; $k = 0,1 , \ldots$ ; confidence 0.650
167. ; $0 < \int _ { a } ^ { b } h ( x ) d x < \infty$ ; confidence 0.650
168. ; $p _ { m } ( x )$ ; confidence 0.650
169. ; $\mathsf{CA} _ { \omega }$ ; confidence 0.650
170. ; $s , t \in T$ ; confidence 0.650
171. ; $\theta _ { n }$ ; confidence 0.650
172. ; $a ( y_j )$ ; confidence 0.650
173. ; $l \neq \text { char } k$ ; confidence 0.650
174. ; $a \square b ^ { * } : E \rightarrow E$ ; confidence 0.650
175. ; $M _ { m \times n } ( K )$ ; confidence 0.650
176. ; $E = \{ z \in \mathbf C ^ { n } : \rho ( z ) < 0 \}$ ; confidence 0.650
177. ; $\operatorname{BS} ( 2,3 ) = \langle a , b | a ^ { - 1 } b ^ { 2 } a = b ^ { 3 } \rangle$ ; confidence 0.650
178. ; $\Gamma = \operatorname { Gal } ( k _ { \chi , \infty } / k _ { \chi } ) \cong \operatorname { Gal } ( k _ { \chi } ( \mu _ { p } \infty ) / k _ { \chi } ( \mu _ { p } ) )$ ; confidence 0.650
179. ; $G = \operatorname{GL} _ { n } ( \mathbf{F} _ { q } )$ ; confidence 0.650
180. ; $B _ { 2 }$ ; confidence 0.650
181. ; $\operatorname{SL} ( 2 , \mathbf R )$ ; confidence 0.650
182. ; $\mathfrak { g } \ni X , Y \mapsto \{ j X , j Y \} - j ( [ X , Y ] )$ ; confidence 0.650
183. ; $x \in \mathbf R ^ { 2 }$ ; confidence 0.650
184. ; $\sigma t $ ; confidence 0.650
185. ; $\{ P _ { n , \theta _ { n }} \}$ ; confidence 0.650
186. ; $r = t$ ; confidence 0.650
187. ; $\mathbf R _ { d}$ ; confidence 0.649
188. ; $( A A , a a )$ ; confidence 0.649
189. ; $N _ { i k }$ ; confidence 0.649
190. ; $K _ { S } ( w , z )$ ; confidence 0.649
191. ; $\operatorname{Wh} \pi _ { 1 } T ^ { 4 } = 0$ ; confidence 0.649
192. ; $K _ { 2 n - 2 } ( \mathbf Q )$ ; confidence 0.649
193. ; $n = 0,1 , \ldots$ ; confidence 0.649
194. ; $u ( x , 0 ) = u_ 0 ( x )$ ; confidence 0.649
195. ; $T \ni m$ ; confidence 0.649
196. ; $a _ { i } + a _ { i + 1 } = a _ { i + 2 }$ ; confidence 0.649
197. ; $| \mathcal F | = \left( \begin{array} { l } { x } \\ { k } \end{array} \right)$ ; confidence 0.649
198. ; $\overline { \overline { A } } = \overline { A }$ ; confidence 0.649
199. ; $\Lambda \in \mathfrak { h } ^ { * }$ ; confidence 0.649
200. ; $f _{( k , n )} \sim A k ^ { - ( 1 + q ) }$ ; confidence 0.649
201. ; $O ^ { \sim } ( n \operatorname { log } q )$ ; confidence 0.649
202. ; $x = [ ( \nu _ { 1 } - 2 ) / \nu _ { 1 } ] . [ \nu _ { 2 } / ( \nu _ { 2 } + 2 ) ]$ ; confidence 0.649
203. ; $\overset{\rightharpoonup} { e }$ ; confidence 0.649
204. ; $q_ 1 + \ldots + q_ m > 0$ ; confidence 0.649
205. ; $L ( \mu , \Sigma | Y _ { \operatorname{aug} } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu , q _ { i } ) f ( q _ { i } | \nu )$ ; confidence 0.649
206. ; $a ( x , \xi , h )$ ; confidence 0.649
207. ; $p \in \mathbf R _ { + } : = [ 0 , \infty )$ ; confidence 0.649
208. ; $g = n \frac { \hbar } { 2 e } , \quad n = 0 , \pm 1 , \pm 2 , \ldots .$ ; confidence 0.649
209. ; $\partial _ { r } ( r J ^ { - 1 } \partial _ { r } J ) + \partial _ { z } ( r J ^ { - 1 } \partial _ { z } J ) = 0,$ ; confidence 0.648
210. ; $y _ { \lambda } = \sum _ { \pi \in C ( t ) } \operatorname { sg } ( \pi ) \pi ,$ ; confidence 0.648
211. ; $R ^ { n }$ ; confidence 0.648
212. ; $\theta ( z ) = b ( z ) . s ( z )$ ; confidence 0.648
213. ; $F = ( 2 \pi \hbar ) ^ { - 6 N } \int _ { \mathbf R ^ { 3 N } \times \mathbf R ^ { 3 N } } e ^ { i ( \sigma .X + r. P ) / \hbar } \phi ( \sigma , \tau ) d \sigma d \tau$ ; confidence 0.648
214. ; $C _ { l } = \left( \frac { u _ { i } v _ { j } ^ { * } } { f _ { i } - a _ { j } ^ { * } } \right) , u _ { i } , v _ { i } \in \mathcal C ^ { 1 \times r }.$ ; confidence 0.648
215. ; $e ^ { i \mathbf k . \mathbf x }$ ; confidence 0.648
216. ; $H _ { + } ^ { - 1 } = \left( I - \frac { s y ^ { T } } { y ^ { T } s } \right) H _ { c } ^ { - 1 } \left( I - \frac { y s ^ { T } } { y ^ { T } s } \right) + \frac { s s ^ { T } } { y ^ { T } s }.$ ; confidence 0.648
217. ; $x \in X$ ; confidence 0.648
218. ; $X = \sum _ { A \in \mathcal S } I _ { A }$ ; confidence 0.648
219. ; $U \in v\operatorname{SGL} _ { 6 } ( \mathbf Z ( C _ { 6 } \times C _ { 6 } ) )$ ; confidence 0.648
220. ; $q_Q ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j },$ ; confidence 0.648
221. ; $a \in S ( m , G )$ ; confidence 0.648
222. ; $C \equiv 0$ ; confidence 0.648
223. ; $\| S _ { N } \| / N ^ { ( n - 1 ) / 2 }$ ; confidence 0.648
224. ; $( 1 + a ^ { 2 } ) \frac { d \tau } { \tau } = ( p _ { 3 } ( \xi , \tau ) - a i ) \frac { d \xi } { \xi },$ ; confidence 0.647
225. ; $0.2$ ; confidence 0.647
226. ; $\epsilon_{i + 1}$ ; confidence 0.647
227. ; $z _ { \mathcal D } : B ^ { m } ( X ) \rightarrow H _ { \mathcal M } ^ { 2 m + 1 } ( X_{ / \mathbf R} , \mathbf R ( m + 1 ) )$ ; confidence 0.647
228. ; $\widehat { m } = X$ ; confidence 0.647
229. ; $W \subset Y$ ; confidence 0.647
230. ; $\mathsf E _ { \theta } ( S _ { N } ) = \mathsf P _ { \theta } ( S _ { N } = 1 ) = 1 - \mathsf P _ { \theta } ( S _ { n } = 0 ) = 1 - ( 1 - \theta ) ^ { n }$ ; confidence 0.647
231. ; $( \exists x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) \text { and } ( \forall x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x ( \neg \varphi ) } \end{array} \right),$ ; confidence 0.647
232. ; $M _ { m \times n } ( \widetilde{ K } )$ ; confidence 0.646
233. ; $U _ { 0 } ^ { n } = U _ { J } ^ { n } = 0 , \quad 1 \leq n \leq N,$ ; confidence 0.646
234. ; $V = k 1 \oplus \mathfrak g \subset U ( \mathfrak g )$ ; confidence 0.646
235. ; $\sum _ { j = 1 } ^ { t } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.646
236. ; $\operatorname{Ad} : B \otimes B \rightarrow B$ ; confidence 0.646
237. ; $E = E ^ { * * }$ ; confidence 0.646
238. ; $P _ { A }$ ; confidence 0.646
239. ; $( . | . )$ ; confidence 0.646
240. ; $\sum ^ { \infty } Z$ ; confidence 0.646
241. ; $m \geq n + 1$ ; confidence 0.646
242. ; $r , \theta , \phi$ ; confidence 0.646
243. ; $\operatorname{Eis} ( \omega , 0 )$ ; confidence 0.646
244. ; $x \in V ( M ^ { \prime } )$ ; confidence 0.646
245. ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { 2 m } )$ ; confidence 0.646
246. ; $F ( x ) : = \sum _ { j = 1 } ^ { J } s _ { j } e ^ { - k _ { j } x } + \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } [ 1 - S ( k ) ] e ^ { i k x } d k.$ ; confidence 0.646
247. ; $B ( 0,1 ) \subseteq \mathbf C$ ; confidence 0.646
248. ; $\square ^ { \prime \prime } \Gamma _ { r k } ^ { t } = \{ \square _ { r k } ^ { t } \} - \frac { 1 } { 2 } g ^ { t s } ( \gamma _ { k } m _ { r s } + \gamma _ { r } m _ { s k } - \gamma _ { s } m _ { r k } ),$ ; confidence 0.646
249. ; $S _ { B } ( f ; x ) = \sum _ { k \in B } \widehat { f } ( k ) e ^ { i k x }.$ ; confidence 0.646
250. ; $\| u \| _ { p , m , T } = \sum _ { | \alpha | \leq m } \| D ^ { \alpha } u \| _ { p , T },$ ; confidence 0.645
251. ; $( T - \lambda l ) ^ { \nu ( \lambda ) } X$ ; confidence 0.645
252. ; $i , j \in \mathbf Z _ { + },$ ; confidence 0.645
253. ; $k \in R ^ { \prime }$ ; confidence 0.645
254. ; $\mathbf x = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.645
255. ; $x _ { n } \nearrow x _ { 0 }$ ; confidence 0.645
256. ; $\xi = ( \xi _ { 1 } , \ldots , \xi _ { m } ) \in \mathbf R ^ { m }$ ; confidence 0.645
257. ; $L^{1/2}$ ; confidence 0.645
258. ; $1 \leq s < s _ { 0 }$ ; confidence 0.645
259. ; $A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { k ^ { 2 } V } { 4 \pi } ( 1 + \beta _ { p q } \alpha _ { q } \alpha _ { p } ^ { \prime } ) \text { if } \Gamma u = u _ { N } , k a \ll 1,$ ; confidence 0.645
260. ; $W ( q ^ { r } p ^ { s } ) = ( Q ^ { r } P ^ { s } )_S $ ; confidence 0.645
261. ; $g ( S ) \cap S \neq \emptyset$ ; confidence 0.645
262. ; $\theta _ { X } : ( T V , d ) \rightarrow C_{*} \Omega X$ ; confidence 0.645
263. ; $G _ { n } ( . )$ ; confidence 0.645
264. ; $k = R _ { 0 }$ ; confidence 0.645
265. ; $\left[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) \right] : =$ ; confidence 0.645
266. ; $\mu \in \mathfrak { h } ^ { * }$ ; confidence 0.645
267. ; $f ( x , t ) = \frac { 2 } { \omega _ { n } } \int _ { \mathbf{R} ^ { n - 1 } } \frac { t f ( y , 0 ) } { ( | x - y | ^ { 2 } + t ^ { 2 } ) ^ { n / 2 } } d y,$ ; confidence 0.645
268. ; $\kappa = 0$ ; confidence 0.645
269. ; $\operatorname { Re } ( s ) > 1 + i / 2$ ; confidence 0.645
270. ; $d S = Q d E$ ; confidence 0.645
271. ; $\square ( E , \mathbf Q )$ ; confidence 0.645
272. ; $S ( t ) = e ^ { - t A } = \sum _ { m = 0 } ^ { \infty } \frac { ( - t A ) ^ { m } } { m ! },$ ; confidence 0.645
273. ; $i = 1 , \ldots , d$ ; confidence 0.645
274. ; $0 \neq q \in C$ ; confidence 0.644
275. ; $\pi _ { 1 } = \mathbf Z _ { 5 }$ ; confidence 0.644
276. ; $\mathcal A _ { \epsilon }$ ; confidence 0.644
277. ; $\mathbf{ p} ( n ) = a ( p ^ { n } )$ ; confidence 0.644
278. ; $a.b ^ { s }$ ; confidence 0.644
279. ; $i = 1 , \dots , r - 1$ ; confidence 0.644
280. ; $C ^ { \infty _ { 0 } } ( \Omega )$ ; confidence 0.644
281. ; $:= \frac { 3 } { 5 } \gamma \int _ { \mathbf R ^ { 3 } } \rho ( x ) ^ { 5 / 3 } d x - \int _ { \mathbf R ^ { 3 } } V ( x ) \rho ( x ) d x +$ ; confidence 0.644
282. ; $( P \times \mathfrak g ) / G$ ; confidence 0.644
283. ; $\sigma ( \mathcal A ) = \sigma _ { \operatorname{Bloch} } = \bigcup _ { m = 1 } ^ { \infty } \left[ \operatorname { min } _ { \eta \in Y ^ { \prime } } \lambda _ { m } ( \eta ) , \operatorname { max } _ { \eta \in Y ^ { \prime } } \lambda _ { m } ( \eta ) \right].$ ; confidence 0.644
284. ; $\mathfrak h $ ; confidence 0.644
285. ; $\mathbf R _ { + } ^ { N } = \{ t = ( t _ { 1 } , \dots , t _ { N } ) : t _ { i } \geq 0 \}$ ; confidence 0.644
286. ; $( a _ { k } ) _ { k \geq 0}$ ; confidence 0.644
287. ; $B ( F )$ ; confidence 0.644
288. ; $\operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ) = \operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \widetilde { \gamma } ).$ ; confidence 0.644
289. ; $\mathsf P ( p _ { x } , p _ { y } , p _ { z } ) d p _ { x } d p _ { y } d p _ { z }$ ; confidence 0.644
290. ; $\mathbf Z [ x ]$ ; confidence 0.644
291. ; $1/2$ ; confidence 0.644
292. ; $W _ { 2 } ^ { s } ( \mathbf R _ { x } ) = H ^ { s } ( \mathbf R _ { x } )$ ; confidence 0.644
293. ; $C_{ * } ( M )$ ; confidence 0.644
294. ; $X ^ { \prime \prime }$ ; confidence 0.643
295. ; $\mathsf E ( \mathbf Z _ { 1 } ) = \Theta$ ; confidence 0.643
296. ; $D ( \mathcal{A} ) = \left\{ u \in [ H ^ { 1 } ( \Omega ] ^ { p } : u ( x ) \in P ( x ) \text { a.e. on } \partial \Omega \right\}.$ ; confidence 0.643
297. ; $\partial _ { a } A = 0 \text { and } \partial \overline { A } = ( 1 / \kappa ) A \mu _ { a } ^ { 0 }.$ ; confidence 0.643
298. ; $\Delta t ^ { n }$ ; confidence 0.643
299. ; $K = \mathbf Z$ ; confidence 0.643
300. ; $s_i$ ; confidence 0.643
Maximilian Janisch/latexlist/latex/NoNroff/49. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/49&oldid=44537