Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/51"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 51 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013047.png ; $\tau _ { - i } = 0$ ; confidence 0.886
+
1. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026032.png ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130219.png ; $\lambda \in T$ ; confidence 0.998
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280132.png ; $M ^ { U } ( E ) = P ( E )\cal  X$ ; confidence 1.000
  
3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140104.png ; $\phi \in C ( T )$ ; confidence 0.969
+
3. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057500/l05750023.png ; ${\bf R} _ { x } ^ { n }$ ; confidence 1.000
  
4. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014040.png ; $T _ { \phi } f = g$ ; confidence 0.999
+
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210134.png ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w . \lambda )$ ; confidence 1.000
  
5. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015062.png ; $\xi \in A _ { 0 }$ ; confidence 0.990
+
5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024080.png ; $H ^ { 2 } ( {\bf Z} [ 1 / p ] ; {\bf Z} _ { p } ( n ) )$ ; confidence 1.000
  
6. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015076.png ; $\Delta ^ { i t }$ ; confidence 0.995
+
6. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940173.png ; $P _ { n + 1}$ ; confidence 1.000
  
7. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356048.png ; $\lambda f ( x )$ ; confidence 0.898
+
7. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021014.png ; $f = ( f _ { b } ) _ { b \in B }$ ; confidence 0.625
  
8. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077540/r0775408.png ; $[ 0 , + \infty ]$ ; confidence 1.000
+
8. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008083.png ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625
  
9. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408016.png ; $A , B \subset X$ ; confidence 0.998
+
9. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008022.png ; $V _ { n } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { n } ^ { m } ( r ),$ ; confidence 1.000
  
10. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110350/b11035014.png ; $\phi _ { y } ( x )$ ; confidence 0.302
+
10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028031.png ; $N _ { \widetilde{A}\mathbf{x} } ( \widetilde { B } ) \geq h ^ { N }$ ; confidence 1.000
  
11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021024.png ; $( w _ { i } , R ) = 0$ ; confidence 0.999
+
11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028013.png ; $\mu _ { B } ( A {\bf x} )$ ; confidence 1.000
  
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020077.png ; $m \in [ 1 , n - 1 ]$ ; confidence 0.999
+
12. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049045.png ; $( p _ { 0 } < \ldots < p _ { h } )$ ; confidence 0.625
  
13. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721026.png ; $\phi _ { j } ( x )$ ; confidence 0.830
+
13. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005013.png ; $1 = e _ { 1 } + \ldots + e _ { k }$ ; confidence 0.625
  
14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020024.png ; $0 \leq d \leq 3$ ; confidence 0.995
+
14. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014047.png ; $\alpha \pi$ ; confidence 0.625
  
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020020.png ; $\psi ( k , n ) > 0$ ; confidence 0.916
+
15. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001034.png ; $D_{f , 2}$ ; confidence 1.000
  
16. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u1300209.png ; $\| f \| _ { 2 } = 1$ ; confidence 0.933
+
16. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060103.png ; $\{ \varphi_+ ( k ) , \varphi_- ( k ) \}$ ; confidence 1.000
  
17. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130080/v13008025.png ; $Cl ( f , \zeta )$ ; confidence 0.805
+
17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030065.png ; $\mathcal{B} \rtimes _ { \alpha } \bf Z$ ; confidence 1.000
  
18. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v09604020.png ; $s ( r ) \equiv r$ ; confidence 0.999
+
18. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050182.png ; $= [ \sigma _ {  \operatorname{Te} } ( A , {\cal H} ) \times \sigma _ {  \operatorname{T} } ( B , {\cal H} ) ] \bigcup [ \sigma _ {  \operatorname{T} } ( A , {\cal H} ) \times \sigma _ {  \operatorname{Te} } ( B , {\cal H} ) ].$ ; confidence 1.000
  
19. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007058.png ; $\theta ( 0 ) = 0$ ; confidence 1.000
+
19. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170189.png ; $\operatorname{Wh} ^ { * } ( \pi ) \neq \{ 0 \}$ ; confidence 1.000
  
20. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004048.png ; $\chi _ { T } ( G )$ ; confidence 0.974
+
20. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003052.png ; $v = w$ ; confidence 0.625
  
21. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004071.png ; $\omega ( G ) + 1$ ; confidence 0.998
+
21. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230115.png ; $\lambda ( T T ^ { \prime } ) = \operatorname { diag } ( \tau _ { 1 } , \dots , \tau _ { 1 } )$ ; confidence 0.625
  
22. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011048.png ; $d \alpha j / d t$ ; confidence 0.716
+
22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004058.png ; $D _ { s } f ( t ) = f ( t / s )$ ; confidence 0.625
  
23. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690031.png ; $P ^ { \prime } H$ ; confidence 0.805
+
23. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004052.png ; $\overset{\rightharpoonup} { x } . \overset{\rightharpoonup} { v } < 0$ ; confidence 1.000
  
24. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690084.png ; $0 \leq T \leq S$ ; confidence 0.954
+
24. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c025650116.png ; $E \subset {\bf R} ^ { n }$ ; confidence 1.000
  
25. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900124.png ; $P _ { 1 } \in A$ ; confidence 0.996
+
25. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009035.png ; $b _ { N - 1 } = 2 N a _ { N }$ ; confidence 0.624
  
26. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f0384702.png ; $0 \leq t \leq T$ ; confidence 0.741
+
26. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017079.png ; $A$ ; confidence 1.000
  
27. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023360/c02336052.png ; $\hat { U } _ { t }$ ; confidence 0.536
+
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t1201406.png ; $( \gamma _ { j - k } ) _ { j , k \geq 0 }$ ; confidence 0.624
  
28. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006053.png ; $B _ { m } - B _ { N }$ ; confidence 0.207
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023011.png ; $M _ { n+ 1} / M _ { n }$ ; confidence 1.000
  
29. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006044.png ; $B _ { y } \nmid n$ ; confidence 0.294
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049047.png ; $\{ m _ { n } \}$ ; confidence 1.000
  
30. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759015.png ; $D \in W C ( A , k )$ ; confidence 0.334
+
30. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290210.png ; $i \neq d$ ; confidence 1.000
  
31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005033.png ; $N \nmid N ^ { 2 }$ ; confidence 0.267
+
31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013015.png ; $\sigma _ { \text{ess} } ( T ) = \sigma _ { \text{ess} } ( T + S ).$ ; confidence 1.000
  
32. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300508.png ; $K \subseteq G$ ; confidence 0.966
+
32. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520383.png ; $N = N _ { 1 } \cup \ldots \cup N _ { n }$ ; confidence 0.624
  
33. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157032.png ; $( x , \dot { x } )$ ; confidence 0.895
+
33. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201809.png ; $R ^ { * }$ ; confidence 1.000
  
34. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007083.png ; $\xi \in R ^ { k }$ ; confidence 0.978
+
34. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005014.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( T - z I ) ^ { - 1 } K J,$ ; confidence 0.624
  
35. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007068.png ; $a , b \in C ^ { x }$ ; confidence 0.164
+
35. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001048.png ; $10_{101}$ ; confidence 1.000
  
36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007014.png ; $Q _ { j } = X _ { j }$ ; confidence 0.924
+
36. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301007.png ; ${\cal L} _ {\bf C } ^ { p } ( G )$ ; confidence 1.000
  
37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007021.png ; $[ A , B ] = A B - B A$ ; confidence 0.999
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200208.png ; $| S ^ { n - 1 } |$ ; confidence 1.000
  
38. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007031.png ; $\xi \in C ^ { k }$ ; confidence 0.820
+
38. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010414.png ; $J ^ { * }$ ; confidence 0.624
  
39. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w1200808.png ; $\Omega ( q , p )$ ; confidence 1.000
+
39. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520330.png ; $\{ f _ { i _ { 1 } } , \dots , f _ { i _ { n } } \}$ ; confidence 0.624
  
40. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008039.png ; $a , b \in R ^ { n }$ ; confidence 0.532
+
40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015089.png ; $\operatorname { dim } D _ { s } ^ { \perp } = 2 ^ { n } - n - 1$ ; confidence 0.624
  
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008055.png ; $d \mu _ { X } ( u )$ ; confidence 0.929
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202309.png ; $z _ { 1 } ^ { m } d z _ { 1 }$ ; confidence 0.624
  
42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009093.png ; $Y _ { \lambda }$ ; confidence 0.734
+
42. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023033.png ; $R = {\bf R} _ { \geq 0 } v \subset \overline { N E } ( X / S )$ ; confidence 1.000
  
43. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009071.png ; $t ^ { \lambda }$ ; confidence 0.935
+
43. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060810/l0608104.png ; $m = 0,1 , \ldots$ ; confidence 0.623
  
44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090206.png ; $\mu - \lambda$ ; confidence 1.000
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007030.png ; $c = 7$ ; confidence 0.623
  
45. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090104.png ; $y _ { \lambda }$ ; confidence 0.545
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180140.png ; $\leq 2$ ; confidence 1.000
  
46. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090359.png ; $( V ) = \Lambda$ ; confidence 0.361
+
46. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n1200605.png ; $F M \rightarrow M$ ; confidence 0.623
  
47. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540031.png ; $G = SL _ { n } ( K )$ ; confidence 0.104
+
47. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049055.png ; $F _ { m n }$ ; confidence 0.623
  
48. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009010.png ; $G = GL _ { n } ( K )$ ; confidence 0.337
+
48. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003039.png ; $Z [ f ( t + m ) ] ( t , w ) = e ^ { 2 \pi i m w  } Z [ f ] ( t , w ); $ ; confidence 1.000
  
49. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090273.png ; $\varepsilon$ ; confidence 0.804
+
49. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011025.png ; $\mu _ { n } = \sum _ { i = 1 } ^ { N } 1 _ { \{ f _ { i n } \geq 1 \} }$ ; confidence 0.623
  
50. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090137.png ; $Z \Lambda ( n )$ ; confidence 0.389
+
50. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036440/e03644017.png ; $| x |$ ; confidence 0.623
  
51. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110142.png ; $\iota = 2 \pi i$ ; confidence 0.997
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980112.png ; $k = 1 , \dots , n$ ; confidence 0.623
  
52. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110102.png ; $\chi = \pi ( M )$ ; confidence 0.967
+
52. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002064.png ; $d _ { k } = \operatorname{rd} _ { Y } M _ { k }$ ; confidence 1.000
  
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110174.png ; $a _ { n } = b _ { n }$ ; confidence 0.302
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059029.png ; $H _ { k } ^ { ( m ) } > 0 , m = 0 , \pm 1 , \pm 2 , \ldots , k = 1,2 ,\dots .$ ; confidence 1.000
  
54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110173.png ; $a = J ^ { - 1 / 2 } b$ ; confidence 0.587
+
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203604.png ; $k _ { B }$ ; confidence 0.623
  
55. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110242.png ; $S ( H ^ { - 2 } , G )$ ; confidence 0.986
+
55. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011088.png ; $\operatorname{Cd} \approx \frac { l } { b } , f \approx \frac { l } { U } , \operatorname{Cd} \approx \frac { f U } { d } , \operatorname{Cd} \approx \frac { 1 } { \operatorname{St} } , $ ; confidence 1.000
  
56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011017.png ; $\tilde { u } = u$ ; confidence 0.335
+
56. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002074.png ; $\mathsf{P} ( m , F )$ ; confidence 1.000
  
57. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011094.png ; $T \in GL ( n , R )$ ; confidence 0.631
+
57. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230184.png ; $E ^ { k + 1 }$ ; confidence 0.623
  
58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110178.png ; $a ^ { w } = O p ( b )$ ; confidence 0.451
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019062.png ; $B ^ { n - k }$ ; confidence 1.000
  
59. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013017.png ; $S ( T + i ) ^ { - 1 }$ ; confidence 0.961
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024076.png ; $m = 1 + I + J + I J$ ; confidence 0.623
  
60. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014036.png ; $S \square T$ ; confidence 0.898
+
60. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009020.png ; $H ^ { 1 } ( {\bf R} _ { x } )$ ; confidence 1.000
  
61. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300804.png ; $X = \epsilon x$ ; confidence 0.972
+
61. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012040.png ; $g = ( g _ { 1 } , \dots , g _ { N } )$ ; confidence 0.622
  
62. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080156.png ; $\mu _ { c } ^ { 0 }$ ; confidence 0.317
+
62. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110175.png ; $\operatorname{WFA} f$ ; confidence 1.000
  
63. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300805.png ; $T = \epsilon t$ ; confidence 0.994
+
63. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014092.png ; $b _ { j } ^ { l } > 0$ ; confidence 0.622
  
64. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008038.png ; $Q \sim \infty$ ; confidence 0.992
+
64. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007010.png ; ${\bf p}_j$ ; confidence 1.000
  
65. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017034.png ; $G / \omega ( G )$ ; confidence 0.971
+
65. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840239.png ; $x \in {\cal D} ( p ( A ) )$ ; confidence 1.000
  
66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w1201704.png ; $\omega ( G ) = G$ ; confidence 0.996
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180300.png ; $R ( \nabla ) : \otimes ^ { r } {\cal E} \rightarrow \otimes ^ {r + 2 } {\cal E}, $ ; confidence 1.000
  
67. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w1300909.png ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189
+
67. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016047.png ; ${\cal M} _ { s }$ ; confidence 1.000
  
68. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w1301109.png ; $( X , F , \mu , T )$ ; confidence 0.998
+
68. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110126.png ; $F ( z ) = - \frac { 1 } { 2 \pi i } \int_\gamma \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$ ; confidence 1.000
  
69. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011023.png ; $( Y , B , \nu , S )$ ; confidence 0.847
+
69. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006032.png ; $s ^ { 2 = 4 \lambda } ( x , y ) p q$ ; confidence 0.622
  
70. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w1100601.png ; $B ( t , \omega )$ ; confidence 0.998
+
70. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110151.png ; $u = \alpha ^ { s }$ ; confidence 0.622
  
71. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012031.png ; $T _ { B \delta }$ ; confidence 0.622
+
71. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012031.png ; $T _ { \text{B} \delta }$ ; confidence 1.000
  
72. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065360/m06536024.png ; $j = 1 , \dots , k$ ; confidence 0.568
+
72. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003044.png ; $Z \left[ e ^ { 2 \pi i m t } f ( t + n ) \right] ( t , w ) = e ^ { 2 \pi i m t } e ^ { 2 \pi i n w } ( Z f ) ( t , w ).$ ; confidence 0.622
  
73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021055.png ; $B _ { m } = I _ { m }$ ; confidence 0.524
+
73. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010033.png ; $\bf M$ ; confidence 1.000
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021054.png ; $i = 1 , \dots , 8$ ; confidence 0.567
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a014310184.png ; $\Pi _ { 1 } ^ { 1 }$ ; confidence 0.621
  
75. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021047.png ; $( s , k , B _ { m } )$ ; confidence 0.885
+
75. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005059.png ; $U \rightarrow G _ { n } ( {\bf R} ^ { n } \times {\bf R} ^ { p } )$ ; confidence 1.000
  
76. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014012.png ; $r ( \pm 1 ) = 1 / 2$ ; confidence 0.995
+
76. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300503.png ; $f ( x ) = \sum _ { i = 1 } ^ { m } w _ { i } \| p _ { i } - x \| , x \in {\bf R} ^ { n },$ ; confidence 1.000
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017031.png ; $y _ { t } ^ { ( l ) }$ ; confidence 0.633
+
77. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027030.png ; $V _ { n , p } ( f , x ) = f ( x )$ ; confidence 1.000
  
78. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017027.png ; $z _ { t } ^ { ( i ) }$ ; confidence 0.896
+
78. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021940/c02194023.png ; $Q _ { n } ( x )$ ; confidence 0.621
  
79. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017028.png ; $x _ { t } ^ { ( i ) }$ ; confidence 0.670
+
79. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064015.png ; $E ( a )$ ; confidence 0.621
  
80. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001020.png ; $\square _ { k }$ ; confidence 0.588
+
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040036.png ; $g \times ^ { \varrho } {\bf f} \in G \times ^ { \varrho } F$ ; confidence 1.000
  
81. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003035.png ; $D _ { A } \phi = 0$ ; confidence 0.995
+
81. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300507.png ; $S \mathfrak { g }  ^ { * }$ ; confidence 0.621
  
82. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001040.png ; $x ( z ) z ^ { n - 1 }$ ; confidence 0.329
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200506.png ; $P : E \rightarrow \bf C$ ; confidence 1.000
  
83. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010028.png ; $x \subseteq y$ ; confidence 0.507
+
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017029.png ; ${\cal G} _ { \alpha }$ ; confidence 1.000
  
84. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010057.png ; $\cup \{ a , b \}$ ; confidence 0.996
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017038.png ; $\phi _ { t }$ ; confidence 0.621
  
85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010092.png ; $( \neg y \in y )$ ; confidence 0.977
+
85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018023.png ; $\mathsf{P} \{ \operatorname { sup } W ^ { ( N ) } ( t ) > u \}$ ; confidence 1.000
  
86. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002036.png ; $\tau _ { \rho }$ ; confidence 0.804
+
86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180150.png ; $X \otimes Y \in \otimes ^ { 2 } \cal E_{*}$ ; confidence 1.000
  
87. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001026.png ; $e _ { 2 } ^ { p } = 0$ ; confidence 0.743
+
87. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780157.png ; $\xi_r$ ; confidence 1.000
  
88. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002033.png ; $F _ { n n } F _ { n }$ ; confidence 0.332
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180192.png ; $V \subseteq {\sf C A}_\alpha$ ; confidence 1.000
  
89. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002032.png ; $m \geq n \geq 2$ ; confidence 0.999
+
89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220219.png ; ${\cal MM}_{\bf Z}$ ; confidence 1.000
  
90. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002016.png ; $n - F _ { n _ { 1 } }$ ; confidence 0.857
+
90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201708.png ; $\operatorname { ker }\delta _ { A } \subseteq \operatorname { ker } \delta _ { A ^*}$ ; confidence 1.000
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102407.png ; $j = 0 , \dots , n$ ; confidence 0.517
+
91. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002018.png ; $\{. , e , ^{- 1} , \vee , \wedge \}$ ; confidence 1.000
  
92. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008032.png ; $k , l \in N _ { 0 }$ ; confidence 0.757
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014050/a01405025.png ; $B _ { 1 }$ ; confidence 0.620
  
93. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110140.png ; $k = 0 , \dots , q$ ; confidence 0.532
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019012.png ; $r ^ { i } ( A ) * r ^ { j } ( B )$ ; confidence 1.000
  
94. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110101.png ; $E \mu _ { N } ( x )$ ; confidence 0.590
+
94. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007018.png ; $A _ { h } , A _ { k } , A _ { m }$ ; confidence 1.000
  
95. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d1100204.png ; $N \leq \infty$ ; confidence 0.730
+
95. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201201.png ; $K : = \int \frac { - \operatorname { ln } f ( . ) } { 1 + x ^ { 2 } } d x,$ ; confidence 1.000
  
96. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011091.png ; $( i + d ) \mu ( i )$ ; confidence 0.999
+
96. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110236.png ; $b \in S ( m _ { 2 } , G )$ ; confidence 0.620
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540069.png ; $0 \leq x \leq 1$ ; confidence 0.672
+
97. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009060.png ; $\mathsf{P} ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } \left( \frac { q } { p } \right) ,$ ; confidence 1.000
  
98. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011088.png ; $( i + c ) \mu ( i )$ ; confidence 0.997
+
98. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011017.png ; $\sigma ( z ) = e ^ { i \theta } z + a$ ; confidence 1.000
  
99. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011073.png ; $x \mu _ { x } ( x )$ ; confidence 0.496
+
99. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002082.png ; ${\bf Z} ^ { d }$ ; confidence 1.000
  
100. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z1301209.png ; $p ( \xi ) = \eta$ ; confidence 1.000
+
100. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300402.png ; $G = \operatorname{SL} ( 2 , \bf R )$ ; confidence 1.000
  
101. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013041.png ; $H ( r , \theta )$ ; confidence 0.999
+
101. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520160.png ; $( \lambda - a _ { i } ) ^ { n _ { i j } }$ ; confidence 0.620
  
102. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221039.png ; $U _ { \lambda }$ ; confidence 0.990
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026030.png ; $X = 0$ ; confidence 0.620
  
103. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110310/c11031012.png ; $X _ { \lambda }$ ; confidence 0.511
+
103. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020086.png ; $x \operatorname { exp } ( x + 1 ) = 1$ ; confidence 0.620
  
104. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906
+
104. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008012.png ; $\langle f , g \rangle = \int \int _ { D } f ( x , y ) \overline { g ( x , y ) } d x d y$ ; confidence 0.620
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240333.png ; $n \times p _ { 1 }$ ; confidence 0.620
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814
+
106. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578011.png ; $F _ { i } ( \tau ) = \int _ { 0 } ^ { \infty } \frac { \sqrt { 2 \tau \operatorname { sinh } \pi \tau } } { \pi } \frac { K _ { i \tau } } { \sqrt { x } } f _ { i } ( x ) d x.$ ; confidence 0.620
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240286.png ; $1 - \alpha$ ; confidence 0.993
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302401.png ; $\bf y = X \beta + e,$ ; confidence 1.000
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024048.png ; $s \times p$ ; confidence 0.642
+
108. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080146.png ; $G = \operatorname{GL} ( N ,\bf C )$ ; confidence 1.000
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
+
109. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006016.png ; $A \in T _ { x } M$ ; confidence 1.000
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711
+
110. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100102.png ; $\hat { K } = K$ ; confidence 0.620
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240142.png ; $m \times 1$ ; confidence 0.995
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240346.png ; $q \times p$ ; confidence 0.619
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240285.png ; $\psi \in L$ ; confidence 0.533
+
112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200191.png ; $\alpha _ { i } \in \Pi ^ { \text{im} }$ ; confidence 1.000
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795
+
113. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202207.png ; $\operatorname{id}: ( X , * ) \rightarrow ( X , * )$ ; confidence 1.000
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024046.png ; $m \times s$ ; confidence 0.983
+
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004064.png ; $f _ { i + 1 } ^ { n } = a u _ { i + 1 } ^ { n }$ ; confidence 0.619
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240423.png ; $q \times 1$ ; confidence 1.000
+
115. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002071.png ; $\pi _ { n } ( X , Y )$ ; confidence 0.619
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857
+
116. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180157.png ; $g ^ { - 1 } \in \mathsf{S} ^ { 2 } \cal E _{*}$ ; confidence 0.619
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240535.png ; $k ( X _ { 2 } ) = p$ ; confidence 0.797
+
117. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013029.png ; $= f ( N_{ * } ) + f ^ { \prime } ( N_{ * } ) n + \frac { f ^ { \prime \prime } ( N_{ * } ) } { 2 } n ^ { 2 } + \ldots,$ ; confidence 1.000
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240220.png ; $n \times n$ ; confidence 0.980
+
118. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006013.png ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right)$ ; confidence 1.000
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859
+
119. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025046.png ; $C ^ { \prime CA }$ ; confidence 1.000
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240365.png ; $( p \times p )$ ; confidence 0.958
+
120. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201903.png ; $f \in L _ { 2 } ( {\bf R} _ { + } ; x ^ { - 1 } )$ ; confidence 1.000
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240156.png ; $c ^ { \prime }$ ; confidence 0.970
+
121. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002050.png ; $A = \{ 0 , \dots , q - 1 \}$ ; confidence 0.619
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302401.png ; $y = X \beta + e$ ; confidence 0.620
+
122. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008069.png ; $= \sum _ { i = 0 } ^ { m } D _ { i , m - i } \Lambda ^ { i } M ^ { m - i } , D _ { i j } \in C ^ { n \times n },$ ; confidence 0.619
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240361.png ; $H : \Theta = 0$ ; confidence 0.991
+
123. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040133.png ; $P ( i , i \sqrt { 2 } ) = ( - \sqrt { 2 } ) ^ { \operatorname { com } ( L ) - 1 } ( - 1 ) ^ { \operatorname { Arf } ( L ) }$ ; confidence 0.618
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302405.png ; $( n \times m )$ ; confidence 0.870
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003036.png ; $V ^ { \sigma } ( y )$ ; confidence 0.618
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240356.png ; $E ( Z _ { 1 } ) = 0$ ; confidence 0.500
+
125. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020182.png ; $\overline { D } \square ^ { n + 1 } \subset E ^ { n + 1 }$ ; confidence 0.618
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240323.png ; $H : X _ { 3 } B = 0$ ; confidence 0.987
+
126. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192046.png ; $\alpha _ { i } = 1$ ; confidence 0.618
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240437.png ; $( p \times q )$ ; confidence 0.991
+
127. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001030.png ; $|.| _ { \infty }$ ; confidence 1.000
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024076.png ; $m = 1 + I + J + I J$ ; confidence 0.623
+
128. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080110.png ; $F ^ { \text{SW} } = \widetilde { F }$ ; confidence 0.618
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302409.png ; $( n \times 1 )$ ; confidence 0.995
+
129. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433704.png ; $h \rightarrow D f ( x_0 , h ),$ ; confidence 1.000
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302407.png ; $( m \times 1 )$ ; confidence 0.997
+
130. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180182.png ; $\tau _ { 2 } \Theta = - \Theta$ ; confidence 0.618
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310132.png ; $A ^ { \infty }$ ; confidence 0.988
+
131. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070151.png ; $u , v \in k ( C )$ ; confidence 0.618
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003018.png ; $[ 0 , \infty )$ ; confidence 1.000
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026012.png ; $\operatorname { lcm } ( 1 , \dots , n ) > 3 ^ { n }$ ; confidence 1.000
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200409.png ; $( 0 , \infty )$ ; confidence 1.000
+
133. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230119.png ; $\Delta = \gamma d x _ { 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.618
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040741.png ; $R ^ { \prime }$ ; confidence 0.873
+
134. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023071.png ; $H = {\bf R} ^ { n }$ ; confidence 1.000
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040382.png ; $F \in Fi _ { D }$ ; confidence 0.298
+
135. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007055.png ; $\operatorname{GL} _ { n } ( {\bf Q} A )$ ; confidence 1.000
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040711.png ; $X ^ { \omega }$ ; confidence 0.563
+
136. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013016.png ; $a _ { n } = 1$ ; confidence 1.000
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443
+
137. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004093.png ; $\operatorname{WF} _ { s } ( P ( x , D ) u ) \cap \Gamma = \emptyset$ ; confidence 1.000
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040479.png ; $C _ { \Gamma }$ ; confidence 0.670
+
138. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200171.png ; $A = \frac { 1 } { 6 n 16 ^ { n } } \left( \frac { 1 + \rho } { 2 } \right) ^ { m } \left( \frac { 1 - \rho } { 2 } \right) ^ { 2 n + k } \left| \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } \right| $ ; confidence 1.000
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033017.png ; $r ^ { \prime }$ ; confidence 0.660
+
139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210128.png ; $\Delta _ { n } ^ { * } ( \theta )$ ; confidence 1.000
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027036.png ; $\zeta_N ( s )$ ; confidence 1.000
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040723.png ; $P ^ { \prime }$ ; confidence 0.282
+
141. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021048.png ; $a _ { N / 2  - k}$ ; confidence 1.000
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004061.png ; $h ( \varphi )$ ; confidence 0.976
+
142. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020124.png ; $\phi \in \operatorname{VMO}$ ; confidence 1.000
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040181.png ; $\alpha \in G$ ; confidence 0.390
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053016.png ; $L ^ { \times }$ ; confidence 1.000
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005037.png ; $\rho ( A ( t ) )$ ; confidence 1.000
+
144. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014060.png ; $\operatorname{Aut}( B )$ ; confidence 1.000
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005024.png ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885
+
145. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007027.png ; ${\bf Z} G = {\bf Z} H$ ; confidence 1.000
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050134.png ; $( N \times N )$ ; confidence 0.905
+
146. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006021.png ; $\bf Z$ ; confidence 1.000
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200606.png ; $\alpha ; ( x )$ ; confidence 0.597
+
147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s1300203.png ; $\pi : U M \rightarrow M$ ; confidence 0.617
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070114.png ; $1 < p < \infty$ ; confidence 0.999
+
148. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047560/h04756024.png ; $U ^ { \prime }$ ; confidence 0.617
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006088.png ; $G _ { \Gamma }$ ; confidence 0.691
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201503.png ; $\operatorname{Ad} : G \rightarrow \operatorname{GL} (\frak g )$ ; confidence 1.000
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006057.png ; $K = F _ { q } ( x )$ ; confidence 0.537
+
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030042.png ; $\psi = \psi ( y ; \eta ) \not\equiv 0$ ; confidence 1.000
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008067.png ; $A ( t ) ^ { 1 / 2 }$ ; confidence 1.000
+
151. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010044.png ; $t ^ { 1 / d }$ ; confidence 0.617
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891
+
152. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007018.png ; ${ k } | > 1$ ; confidence 1.000
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070113.png ; $\alpha \in R$ ; confidence 0.795
+
153. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232069.png ; $c \in E$ ; confidence 0.617
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007073.png ; $n ^ { \prime }$ ; confidence 0.926
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006045.png ; $\left\| ( \lambda + A ( t _ { k } ) ) ^ { - 1 } \ldots ( \lambda + A ( t _ { 1 } ) ) ^ { - 1 } \right\| _ { L ( X ) } \leq \frac { M } { ( \lambda - \beta ) ^ { k } }$ ; confidence 0.617
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011018.png ; $A ( 1 , n ) = n + 2$ ; confidence 0.999
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016027.png ; $i f \in A$ ; confidence 0.617
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011016.png ; $A ( 0 , n ) = n + 1$ ; confidence 0.998
+
156. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002092.png ; $D _ { Y }$ ; confidence 0.617
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201201.png ; $( m \times n )$ ; confidence 0.983
+
157. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029066.png ; $f _ { L } ^ { \leftarrow } ( b ) = b \circ f.$ ; confidence 0.617
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a1101606.png ; $( n \times n )$ ; confidence 0.985
+
158. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009066.png ; $R _ { l } ( p ; k , n )$ ; confidence 0.617
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201205.png ; $A = ( a _ { i } j )$ ; confidence 0.531
+
159. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004029.png ; $f ( u ) = a u$ ; confidence 0.617
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201209.png ; $B = ( b _ { i j } )$ ; confidence 0.810
+
160. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550708.png ; $H ^ { p , q } ( M ) \cong H ^ { q , p } ( M ),$ ; confidence 0.617
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030024.png ; $\theta _ { X }$ ; confidence 0.524
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a1300904.png ; $k \leq d$ ; confidence 0.617
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030037.png ; $C ^ { 4 } P ^ { 3 }$ ; confidence 0.060
+
162. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014010.png ; $a _ { 1 } > a _ { 0 } + 2 \sqrt { a _ { 0 } }$ ; confidence 0.616
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013035.png ; $\theta _ { n }$ ; confidence 0.650
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013029.png ; $C _ { c } ^ { \infty } ( G )$ ; confidence 0.616
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013069.png ; $\theta ^ { x }$ ; confidence 0.718
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200205.png ; $L (. ; t ) = h (. ; t )  *  f ( . )$ ; confidence 1.000
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013053.png ; $\gamma _ { n }$ ; confidence 0.552
+
165. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003025.png ; ${\cal U} _ { q } ( \mathfrak { g } )$ ; confidence 1.000
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160120.png ; $j ^ { \prime }$ ; confidence 0.667
+
166. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008035.png ; $K _ { p } ( g \circ \lambda ) = K _ { \lambda ( p ) } ( g ) \circ \lambda$ ; confidence 1.000
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $W E = R . F . I$ ; confidence 0.845
+
167. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008043.png ; $T > T _ { c }$ ; confidence 0.616
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012029.png ; $A _ { \mu } ( s )$ ; confidence 0.996
+
168. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010158.png ; $T ^ { n }$ ; confidence 0.616
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018023.png ; $\lambda | > 1$ ; confidence 0.976
+
169. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025016.png ; $u _ { n  + 1 - k}$ ; confidence 1.000
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018020.png ; $\lambda | < 1$ ; confidence 0.662
+
170. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040125.png ; $\pi_T$ ; confidence 1.000
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018074.png ; $\Delta ^ { 2 }$ ; confidence 0.997
+
171. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011041.png ; $( m l + U t , \pm b / 2 )$ ; confidence 0.616
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014023.png ; $n = 1 , \infty$ ; confidence 0.522
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032030.png ; $\operatorname{Re} \lambda \leq 0$ ; confidence 1.000
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018094.png ; $Alg _ { 1 } ( L )$ ; confidence 0.285
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290193.png ; $R _ {\frak M }$ ; confidence 1.000
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018031.png ; $Chn _ { \ell }$ ; confidence 0.087
+
174. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049041.png ; $k = 0 , \ldots , r ( P ) - 1$ ; confidence 0.616
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018057.png ; $n \in \omega$ ; confidence 0.858
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.616
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022050.png ; $S _ { C } ( D ) = k$ ; confidence 0.758
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082068.png ; $\frak S$ ; confidence 1.000
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023034.png ; $z \in \Omega$ ; confidence 0.940
+
177. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005053.png ; $a , b \in \bf R$ ; confidence 1.000
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025027.png ; $L = D \oplus V$ ; confidence 0.992
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302804.png ; $a_0 , a _ { 1 } , \dots$ ; confidence 1.000
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024038.png ; $C ^ { \infty }$ ; confidence 0.868
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a1107003.png ; $\bf K$ ; confidence 1.000
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025098.png ; $k = ( n - 1 ) q + n$ ; confidence 0.992
+
180. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201307.png ; $N \equiv 0$ ; confidence 1.000
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110052.png ; $A ^ { \prime }$ ; confidence 0.991
+
181. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065026.png ; $ { c } _ { \mu } > - \infty$ ; confidence 1.000
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260110.png ; $s _ { i } \leq n$ ; confidence 0.870
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211041.png ; $X ^ { 2 } ( \widetilde { \theta } _ { n } ) = \operatorname { min } _ { \theta \in \Theta } X ^ { 2 } ( \theta ).$ ; confidence 1.000
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026042.png ; $m ^ { \nu ( c ) }$ ; confidence 0.834
+
183. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300802.png ; $\square _ { m } u = \left( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) \right) u,$ ; confidence 0.615
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026079.png ; $m ^ { c } A ^ { x }$ ; confidence 0.958
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040049.png ; $\xi = G \times ^ { \varrho } \bf C$ ; confidence 1.000
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028070.png ; $L _ { w } ( X , Y )$ ; confidence 0.636
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027068.png ; $h _ { p } = ( 2 , d ) _ { P } \cdot W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.615
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a1202906.png ; $F _ { \sigma }$ ; confidence 0.989
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040236.png ; $K ( x ) \approx L ( x ) = \{ \kappa _ { j } ( x ) \approx \lambda _ { j } ( x ) : j \in J \}$ ; confidence 0.615
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a1202907.png ; $G _ { \delta }$ ; confidence 0.333
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240450.png ; ${\cal H} _ { j }$ ; confidence 1.000
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029016.png ; $( M , \omega )$ ; confidence 0.997
+
188. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046980/h04698022.png ; $Q_\lambda$ ; confidence 1.000
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029010.png ; $b _ { 1 } ( Y ) > 0$ ; confidence 0.994
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160154.png ; $y_{it}$ ; confidence 1.000
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029046.png ; $( M , \Sigma )$ ; confidence 0.994
+
190. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f120190100.png ; $C _ { G } ( x ) \leq N$ ; confidence 0.615
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029080.png ; $\hat { f } = id$ ; confidence 0.289
+
191. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024082.png ; ${\frak sl} ( n )$ ; confidence 1.000
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011790/a01179018.png ; $T ^ { \prime }$ ; confidence 0.603
+
192. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007096.png ; $M ( G ( z , w ) ) = ( 2 \pi ) ^ { n } \delta _ { w }$ ; confidence 0.615
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501016.png ; $( B , \phi , g )$ ; confidence 0.999
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023059.png ; $q = ( q _ { 1 } , \dots , q _ { n } )$ ; confidence 0.615
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021076.png ; $( B , \delta )$ ; confidence 0.999
+
194. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120146.png ; $K _ { s } ( \overline { \sigma } )$ ; confidence 0.615
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021016.png ; $L ( \lambda )$ ; confidence 0.989
+
195. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009039.png ; $\mu _ { x } ^ { \Omega } = P _ { \Omega } ( x , \xi ) d \sigma ( \xi )$ ; confidence 0.615
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021049.png ; $\delta _ { n }$ ; confidence 0.289
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007074.png ; $\frac { n ^ { \prime } } { n } < 1 + C \frac { ( \operatorname { log } \operatorname { log } n ) ^ { 2 } } { \operatorname { log } n } , C = \text { const } > 0,$ ; confidence 0.614
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021065.png ; $M _ { \theta }$ ; confidence 0.961
+
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300907.png ; $T _ { N + 1 } / 2 ^ { N }$ ; confidence 0.614
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021019.png ; $\Delta ^ { + }$ ; confidence 0.961
+
198. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030162.png ; $K_0({\cal R}\otimes {\bf C}[\Gamma])$ ; confidence 1.000
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210111.png ; $( D , \delta )$ ; confidence 0.999
+
199. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064014.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { G ( a ) ^ { N } } = E ( a ),$ ; confidence 1.000
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210114.png ; $H ^ { i } ( a , M )$ ; confidence 0.513
+
200. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / \operatorname{SU} ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }.$ ; confidence 0.614
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066039.png ; $\| T _ { i t } \|$ ; confidence 0.909
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200199.png ; $S _ { \Lambda }$ ; confidence 0.614
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066023.png ; $L _ { p } ( R )$ ; confidence 0.962
+
202. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080202.png ; $\kappa \partial _ { s } F + H _ { s } \left( \frac { \delta F } { \delta u } , u , t \right) = 0.$ ; confidence 0.614
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022020.png ; $\epsilon > 0$ ; confidence 0.986
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020033.png ; $\hat { \mathfrak { g } } = \hat{\mathfrak { g } }( A )$ ; confidence 1.000
  
204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130180/b13018018.png ; $0 < R < \infty$ ; confidence 1.000
+
204. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005068.png ; $J ^ { r } ( V , W )$ ; confidence 1.000
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164099.png ; $V ^ { \prime }$ ; confidence 0.377
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011033.png ; $f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon }$ ; confidence 0.614
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002017.png ; $\alpha _ { y }$ ; confidence 0.298
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005013.png ; $m \geq 5$ ; confidence 1.000
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200207.png ; $\Gamma _ { y }$ ; confidence 0.765
+
207. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302507.png ; $y ( x _ { i } ) = c _ { i } , \quad i = 1 , \dots , n ; \quad x _ { i } \in [ a , b ].$ ; confidence 0.614
  
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001056.png ; $U _ { S } \cap V$ ; confidence 0.682
+
208. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001015.png ; $J _ { f } ^ { r }$ ; confidence 1.000
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001063.png ; $U \cap V _ { i }$ ; confidence 0.968
+
209. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017090.png ; $a b = b a$ ; confidence 0.614
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002080.png ; $( H , ( . . | . ) )$ ; confidence 0.122
+
210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049039.png ; $\frac { | \nabla ( {\cal A} ) | } { | N _ { k + 1} | } \geq \frac { | {\cal A} | } { | N _ { k } | }$ ; confidence 1.000
  
211. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002048.png ; $( 3 \times 3 )$ ; confidence 1.000
+
211. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007027.png ; $\frac { 1 } { q } + a _ { 0 } + a _ { 1 } q + a _ { 2 } q ^ { 2 } + \ldots , \quad q = \operatorname { exp } ( 2 \pi i z ).$ ; confidence 0.614
  
212. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002011.png ; $J ^ { \prime }$ ; confidence 0.569
+
212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008042.png ; $q = \operatorname { inf } \{  { k } : \sigma _ { k } \geq 1 \}$ ; confidence 1.000
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003039.png ; $V ^ { \sigma }$ ; confidence 0.976
+
213. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005096.png ; $z \in \bf D$ ; confidence 1.000
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003031.png ; $\sigma = \pm$ ; confidence 1.000
+
214. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900186.png ; $T _ { n } ( \zeta )$ ; confidence 0.613
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149074.png ; $x ^ { \prime }$ ; confidence 0.753
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006061.png ; $A _ { R }$ ; confidence 1.000
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040200.png ; $L _ { p } [ 0,1 ]$ ; confidence 0.912
+
216. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005036.png ; $| u_{ tt } |$ ; confidence 1.000
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068059.png ; $p ^ { \prime }$ ; confidence 0.914
+
217. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013011.png ; $E _ { 2 ^{i-1}(n+1)} ^ { i } $ ; confidence 1.000
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110110/b1101108.png ; $L _ { p } ( 0,1 )$ ; confidence 0.899
+
218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006015.png ; $Y \times_M TM \rightarrow T Y$ ; confidence 1.000
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040151.png ; $0 < \theta < 1$ ; confidence 0.998
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050248.png ; $Z _ { G } ( - q ^ { - 1 } ) = 0$ ; confidence 0.613
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041046.png ; $X ^ { \prime }$ ; confidence 0.823
+
220. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005078.png ; $\square ^ { 1 } S_n$ ; confidence 1.000
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004016.png ; $| x | \leq | y |$ ; confidence 0.874
+
221. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011076.png ; $\sigma = \left( \begin{array} { c c } { 0 } & { \operatorname{Id} ( E ^ { * } ) } \\ { - \operatorname{Id} ( E ) } & { 0 } \end{array} \right),$ ; confidence 1.000
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040161.png ; $\epsilon = 0$ ; confidence 0.993
+
222. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018053.png ; $S ^ { \perp } = \{ x \in E : \langle x , s \rangle = 0 \text { for all } s \in S \}.$ ; confidence 1.000
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040147.png ; $X _ { \theta }$ ; confidence 0.470
+
223. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010037.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , - )$ ; confidence 0.613
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004070.png ; $X = E \oplus F$ ; confidence 0.940
+
224. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008021.png ; $I _ { i } ( \omega )$ ; confidence 0.613
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004095.png ; $L _ { \infty }$ ; confidence 0.970
+
225. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013095.png ; $A ^ { - }$ ; confidence 0.613
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005056.png ; $z \in E ^ { * * }$ ; confidence 0.739
+
226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023037.png ; $r \ll n$ ; confidence 1.000
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005044.png ; $w \in E ^ { * * }$ ; confidence 0.935
+
227. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840184.png ; $A | _ {\cal  E _ { \lambda } ^ { \prime } }$ ; confidence 1.000
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005065.png ; $\delta _ { 0 }$ ; confidence 0.996
+
228. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110740/b11074040.png ; $r = 0$ ; confidence 0.613
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200602.png ; $\epsilon = 1$ ; confidence 0.994
+
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022075.png ; $\Xi = {\bf R} ^ { N }$ ; confidence 1.000
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006015.png ; $+ n ( n + 1 ) Y = 0$ ; confidence 0.998
+
230. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051077.png ; $( u _ { j } , v _ { j } ) \in E _ { j }$ ; confidence 0.613
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007091.png ; $g ^ { \prime }$ ; confidence 0.998
+
231. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110213.png ; $G ( \zeta ) e ^ { - \varepsilon | \operatorname { lm } \zeta | - H _ { K } ( \operatorname { lm } \zeta ) }$ ; confidence 1.000
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009080.png ; $| f ( z ) | < 1$ ; confidence 0.992
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290220.png ; $R ^ { \prime } ( I ) = \oplus _ { n \in \bf Z} I^ { n }$ ; confidence 1.000
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009020.png ; $0 < t < \infty$ ; confidence 0.640
+
233. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690032.png ; $A _ { P^\prime }$ ; confidence 1.000
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220156.png ; $Q ^ { \times }$ ; confidence 0.456
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b1201509.png ; $\Omega = \{ 0,1 \} ^ { n }$ ; confidence 1.000
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022023.png ; $M = h ^ { i } ( X )$ ; confidence 0.986
+
235. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847024.png ; $\Omega = {\bf R} ^ { n }$ ; confidence 1.000
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220214.png ; $M H _ { R } ^ { + }$ ; confidence 0.413
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012010/a01201026.png ; $T ^ { * } M$ ; confidence 1.000
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012013.png ; $v \in T _ { p } M$ ; confidence 0.805
+
237. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100128.png ; $\Gamma \subset {\bf C} ^ { 2 }$ ; confidence 1.000
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013061.png ; $I _ { v i } ^ { q }$ ; confidence 0.052
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032072.png ; $a _ { n + 1} = F ( 1 , a _ { n } )$ ; confidence 1.000
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013088.png ; $f = \varphi F$ ; confidence 0.993
+
239. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230143.png ; ${\cal A} ( \sigma ) = \int _ { M } L \circ \sigma ^ { k } \Delta = \int _ { M } \sigma ^ { k ^ { * } } ( L \Delta ).$ ; confidence 1.000
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201308.png ; $d A ( z ) = d x d y$ ; confidence 0.996
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240254.png ; $\alpha$ ; confidence 1.000
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201304.png ; $0 < p < \infty$ ; confidence 0.999
+
241. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004029.png ; $f ^ { \Delta ( \varphi ) } : W \rightarrow \overline {\bf R }$ ; confidence 1.000
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014037.png ; $r 0 ( z ) = b ( z )$ ; confidence 0.550
+
242. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003016.png ; $\| .\|$ ; confidence 1.000
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150101.png ; $N \cup \{ 0 \}$ ; confidence 0.997
+
243. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006050.png ; $\hat { X } = X \cup \{ \omega \}$ ; confidence 1.000
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015098.png ; $\Omega , A , P$ ; confidence 0.995
+
244. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002096.png ; $\mathsf{P} ( m _ { 0 } , F )$ ; confidence 1.000
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016034.png ; $p _ { 12,3 } = 1$ ; confidence 0.989
+
245. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010129.png ; ${\cal S = M} \circ d$ ; confidence 1.000
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a01298065.png ; $1 < p < \infty$ ; confidence 0.999
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002018.png ; $x \in A$ ; confidence 0.612
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017038.png ; $0 < \alpha < n$ ; confidence 0.966
+
247. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020112.png ; $\rho _ { n } ( \phi )$ ; confidence 1.000
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020064.png ; $H ^ { \infty }$ ; confidence 0.409
+
248. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023061.png ; $[ K , L ] \bigwedge = i _ { K } L - ( - 1 ) ^ { k \text{l}} i _ { L } K,$ ; confidence 1.000
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012030.png ; $\varphi ( t )$ ; confidence 0.997
+
249. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005030.png ; $\Lambda ( {\cal X} ) : = {\cal X} \otimes _ { {\bf C} } \Lambda$ ; confidence 1.000
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012960/a01296090.png ; $\alpha > 1 / 2$ ; confidence 0.998
+
250. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012010.png ; $f \nabla = 1 _ { X }$ ; confidence 0.611
  
251. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012097.png ; $\omega ( g , )$ ; confidence 0.279
+
251. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200206.png ; $\tau = ( \tau _ { 1 } , \ldots , \tau _ { n } )$ ; confidence 1.000
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022077.png ; $a ( \xi ) = \xi$ ; confidence 0.943
+
252. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301903.png ; $m _ { k } = \int _ { I } x ^ { k } d \psi ( x )$ ; confidence 1.000
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022096.png ; $u ^ { n + 1 } ( x )$ ; confidence 0.979
+
253. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002041.png ; $B \in {\cal M} _ { n } ( {\bf R} )$ ; confidence 1.000
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024012.png ; $\{ \infty \}$ ; confidence 1.000
+
254. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260162.png ; $b ^ { n } = 0$ ; confidence 1.000
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017039.png ; $\gamma _ { t }$ ; confidence 0.252
+
255. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003083.png ; $\psi_b$ ; confidence 1.000
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017032.png ; $S ( t ) = S _ { t }$ ; confidence 0.894
+
256. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017029.png ; $\operatorname { ker } \delta _ { A , B } \nsubseteq \operatorname { ker } \delta _ { A  ^ { * } , B ^ { * }}$ ; confidence 1.000
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017036.png ; $V _ { t } = C ( t )$ ; confidence 0.992
+
257. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007049.png ; $\frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty.$ ; confidence 0.611
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027061.png ; $p _ { j } \geq 0$ ; confidence 0.881
+
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004018.png ; $\| x _ { n } \| \rightarrow 0$ ; confidence 1.000
  
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030063.png ; $Y ^ { \prime }$ ; confidence 0.608
+
259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007031.png ; $f | _ { k } ^ { \mathbf{v} } M = f , \forall M \in \Gamma.$ ; confidence 1.000
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030033.png ; $\alpha _ { k }$ ; confidence 0.421
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019024.png ; ${\bf y} ( a _ { 1 } / q _ { 1 } )$ ; confidence 1.000
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $\tau ^ { n }$ ; confidence 0.408
+
261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008097.png ; $\| \square ^ { t } M _ { \varphi } \| _ { \text{cb} } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 1.000
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032069.png ; $r , s , t \geq 0$ ; confidence 0.998
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020089.png ; $T$ ; confidence 0.611 NOTE: there are three dots on the edges
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203201.png ; $L ^ { p } ( \mu )$ ; confidence 0.963
+
263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110127.png ; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + {\bf v} . \nabla$ ; confidence 1.000
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034077.png ; $f ( z _ { 0 } ) > 0$ ; confidence 0.978
+
264. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012030.png ; $\| f ( x ) - a ( x ) \| \leq K \| x \| ^ { p }$ ; confidence 0.611
  
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036031.png ; $w ( i , j , k , l )$ ; confidence 0.997
+
265. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b11025027.png ; $g _ { n }$ ; confidence 1.000
  
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019045.png ; $\alpha = 1 / 2$ ; confidence 1.000
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014034.png ; $X = \{ 1 , \dots , n \}$ ; confidence 0.610
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014120/a01412026.png ; $f ^ { \prime }$ ; confidence 0.999
+
267. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300507.png ; $e _ { i } e _ { j } + e _ { j } e _ { i } = 0$ ; confidence 0.610
  
268. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019046.png ; $M = \sqrt { T }$ ; confidence 0.930
+
268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400130.png ; $w ( p - \delta ) + \delta \in C^-$ ; confidence 1.000
  
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037038.png ; $\sigma _ { 1 }$ ; confidence 0.250
+
269. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230139.png ; $S _ { i } = X _ { i } X_i ^ { \prime }$ ; confidence 1.000
  
270. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037082.png ; $\oplus _ { y }$ ; confidence 0.606
+
270. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150167.png ; $h : \{ 1 , \dots , n \} \rightarrow \bf R$ ; confidence 1.000
  
271. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200198.png ; $\alpha = dir$ ; confidence 0.746
+
271. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019050.png ; $| \kappa _ { n } | ^ { 2 } = {\cal M} _ { n - 1 } / {\cal M} _ { n }$ ; confidence 0.610
  
272. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200203.png ; $II _ { s + 2,2 }$ ; confidence 0.438
+
272. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200607.png ; $\psi [ 1 ]$ ; confidence 0.610
  
273. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b1302004.png ; $( 1 \times 1 )$ ; confidence 0.998
+
273. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147035.png ; $j = 1 , \dots , r$ ; confidence 0.610
  
274. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020028.png ; $a _ { i j } \in Z$ ; confidence 0.482
+
274. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011045.png ; $\gamma _ { 1 } ^ { 2 } = - 1 , \gamma _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = 1,$ ; confidence 0.610
  
275. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200185.png ; $L ( \Lambda )$ ; confidence 0.976
+
275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020071.png ; $\operatorname { max } _ { j = 1 , \ldots , n - m + 1 } | s _ { j } | \geq m \left( \frac { 1 } { 2 } + \frac { m } { 8 n } + \frac { 3 m ^ { 2 } } { 64 n ^ { 2 } } \right).$ ; confidence 0.610
  
276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040098.png ; $G / B \times V$ ; confidence 0.955
+
276. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108025.png ; $\alpha_r$ ; confidence 1.000
  
277. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021011.png ; $F _ { r } \geq 0$ ; confidence 0.848
+
277. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003024.png ; $\widetilde { P _ { 8 } }$ ; confidence 1.000
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b1302107.png ; $R _ { \mu \nu }$ ; confidence 0.674
+
278. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016012.png ; $\mu _ { R _ { P } } ( M _ { P } ) = \mu _ { Q ( R / P ) } ( M \bigotimes _ { R / P } Q ( R / P ) ).$ ; confidence 1.000
  
279. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042094.png ; $w ^ { \prime }$ ; confidence 0.362
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055060.png ; $f ^ { - 1 } ( ( - \infty , t ] )$ ; confidence 0.610
  
280. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430108.png ; $B SL _ { q } ( 2 )$ ; confidence 0.412
+
280. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004010.png ; $\Delta d_k = d_k - d_{k + 1}$ ; confidence 1.000
  
281. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100173.png ; $A _ { \gamma }$ ; confidence 0.365
+
281. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840166.png ; $E _ { \lambda }$ ; confidence 0.610
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043032.png ; $\Psi _ { B , B }$ ; confidence 0.402
+
282. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011093.png ; $( M _ { T } u ) ( x ) = | \operatorname { det } T \rceil ^ { - 1 / 2 } u ( T ^ { - 1 } x )$ ; confidence 0.610
  
283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022038.png ; $| \gamma | = m$ ; confidence 1.000
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015032.png ; $\operatorname { Ker } ( \operatorname{ad} ) = \{ 0 \}$ ; confidence 1.000
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938
+
284. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130010/d1300106.png ; $\left( \begin{array} { c c c c } { h ( x _ { 1 } , y _ { 1 } ) } & { h ( x _ { 1 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 1 } , y _ { n } ) } \\ { h ( x _ { 2 } , y _ { 1 } ) } & { h ( x _ { 2 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 2 } , y _ { n } ) } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { h ( x _ { n } , y _ { 1 } ) } & { h ( x _ { n } , y _ { 2 } ) } & { \dots } & { h ( x _ { n } , y _ { n } ) } \end{array} \right);$ ; confidence 0.609
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022045.png ; $\gamma \in K$ ; confidence 0.980
+
285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202203.png ; $\operatorname{id}: X \rightarrow X$ ; confidence 1.000
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220110.png ; $\{ x \} \cup B$ ; confidence 0.999
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011030.png ; $\{ n _ { i } \}$ ; confidence 0.609
  
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044095.png ; $R [ G \times G$ ; confidence 0.994
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006028.png ; $\langle \langle A \rangle \rangle$ ; confidence 0.609
  
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046025.png ; $H = C _ { G } ( x )$ ; confidence 0.693
+
288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t1200706.png ; $= 2 ^ { 46 } . 3 ^ { 20 } . 5 ^ { 9 } . 7 ^ { 6 } . 11 ^ { 2 } . 13 ^ { 3 }.$ ; confidence 1.000
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049035.png ; $\{ E _ { n } , \}$ ; confidence 0.434
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012038.png ; $v - A v = ( I - A ) v$ ; confidence 0.609
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049038.png ; $\{ A _ { j n } \}$ ; confidence 0.820
+
290. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010047.png ; ${\bf S} = c \bf E \times H,$ ; confidence 1.000
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049019.png ; $E \in \Sigma$ ; confidence 0.934
+
291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306408.png ; $\operatorname { log } a \in L ^ { 1 } (\bf T )$ ; confidence 1.000
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026054.png ; $y \in \Omega$ ; confidence 0.999
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026042.png ; $\Omega _ { 1 } \subset \Omega$ ; confidence 0.609
  
293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027030.png ; $\pi ( T ^ { * } )$ ; confidence 0.999
+
293. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090170.png ; $\omega : \operatorname { Gal } ( k ( \mu _ { p } ) / k ) \rightarrow {\bf Z} _ { p } ^ { \times } ( \omega ( a ) \equiv a \operatorname { mod } p )$ ; confidence 1.000
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027015.png ; $S S ^ { * } = 1 - P$ ; confidence 0.835
+
294. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002077.png ; $( \alpha _ { 1 } \cup \gamma ^ { d } , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.609
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051088.png ; $H _ { 0 } ^ { - 1 }$ ; confidence 0.979
+
295. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301007.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , T ) = 0$ ; confidence 0.609
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052079.png ; $B _ { n } ^ { - 1 }$ ; confidence 0.854
+
296. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018062.png ; $f \tau$ ; confidence 0.609
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a11049023.png ; $F ^ { \prime }$ ; confidence 0.398
+
297. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034035.png ; $\ldots \subset C _ { 3 } \subset \ldots \subset C _ { 2 } \subset \ldots \subset C _ { 1 } \subset \ldots \subset C _ { 0 } = R \cal K$ ; confidence 1.000
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290179.png ; $n _ { i } \geq 1$ ; confidence 0.924
+
298. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021044.png ; $\sum _ { i = 1 } ^ { k } s _ { i } A _ { i } A _ { i } ^ { T } = ( m \sum _ { i = 1 } ^ { k } s _ { i } ) I _ { m }$ ; confidence 1.000
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030099.png ; $B ( m , n , i - 1 )$ ; confidence 1.000
+
299. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060109.png ; $T _ { F \mathbf{R} }$ ; confidence 0.609
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001012.png ; $u ^ { \prime }$ ; confidence 0.513
+
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046053.png ; $\chi _ { f } ( x y ) = 0$ ; confidence 0.609

Latest revision as of 20:51, 19 May 2020

List

1. c12026032.png ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626

2. a120280132.png ; $M ^ { U } ( E ) = P ( E )\cal X$ ; confidence 1.000

3. l05750023.png ; ${\bf R} _ { x } ^ { n }$ ; confidence 1.000

4. b120210134.png ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w . \lambda )$ ; confidence 1.000

5. e12024080.png ; $H ^ { 2 } ( {\bf Z} [ 1 / p ] ; {\bf Z} _ { p } ( n ) )$ ; confidence 1.000

6. h047940173.png ; $P _ { n + 1}$ ; confidence 1.000

7. b13021014.png ; $f = ( f _ { b } ) _ { b \in B }$ ; confidence 0.625

8. k12008083.png ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625

9. z13008022.png ; $V _ { n } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { n } ^ { m } ( r ),$ ; confidence 1.000

10. f13028031.png ; $N _ { \widetilde{A}\mathbf{x} } ( \widetilde { B } ) \geq h ^ { N }$ ; confidence 1.000

11. f13028013.png ; $\mu _ { B } ( A {\bf x} )$ ; confidence 1.000

12. s13049045.png ; $( p _ { 0 } < \ldots < p _ { h } )$ ; confidence 0.625

13. w12005013.png ; $1 = e _ { 1 } + \ldots + e _ { k }$ ; confidence 0.625

14. f12014047.png ; $\alpha \pi$ ; confidence 0.625

15. j13001034.png ; $D_{f , 2}$ ; confidence 1.000

16. i130060103.png ; $\{ \varphi_+ ( k ) , \varphi_- ( k ) \}$ ; confidence 1.000

17. c12030065.png ; $\mathcal{B} \rtimes _ { \alpha } \bf Z$ ; confidence 1.000

18. t130050182.png ; $= [ \sigma _ { \operatorname{Te} } ( A , {\cal H} ) \times \sigma _ { \operatorname{T} } ( B , {\cal H} ) ] \bigcup [ \sigma _ { \operatorname{T} } ( A , {\cal H} ) \times \sigma _ { \operatorname{Te} } ( B , {\cal H} ) ].$ ; confidence 1.000

19. l120170189.png ; $\operatorname{Wh} ^ { * } ( \pi ) \neq \{ 0 \}$ ; confidence 1.000

20. n13003052.png ; $v = w$ ; confidence 0.625

21. s120230115.png ; $\lambda ( T T ^ { \prime } ) = \operatorname { diag } ( \tau _ { 1 } , \dots , \tau _ { 1 } )$ ; confidence 0.625

22. b12004058.png ; $D _ { s } f ( t ) = f ( t / s )$ ; confidence 0.625

23. e13004052.png ; $\overset{\rightharpoonup} { x } . \overset{\rightharpoonup} { v } < 0$ ; confidence 1.000

24. c025650116.png ; $E \subset {\bf R} ^ { n }$ ; confidence 1.000

25. c13009035.png ; $b _ { N - 1 } = 2 N a _ { N }$ ; confidence 0.624

26. p12017079.png ; $A$ ; confidence 1.000

27. t1201406.png ; $( \gamma _ { j - k } ) _ { j , k \geq 0 }$ ; confidence 0.624

28. b13023011.png ; $M _ { n+ 1} / M _ { n }$ ; confidence 1.000

29. b12049047.png ; $\{ m _ { n } \}$ ; confidence 1.000

30. b130290210.png ; $i \neq d$ ; confidence 1.000

31. w12013015.png ; $\sigma _ { \text{ess} } ( T ) = \sigma _ { \text{ess} } ( T + S ).$ ; confidence 1.000

32. n067520383.png ; $N = N _ { 1 } \cup \ldots \cup N _ { n }$ ; confidence 0.624

33. c0201809.png ; $R ^ { * }$ ; confidence 1.000

34. o13005014.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( T - z I ) ^ { - 1 } K J,$ ; confidence 0.624

35. k13001048.png ; $10_{101}$ ; confidence 1.000

36. f1301007.png ; ${\cal L} _ {\bf C } ^ { p } ( G )$ ; confidence 1.000

37. c1200208.png ; $| S ^ { n - 1 } |$ ; confidence 1.000

38. c026010414.png ; $J ^ { * }$ ; confidence 0.624

39. n067520330.png ; $\{ f _ { i _ { 1 } } , \dots , f _ { i _ { n } } \}$ ; confidence 0.624

40. b12015089.png ; $\operatorname { dim } D _ { s } ^ { \perp } = 2 ^ { n } - n - 1$ ; confidence 0.624

41. a1202309.png ; $z _ { 1 } ^ { m } d z _ { 1 }$ ; confidence 0.624

42. m13023033.png ; $R = {\bf R} _ { \geq 0 } v \subset \overline { N E } ( X / S )$ ; confidence 1.000

43. l0608104.png ; $m = 0,1 , \ldots$ ; confidence 0.623

44. a13007030.png ; $c = 7$ ; confidence 0.623

45. a130180140.png ; $\leq 2$ ; confidence 1.000

46. n1200605.png ; $F M \rightarrow M$ ; confidence 0.623

47. f04049055.png ; $F _ { m n }$ ; confidence 0.623

48. z13003039.png ; $Z [ f ( t + m ) ] ( t , w ) = e ^ { 2 \pi i m w } Z [ f ] ( t , w ); $ ; confidence 1.000

49. z13011025.png ; $\mu _ { n } = \sum _ { i = 1 } ^ { N } 1 _ { \{ f _ { i n } \geq 1 \} }$ ; confidence 0.623

50. e03644017.png ; $| x |$ ; confidence 0.623

51. a012980112.png ; $k = 1 , \dots , n$ ; confidence 0.623

52. v12002064.png ; $d _ { k } = \operatorname{rd} _ { Y } M _ { k }$ ; confidence 1.000

53. s13059029.png ; $H _ { k } ^ { ( m ) } > 0 , m = 0 , \pm 1 , \pm 2 , \ldots , k = 1,2 ,\dots .$ ; confidence 1.000

54. b1203604.png ; $k _ { B }$ ; confidence 0.623

55. v13011088.png ; $\operatorname{Cd} \approx \frac { l } { b } , f \approx \frac { l } { U } , \operatorname{Cd} \approx \frac { f U } { d } , \operatorname{Cd} \approx \frac { 1 } { \operatorname{St} } , $ ; confidence 1.000

56. n12002074.png ; $\mathsf{P} ( m , F )$ ; confidence 1.000

57. e120230184.png ; $E ^ { k + 1 }$ ; confidence 0.623

58. c13019062.png ; $B ^ { n - k }$ ; confidence 1.000

59. a13024076.png ; $m = 1 + I + J + I J$ ; confidence 0.623

60. b13009020.png ; $H ^ { 1 } ( {\bf R} _ { x } )$ ; confidence 1.000

61. e12012040.png ; $g = ( g _ { 1 } , \dots , g _ { N } )$ ; confidence 0.622

62. f120110175.png ; $\operatorname{WFA} f$ ; confidence 1.000

63. m13014092.png ; $b _ { j } ^ { l } > 0$ ; confidence 0.622

64. w12007010.png ; ${\bf p}_j$ ; confidence 1.000

65. k055840239.png ; $x \in {\cal D} ( p ( A ) )$ ; confidence 1.000

66. c120180300.png ; $R ( \nabla ) : \otimes ^ { r } {\cal E} \rightarrow \otimes ^ {r + 2 } {\cal E}, $ ; confidence 1.000

67. d12016047.png ; ${\cal M} _ { s }$ ; confidence 1.000

68. f120110126.png ; $F ( z ) = - \frac { 1 } { 2 \pi i } \int_\gamma \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$ ; confidence 1.000

69. d12006032.png ; $s ^ { 2 = 4 \lambda } ( x , y ) p q$ ; confidence 0.622

70. z130110151.png ; $u = \alpha ^ { s }$ ; confidence 0.622

71. w13012031.png ; $T _ { \text{B} \delta }$ ; confidence 1.000

72. z13003044.png ; $Z \left[ e ^ { 2 \pi i m t } f ( t + n ) \right] ( t , w ) = e ^ { 2 \pi i m t } e ^ { 2 \pi i n w } ( Z f ) ( t , w ).$ ; confidence 0.622

73. e12010033.png ; $\bf M$ ; confidence 1.000

74. a014310184.png ; $\Pi _ { 1 } ^ { 1 }$ ; confidence 0.621

75. t12005059.png ; $U \rightarrow G _ { n } ( {\bf R} ^ { n } \times {\bf R} ^ { p } )$ ; confidence 1.000

76. f1300503.png ; $f ( x ) = \sum _ { i = 1 } ^ { m } w _ { i } \| p _ { i } - x \| , x \in {\bf R} ^ { n },$ ; confidence 1.000

77. d03027030.png ; $V _ { n , p } ( f , x ) = f ( x )$ ; confidence 1.000

78. c02194023.png ; $Q _ { n } ( x )$ ; confidence 0.621

79. s13064015.png ; $E ( a )$ ; confidence 0.621

80. b12040036.png ; $g \times ^ { \varrho } {\bf f} \in G \times ^ { \varrho } F$ ; confidence 1.000

81. w1300507.png ; $S \mathfrak { g } ^ { * }$ ; confidence 0.621

82. b1200506.png ; $P : E \rightarrow \bf C$ ; confidence 1.000

83. b12017029.png ; ${\cal G} _ { \alpha }$ ; confidence 1.000

84. b13017038.png ; $\phi _ { t }$ ; confidence 0.621

85. w12018023.png ; $\mathsf{P} \{ \operatorname { sup } W ^ { ( N ) } ( t ) > u \}$ ; confidence 1.000

86. c120180150.png ; $X \otimes Y \in \otimes ^ { 2 } \cal E_{*}$ ; confidence 1.000

87. c022780157.png ; $\xi_r$ ; confidence 1.000

88. a130180192.png ; $V \subseteq {\sf C A}_\alpha$ ; confidence 1.000

89. b110220219.png ; ${\cal MM}_{\bf Z}$ ; confidence 1.000

90. p1201708.png ; $\operatorname { ker }\delta _ { A } \subseteq \operatorname { ker } \delta _ { A ^*}$ ; confidence 1.000

91. l11002018.png ; $\{. , e , ^{- 1} , \vee , \wedge \}$ ; confidence 1.000

92. a01405025.png ; $B _ { 1 }$ ; confidence 0.620

93. a13019012.png ; $r ^ { i } ( A ) * r ^ { j } ( B )$ ; confidence 1.000

94. h12007018.png ; $A _ { h } , A _ { k } , A _ { m }$ ; confidence 1.000

95. k1201201.png ; $K : = \int \frac { - \operatorname { ln } f ( . ) } { 1 + x ^ { 2 } } d x,$ ; confidence 1.000

96. w120110236.png ; $b \in S ( m _ { 2 } , G )$ ; confidence 0.620

97. f13009060.png ; $\mathsf{P} ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } \left( \frac { q } { p } \right) ,$ ; confidence 1.000

98. h12011017.png ; $\sigma ( z ) = e ^ { i \theta } z + a$ ; confidence 1.000

99. h13002082.png ; ${\bf Z} ^ { d }$ ; confidence 1.000

100. s1300402.png ; $G = \operatorname{SL} ( 2 , \bf R )$ ; confidence 1.000

101. n067520160.png ; $( \lambda - a _ { i } ) ^ { n _ { i j } }$ ; confidence 0.620

102. b11026030.png ; $X = 0$ ; confidence 0.620

103. t12020086.png ; $x \operatorname { exp } ( x + 1 ) = 1$ ; confidence 0.620

104. z13008012.png ; $\langle f , g \rangle = \int \int _ { D } f ( x , y ) \overline { g ( x , y ) } d x d y$ ; confidence 0.620

105. a130240333.png ; $n \times p _ { 1 }$ ; confidence 0.620

106. k05578011.png ; $F _ { i } ( \tau ) = \int _ { 0 } ^ { \infty } \frac { \sqrt { 2 \tau \operatorname { sinh } \pi \tau } } { \pi } \frac { K _ { i \tau } } { \sqrt { x } } f _ { i } ( x ) d x.$ ; confidence 0.620

107. a1302401.png ; $\bf y = X \beta + e,$ ; confidence 1.000

108. w130080146.png ; $G = \operatorname{GL} ( N ,\bf C )$ ; confidence 1.000

109. e12006016.png ; $A \in T _ { x } M$ ; confidence 1.000

110. p130100102.png ; $\hat { K } = K$ ; confidence 0.620

111. a130240346.png ; $q \times p$ ; confidence 0.619

112. b130200191.png ; $\alpha _ { i } \in \Pi ^ { \text{im} }$ ; confidence 1.000

113. c1202207.png ; $\operatorname{id}: ( X , * ) \rightarrow ( X , * )$ ; confidence 1.000

114. l12004064.png ; $f _ { i + 1 } ^ { n } = a u _ { i + 1 } ^ { n }$ ; confidence 0.619

115. e12002071.png ; $\pi _ { n } ( X , Y )$ ; confidence 0.619

116. c120180157.png ; $g ^ { - 1 } \in \mathsf{S} ^ { 2 } \cal E _{*}$ ; confidence 0.619

117. m12013029.png ; $= f ( N_{ * } ) + f ^ { \prime } ( N_{ * } ) n + \frac { f ^ { \prime \prime } ( N_{ * } ) } { 2 } n ^ { 2 } + \ldots,$ ; confidence 1.000

118. k13006013.png ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right)$ ; confidence 1.000

119. b13025046.png ; $C ^ { \prime CA }$ ; confidence 1.000

120. m1201903.png ; $f \in L _ { 2 } ( {\bf R} _ { + } ; x ^ { - 1 } )$ ; confidence 1.000

121. h13002050.png ; $A = \{ 0 , \dots , q - 1 \}$ ; confidence 0.619

122. c12008069.png ; $= \sum _ { i = 0 } ^ { m } D _ { i , m - i } \Lambda ^ { i } M ^ { m - i } , D _ { i j } \in C ^ { n \times n },$ ; confidence 0.619

123. j130040133.png ; $P ( i , i \sqrt { 2 } ) = ( - \sqrt { 2 } ) ^ { \operatorname { com } ( L ) - 1 } ( - 1 ) ^ { \operatorname { Arf } ( L ) }$ ; confidence 0.618

124. b13003036.png ; $V ^ { \sigma } ( y )$ ; confidence 0.618

125. v120020182.png ; $\overline { D } \square ^ { n + 1 } \subset E ^ { n + 1 }$ ; confidence 0.618

126. d03192046.png ; $\alpha _ { i } = 1$ ; confidence 0.618

127. s13001030.png ; $|.| _ { \infty }$ ; confidence 1.000

128. w130080110.png ; $F ^ { \text{SW} } = \widetilde { F }$ ; confidence 0.618

129. g0433704.png ; $h \rightarrow D f ( x_0 , h ),$ ; confidence 1.000

130. c120180182.png ; $\tau _ { 2 } \Theta = - \Theta$ ; confidence 0.618

131. c130070151.png ; $u , v \in k ( C )$ ; confidence 0.618

132. a13026012.png ; $\operatorname { lcm } ( 1 , \dots , n ) > 3 ^ { n }$ ; confidence 1.000

133. e120230119.png ; $\Delta = \gamma d x _ { 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.618

134. m12023071.png ; $H = {\bf R} ^ { n }$ ; confidence 1.000

135. z13007055.png ; $\operatorname{GL} _ { n } ( {\bf Q} A )$ ; confidence 1.000

136. p12013016.png ; $a _ { n } = 1$ ; confidence 1.000

137. g12004093.png ; $\operatorname{WF} _ { s } ( P ( x , D ) u ) \cap \Gamma = \emptyset$ ; confidence 1.000

138. t120200171.png ; $A = \frac { 1 } { 6 n 16 ^ { n } } \left( \frac { 1 + \rho } { 2 } \right) ^ { m } \left( \frac { 1 - \rho } { 2 } \right) ^ { 2 n + k } \left| \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } \right| $ ; confidence 1.000

139. c120210128.png ; $\Delta _ { n } ^ { * } ( \theta )$ ; confidence 1.000

140. a12027036.png ; $\zeta_N ( s )$ ; confidence 1.000

141. t13021048.png ; $a _ { N / 2 - k}$ ; confidence 1.000

142. h120020124.png ; $\phi \in \operatorname{VMO}$ ; confidence 1.000

143. b12053016.png ; $L ^ { \times }$ ; confidence 1.000

144. m13014060.png ; $\operatorname{Aut}( B )$ ; confidence 1.000

145. z13007027.png ; ${\bf Z} G = {\bf Z} H$ ; confidence 1.000

146. c13006021.png ; $\bf Z$ ; confidence 1.000

147. s1300203.png ; $\pi : U M \rightarrow M$ ; confidence 0.617

148. h04756024.png ; $U ^ { \prime }$ ; confidence 0.617

149. a1201503.png ; $\operatorname{Ad} : G \rightarrow \operatorname{GL} (\frak g )$ ; confidence 1.000

150. b12030042.png ; $\psi = \psi ( y ; \eta ) \not\equiv 0$ ; confidence 1.000

151. w13010044.png ; $t ^ { 1 / d }$ ; confidence 0.617

152. k13007018.png ; $| { k } | > 1$ ; confidence 1.000

153. r08232069.png ; $c \in E$ ; confidence 0.617

154. a12006045.png ; $\left\| ( \lambda + A ( t _ { k } ) ) ^ { - 1 } \ldots ( \lambda + A ( t _ { 1 } ) ) ^ { - 1 } \right\| _ { L ( X ) } \leq \frac { M } { ( \lambda - \beta ) ^ { k } }$ ; confidence 0.617

155. b13016027.png ; $i f \in A$ ; confidence 0.617

156. d03002092.png ; $D _ { Y }$ ; confidence 0.617

157. f13029066.png ; $f _ { L } ^ { \leftarrow } ( b ) = b \circ f.$ ; confidence 0.617

158. f13009066.png ; $R _ { l } ( p ; k , n )$ ; confidence 0.617

159. l12004029.png ; $f ( u ) = a u$ ; confidence 0.617

160. k0550708.png ; $H ^ { p , q } ( M ) \cong H ^ { q , p } ( M ),$ ; confidence 0.617

161. a1300904.png ; $k \leq d$ ; confidence 0.617

162. p12014010.png ; $a _ { 1 } > a _ { 0 } + 2 \sqrt { a _ { 0 } }$ ; confidence 0.616

163. b12013029.png ; $C _ { c } ^ { \infty } ( G )$ ; confidence 0.616

164. s1200205.png ; $L (. ; t ) = h (. ; t ) * f ( . )$ ; confidence 1.000

165. q12003025.png ; ${\cal U} _ { q } ( \mathfrak { g } )$ ; confidence 1.000

166. k12008035.png ; $K _ { p } ( g \circ \lambda ) = K _ { \lambda ( p ) } ( g ) \circ \lambda$ ; confidence 1.000

167. i12008043.png ; $T > T _ { c }$ ; confidence 0.616

168. t120010158.png ; $T ^ { n }$ ; confidence 0.616

169. d03025016.png ; $u _ { n + 1 - k}$ ; confidence 1.000

170. s120040125.png ; $\pi_T$ ; confidence 1.000

171. v13011041.png ; $( m l + U t , \pm b / 2 )$ ; confidence 0.616

172. a11032030.png ; $\operatorname{Re} \lambda \leq 0$ ; confidence 1.000

173. b130290193.png ; $R _ {\frak M }$ ; confidence 1.000

174. s13049041.png ; $k = 0 , \ldots , r ( P ) - 1$ ; confidence 0.616

175. a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.616

176. a01082068.png ; $\frak S$ ; confidence 1.000

177. g12005053.png ; $a , b \in \bf R$ ; confidence 1.000

178. a1302804.png ; $a_0 , a _ { 1 } , \dots$ ; confidence 1.000

179. a1107003.png ; $\bf K$ ; confidence 1.000

180. m1201307.png ; $N \equiv 0$ ; confidence 1.000

181. s13065026.png ; $ { c } _ { \mu } > - \infty$ ; confidence 1.000

182. c02211041.png ; $X ^ { 2 } ( \widetilde { \theta } _ { n } ) = \operatorname { min } _ { \theta \in \Theta } X ^ { 2 } ( \theta ).$ ; confidence 1.000

183. o1300802.png ; $\square _ { m } u = \left( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) \right) u,$ ; confidence 0.615

184. b12040049.png ; $\xi = G \times ^ { \varrho } \bf C$ ; confidence 1.000

185. a12027068.png ; $h _ { p } = ( 2 , d ) _ { P } \cdot W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.615

186. a130040236.png ; $K ( x ) \approx L ( x ) = \{ \kappa _ { j } ( x ) \approx \lambda _ { j } ( x ) : j \in J \}$ ; confidence 0.615

187. a130240450.png ; ${\cal H} _ { j }$ ; confidence 1.000

188. h04698022.png ; $Q_\lambda$ ; confidence 1.000

189. a120160154.png ; $y_{it}$ ; confidence 1.000

190. f120190100.png ; $C _ { G } ( x ) \leq N$ ; confidence 0.615

191. d12024082.png ; ${\frak sl} ( n )$ ; confidence 1.000

192. p13007096.png ; $M ( G ( z , w ) ) = ( 2 \pi ) ^ { n } \delta _ { w }$ ; confidence 0.615

193. a12023059.png ; $q = ( q _ { 1 } , \dots , q _ { n } )$ ; confidence 0.615

194. l120120146.png ; $K _ { s } ( \overline { \sigma } )$ ; confidence 0.615

195. p13009039.png ; $\mu _ { x } ^ { \Omega } = P _ { \Omega } ( x , \xi ) d \sigma ( \xi )$ ; confidence 0.615

196. a13007074.png ; $\frac { n ^ { \prime } } { n } < 1 + C \frac { ( \operatorname { log } \operatorname { log } n ) ^ { 2 } } { \operatorname { log } n } , C = \text { const } > 0,$ ; confidence 0.614

197. c1300907.png ; $T _ { N + 1 } / 2 ^ { N }$ ; confidence 0.614

198. i130030162.png ; $K_0({\cal R}\otimes {\bf C}[\Gamma])$ ; confidence 1.000

199. s13064014.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { G ( a ) ^ { N } } = E ( a ),$ ; confidence 1.000

200. t120010106.png ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / \operatorname{SU} ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }.$ ; confidence 0.614

201. b130200199.png ; $S _ { \Lambda }$ ; confidence 0.614

202. w130080202.png ; $\kappa \partial _ { s } F + H _ { s } \left( \frac { \delta F } { \delta u } , u , t \right) = 0.$ ; confidence 0.614

203. b13020033.png ; $\hat { \mathfrak { g } } = \hat{\mathfrak { g } }( A )$ ; confidence 1.000

204. t12005068.png ; $J ^ { r } ( V , W )$ ; confidence 1.000

205. w13011033.png ; $f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon }$ ; confidence 0.614

206. f13005013.png ; $m \geq 5$ ; confidence 1.000

207. d0302507.png ; $y ( x _ { i } ) = c _ { i } , \quad i = 1 , \dots , n ; \quad x _ { i } \in [ a , b ].$ ; confidence 0.614

208. h12001015.png ; $J _ { f } ^ { r }$ ; confidence 1.000

209. p12017090.png ; $a b = b a$ ; confidence 0.614

210. s13049039.png ; $\frac { | \nabla ( {\cal A} ) | } { | N _ { k + 1} | } \geq \frac { | {\cal A} | } { | N _ { k } | }$ ; confidence 1.000

211. t12007027.png ; $\frac { 1 } { q } + a _ { 0 } + a _ { 1 } q + a _ { 2 } q ^ { 2 } + \ldots , \quad q = \operatorname { exp } ( 2 \pi i z ).$ ; confidence 0.614

212. q12008042.png ; $q = \operatorname { inf } \{ { k } : \sigma _ { k } \geq 1 \}$ ; confidence 1.000

213. o13005096.png ; $z \in \bf D$ ; confidence 1.000

214. v096900186.png ; $T _ { n } ( \zeta )$ ; confidence 0.613

215. a13006061.png ; $A _ { R }$ ; confidence 1.000

216. e13005036.png ; $| u_{ tt } |$ ; confidence 1.000

217. k12013011.png ; $E _ { 2 ^{i-1}(n+1)} ^ { i } $ ; confidence 1.000

218. e12006015.png ; $Y \times_M TM \rightarrow T Y$ ; confidence 1.000

219. a130050248.png ; $Z _ { G } ( - q ^ { - 1 } ) = 0$ ; confidence 0.613

220. l06005078.png ; $\square ^ { 1 } S_n$ ; confidence 1.000

221. w12011076.png ; $\sigma = \left( \begin{array} { c c } { 0 } & { \operatorname{Id} ( E ^ { * } ) } \\ { - \operatorname{Id} ( E ) } & { 0 } \end{array} \right),$ ; confidence 1.000

222. s12018053.png ; $S ^ { \perp } = \{ x \in E : \langle x , s \rangle = 0 \text { for all } s \in S \}.$ ; confidence 1.000

223. t13010037.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , - )$ ; confidence 0.613

224. l13008021.png ; $I _ { i } ( \omega )$ ; confidence 0.613

225. d13013095.png ; $A ^ { - }$ ; confidence 0.613

226. d12023037.png ; $r \ll n$ ; confidence 1.000

227. k055840184.png ; $A | _ {\cal E _ { \lambda } ^ { \prime } }$ ; confidence 1.000

228. b11074040.png ; $r = 0$ ; confidence 0.613

229. b12022075.png ; $\Xi = {\bf R} ^ { N }$ ; confidence 1.000

230. s13051077.png ; $( u _ { j } , v _ { j } ) \in E _ { j }$ ; confidence 0.613

231. f120110213.png ; $G ( \zeta ) e ^ { - \varepsilon | \operatorname { lm } \zeta | - H _ { K } ( \operatorname { lm } \zeta ) }$ ; confidence 1.000

232. b130290220.png ; $R ^ { \prime } ( I ) = \oplus _ { n \in \bf Z} I^ { n }$ ; confidence 1.000

233. v09690032.png ; $A _ { P^\prime }$ ; confidence 1.000

234. b1201509.png ; $\Omega = \{ 0,1 \} ^ { n }$ ; confidence 1.000

235. f03847024.png ; $\Omega = {\bf R} ^ { n }$ ; confidence 1.000

236. a01201026.png ; $T ^ { * } M$ ; confidence 1.000

237. p130100128.png ; $\Gamma \subset {\bf C} ^ { 2 }$ ; confidence 1.000

238. b12032072.png ; $a _ { n + 1} = F ( 1 , a _ { n } )$ ; confidence 1.000

239. e120230143.png ; ${\cal A} ( \sigma ) = \int _ { M } L \circ \sigma ^ { k } \Delta = \int _ { M } \sigma ^ { k ^ { * } } ( L \Delta ).$ ; confidence 1.000

240. a130240254.png ; $\alpha$ ; confidence 1.000

241. f12004029.png ; $f ^ { \Delta ( \varphi ) } : W \rightarrow \overline {\bf R }$ ; confidence 1.000

242. c12003016.png ; $\| .\|$ ; confidence 1.000

243. e13006050.png ; $\hat { X } = X \cup \{ \omega \}$ ; confidence 1.000

244. n12002096.png ; $\mathsf{P} ( m _ { 0 } , F )$ ; confidence 1.000

245. e120010129.png ; ${\cal S = M} \circ d$ ; confidence 1.000

246. a13002018.png ; $x \in A$ ; confidence 0.612

247. h120020112.png ; $\rho _ { n } ( \phi )$ ; confidence 1.000

248. f12023061.png ; $[ K , L ] \bigwedge = i _ { K } L - ( - 1 ) ^ { k \text{l}} i _ { L } K,$ ; confidence 1.000

249. t13005030.png ; $\Lambda ( {\cal X} ) : = {\cal X} \otimes _ { {\bf C} } \Lambda$ ; confidence 1.000

250. h12012010.png ; $f \nabla = 1 _ { X }$ ; confidence 0.611

251. r1200206.png ; $\tau = ( \tau _ { 1 } , \ldots , \tau _ { n } )$ ; confidence 1.000

252. m1301903.png ; $m _ { k } = \int _ { I } x ^ { k } d \psi ( x )$ ; confidence 1.000

253. b11002041.png ; $B \in {\cal M} _ { n } ( {\bf R} )$ ; confidence 1.000

254. m130260162.png ; $b ^ { n } = 0$ ; confidence 1.000

255. m12003083.png ; $\psi_b$ ; confidence 1.000

256. p12017029.png ; $\operatorname { ker } \delta _ { A , B } \nsubseteq \operatorname { ker } \delta _ { A ^ { * } , B ^ { * }}$ ; confidence 1.000

257. j13007049.png ; $\frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty.$ ; confidence 0.611

258. b12004018.png ; $\| x _ { n } \| \rightarrow 0$ ; confidence 1.000

259. e12007031.png ; $f | _ { k } ^ { \mathbf{v} } M = f , \forall M \in \Gamma.$ ; confidence 1.000

260. b13019024.png ; ${\bf y} ( a _ { 1 } / q _ { 1 } )$ ; confidence 1.000

261. f12008097.png ; $\| \square ^ { t } M _ { \varphi } \| _ { \text{cb} } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 1.000

262. a12020089.png ; $T$ ; confidence 0.611 NOTE: there are three dots on the edges

263. m130110127.png ; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + {\bf v} . \nabla$ ; confidence 1.000

264. h13012030.png ; $\| f ( x ) - a ( x ) \| \leq K \| x \| ^ { p }$ ; confidence 0.611

265. b11025027.png ; $g _ { n }$ ; confidence 1.000

266. c13014034.png ; $X = \{ 1 , \dots , n \}$ ; confidence 0.610

267. t1300507.png ; $e _ { i } e _ { j } + e _ { j } e _ { i } = 0$ ; confidence 0.610

268. b120400130.png ; $w ( p - \delta ) + \delta \in C^-$ ; confidence 1.000

269. s120230139.png ; $S _ { i } = X _ { i } X_i ^ { \prime }$ ; confidence 1.000

270. b120150167.png ; $h : \{ 1 , \dots , n \} \rightarrow \bf R$ ; confidence 1.000

271. m13019050.png ; $| \kappa _ { n } | ^ { 2 } = {\cal M} _ { n - 1 } / {\cal M} _ { n }$ ; confidence 0.610

272. d1200607.png ; $\psi [ 1 ]$ ; confidence 0.610

273. c02147035.png ; $j = 1 , \dots , r$ ; confidence 0.610

274. d13011045.png ; $\gamma _ { 1 } ^ { 2 } = - 1 , \gamma _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = 1,$ ; confidence 0.610

275. t12020071.png ; $\operatorname { max } _ { j = 1 , \ldots , n - m + 1 } | s _ { j } | \geq m \left( \frac { 1 } { 2 } + \frac { m } { 8 n } + \frac { 3 m ^ { 2 } } { 64 n ^ { 2 } } \right).$ ; confidence 0.610

276. s09108025.png ; $\alpha_r$ ; confidence 1.000

277. o13003024.png ; $\widetilde { P _ { 8 } }$ ; confidence 1.000

278. f13016012.png ; $\mu _ { R _ { P } } ( M _ { P } ) = \mu _ { Q ( R / P ) } ( M \bigotimes _ { R / P } Q ( R / P ) ).$ ; confidence 1.000

279. b12055060.png ; $f ^ { - 1 } ( ( - \infty , t ] )$ ; confidence 0.610

280. i13004010.png ; $\Delta d_k = d_k - d_{k + 1}$ ; confidence 1.000

281. k055840166.png ; $E _ { \lambda }$ ; confidence 0.610

282. w12011093.png ; $( M _ { T } u ) ( x ) = | \operatorname { det } T \rceil ^ { - 1 / 2 } u ( T ^ { - 1 } x )$ ; confidence 0.610

283. a12015032.png ; $\operatorname { Ker } ( \operatorname{ad} ) = \{ 0 \}$ ; confidence 1.000

284. d1300106.png ; $\left( \begin{array} { c c c c } { h ( x _ { 1 } , y _ { 1 } ) } & { h ( x _ { 1 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 1 } , y _ { n } ) } \\ { h ( x _ { 2 } , y _ { 1 } ) } & { h ( x _ { 2 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 2 } , y _ { n } ) } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { h ( x _ { n } , y _ { 1 } ) } & { h ( x _ { n } , y _ { 2 } ) } & { \dots } & { h ( x _ { n } , y _ { n } ) } \end{array} \right);$ ; confidence 0.609

285. c1202203.png ; $\operatorname{id}: X \rightarrow X$ ; confidence 1.000

286. d12011030.png ; $\{ n _ { i } \}$ ; confidence 0.609

287. c13006028.png ; $\langle \langle A \rangle \rangle$ ; confidence 0.609

288. t1200706.png ; $= 2 ^ { 46 } . 3 ^ { 20 } . 5 ^ { 9 } . 7 ^ { 6 } . 11 ^ { 2 } . 13 ^ { 3 }.$ ; confidence 1.000

289. a12012038.png ; $v - A v = ( I - A ) v$ ; confidence 0.609

290. e12010047.png ; ${\bf S} = c \bf E \times H,$ ; confidence 1.000

291. s1306408.png ; $\operatorname { log } a \in L ^ { 1 } (\bf T )$ ; confidence 1.000

292. b13026042.png ; $\Omega _ { 1 } \subset \Omega$ ; confidence 0.609

293. i130090170.png ; $\omega : \operatorname { Gal } ( k ( \mu _ { p } ) / k ) \rightarrow {\bf Z} _ { p } ^ { \times } ( \omega ( a ) \equiv a \operatorname { mod } p )$ ; confidence 1.000

294. h13002077.png ; $( \alpha _ { 1 } \cup \gamma ^ { d } , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.609

295. t1301007.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , T ) = 0$ ; confidence 0.609

296. d13018062.png ; $f \tau$ ; confidence 0.609

297. s13034035.png ; $\ldots \subset C _ { 3 } \subset \ldots \subset C _ { 2 } \subset \ldots \subset C _ { 1 } \subset \ldots \subset C _ { 0 } = R \cal K$ ; confidence 1.000

298. w12021044.png ; $\sum _ { i = 1 } ^ { k } s _ { i } A _ { i } A _ { i } ^ { T } = ( m \sum _ { i = 1 } ^ { k } s _ { i } ) I _ { m }$ ; confidence 1.000

299. w120060109.png ; $T _ { F \mathbf{R} }$ ; confidence 0.609

300. b12046053.png ; $\chi _ { f } ( x y ) = 0$ ; confidence 0.609

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/51. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/51&oldid=44461