Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/16"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 16 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 16 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020169.png ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012061.png ; $A G ( 2 , q )$ ; confidence 0.896
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463
+
2. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235022.png ; $D = b ^ { 2 } - a c$ ; confidence 0.896
  
3. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r0824503.png ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463
+
3. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100198.png ; $f V = V f = p$ ; confidence 0.896
  
4. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002010.png ; $g \neq 1$ ; confidence 0.896
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a0117402.png ; $X$ ; confidence 0.896
  
6. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170110.png ; $X \rightarrow X$ ; confidence 0.896
  
7. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
+
8. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051130/i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040249.png ; $H _ { k } + 1 , \ldots , H _ { k } + m$ ; confidence 0.462
+
9. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030020.png ; $r$ ; confidence 0.461
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099050.png ; $g ^ { i j } T _ { i j k } = 0$ ; confidence 0.896
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461
+
11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013030.png ; $F = \{ C : \operatorname { Hom } _ { \Lambda } ( T , C ) = 0 \}$ ; confidence 0.896
  
12. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138045.png ; $x \& ( x \vee y ) = x , \quad x \vee ( x \& y ) = x$ ; confidence 0.895
  
13. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240363.png ; $SS _ { H }$ ; confidence 0.895
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040285.png ; $\$ 4$ ; confidence 0.460
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180179.png ; $V \subseteq \square ^ { \alpha } U$ ; confidence 0.895
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050170.png ; $K ( n )$ ; confidence 0.460
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086036.png ; $M \mapsto M ^ { * }$ ; confidence 0.895
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a0102008.png ; $\square _ { R } \Omega$ ; confidence 0.460
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png ; $B$ ; confidence 0.895
  
17. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png ; $p _ { i }$ ; confidence 0.459
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240106.png ; $t$ ; confidence 0.895
  
18. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
+
18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040346.png ; $= \{ \langle \alpha , b \rangle \in A ^ { 2 } : \epsilon ^ { A } ( \alpha , b ) \in \text { Ffor all } \epsilon ( x , y ) \in E ( x , y ) \}$ ; confidence 0.459
+
19. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021081.png ; $\omega ; 0$ ; confidence 0.458
+
20. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047380/h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
+
21. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085810/s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895
  
23. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
+
23. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110192.png ; $X \in \Phi$ ; confidence 0.895
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018010.png ; $\Delta ^ { 2 } S _ { n } = \Delta S _ { n + 1 } - \Delta S _ { n } = S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n }$ ; confidence 0.895
  
25. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074530/p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016023.png ; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024034.png ; $w ^ { 2 } = a 0 z + a 1$ ; confidence 0.455
+
26. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130124.png ; $\Gamma = \operatorname { End } _ { \Lambda } T$ ; confidence 0.895
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018022.png ; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894
  
29. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020030.png ; $N > 2$ ; confidence 0.894
  
30. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $T _ { F }$ ; confidence 0.455
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022022.png ; $Y$ ; confidence 0.894
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002060.png ; $( q ^ { d + 1 } ( 1 + \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } ) , q ^ { d } \cdot \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , q ^ { d } \cdot \frac { q ^ { d } - 1 } { q ^ { - 1 } } )$ ; confidence 0.455
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012047.png ; $W _ { 1 }$ ; confidence 0.455
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431027.png ; $\exists x A$ ; confidence 0.894
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071011.png ; $( A )$ ; confidence 0.454
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876050.png ; $\| \xi _ { i j } \|$ ; confidence 0.894
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004025.png ; $L$ ; confidence 0.453
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146084.png ; $m > 1$ ; confidence 0.894
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021026.png ; $A _ { 1 } , B _ { 1 } , \dots , A , B _ { g }$ ; confidence 0.453
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650391.png ; $K S$ ; confidence 0.893
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040553.png ; $G$ ; confidence 0.453
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008029.png ; $v \in V$ ; confidence 0.893
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010204.png ; $I - ( \tilde { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.452
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048046.png ; $D ^ { \perp }$ ; confidence 0.893
  
38. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452
+
38. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452
+
39. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631089.png ; $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ ; confidence 0.893
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010197.png ; $1 \leq \| T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 } \delta A \| \leq$ ; confidence 0.451
+
40. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640156.png ; $p _ { g } = 1$ ; confidence 0.893
  
41. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
+
41. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120219.png ; $H _ { K } ^ { p } ( X , F )$ ; confidence 0.893
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060151.png ; $P _ { F } ^ { \# } ( n )$ ; confidence 0.450
+
42. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690054.png ; $C ^ { k } = \operatorname { Map } ( G ^ { k } , A ) , \quad k = 0,1,2$ ; confidence 0.893
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012064.png ; $n = 0,1 , \dots$ ; confidence 0.450
+
43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140149.png ; $K$ ; confidence 0.892
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121070.png ; $q ( x ) \neq 0 \quad \text { for } x \in I , x \neq x _ { 0 } , \quad q ^ { \prime } ( x _ { 0 } ) > 0$ ; confidence 0.892
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a0116408.png ; $| K _ { V } |$ ; confidence 0.892
  
46. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
+
46. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696093.png ; $\eta ^ { \prime }$ ; confidence 0.892
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017025.png ; $f$ ; confidence 0.450
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008035.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892
  
48. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
+
48. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780356.png ; $\Omega$ ; confidence 0.892
  
49. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449
+
49. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024900/c02490030.png ; $q = p ^ { r }$ ; confidence 0.892
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200807.png ; $j ( x ) = \alpha _ { j , i } ( x )$ ; confidence 0.448
+
50. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060042.png ; $Y _ { z }$ ; confidence 0.447
+
51. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012054.png ; $\frac { \operatorname { lim } } { k \rightarrow \infty } \frac { n _ { k } } { | \lambda _ { k } | } = 0$ ; confidence 0.447
+
52. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
  
53. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
+
53. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892
  
54. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047540/h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447
+
54. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086160/s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
  
55. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090820/s0908209.png ; $X ^ { * }$ ; confidence 0.447
+
55. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771016.png ; $W ( G )$ ; confidence 0.892
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
+
56. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590596.png ; $\frac { d w } { d z } = P ( z , w )$ ; confidence 0.892
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004017.png ; $\phi _ { L }$ ; confidence 0.446
+
57. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090299.png ; $n ^ { + }$ ; confidence 0.892
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040246.png ; $C ^ { M }$ ; confidence 0.446
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a01064019.png ; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a11046021.png ; $\frac { \partial E } { \partial t } + \frac { \partial F } { \partial l } = 0$ ; confidence 0.892
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037054.png ; $P \{ X _ { k } ^ { + } = 0 \} = 1$ ; confidence 0.446
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050182.png ; $a ( n )$ ; confidence 0.892
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001062.png ; $i$ ; confidence 0.446
+
61. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848081.png ; $( G )$ ; confidence 0.892
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037022.png ; $t \rightarrow S$ ; confidence 0.445
+
62. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120552.png ; $- F ^ { * } ( 0 , y ^ { * } ) \rightarrow \operatorname { sup } , \quad y ^ { * } \in Y ^ { * }$ ; confidence 0.892
  
63. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
+
63. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820111.png ; $A \otimes z Q$ ; confidence 0.892
  
64. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a0109907.png ; $k = ( \frac { d ^ { 2 } r } { d s ^ { 2 } } , \frac { d ^ { 3 } r } { d s ^ { 3 } } )$ ; confidence 0.891
  
65. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891
  
66. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086490/s086490118.png ; $d ^ { \prime }$ ; confidence 0.445
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
  
67. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
+
67. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040214.png ; $K _ { A }$ ; confidence 0.444
+
68. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443
+
69. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868023.png ; $\Gamma ( G ) \subset \mathfrak { h }$ ; confidence 0.891
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a0141708.png ; $X = M / \Gamma$ ; confidence 0.891
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891
  
72. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565076.png ; $\{ f _ { n } \}$ ; confidence 0.891
  
73. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100208.png ; $n = k - \lambda$ ; confidence 0.891
  
74. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040127.png ; $A$ ; confidence 0.891
  
75. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443
+
75. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631097.png ; $\Delta ( \alpha ) = \alpha \otimes 1 + 1 \otimes \alpha$ ; confidence 0.891
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040351.png ; $x \leftrightarrow T$ ; confidence 0.441
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $Y$ ; confidence 0.441
+
77. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696064.png ; $y _ { j } \theta$ ; confidence 0.890
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052055.png ; $( a ( h ) ) ^ { h - q }$ ; confidence 0.441
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040746.png ; $P \cup R$ ; confidence 0.441
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015040.png ; $( g ) Y = g Y g ^ { - 1 } , ( \text { ad } X ) Y = X Y - Y X$ ; confidence 0.890
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004095.png ; $d > 1$ ; confidence 0.441
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300141.png ; $\tau \in P _ { \mu } / \Pi$ ; confidence 0.890
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001037.png ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440
+
81. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
  
82. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256041.png ; $300$ ; confidence 0.440
+
82. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510120.png ; $\operatorname { dim } \mathfrak { g } = n ( 2 n - 1 )$ ; confidence 0.890
  
83. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580244.png ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440
+
83. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970120.png ; $( A , m , e )$ ; confidence 0.889
  
84. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
+
84. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014091.png ; $R \simeq K Q / I$ ; confidence 0.889
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a1101509.png ; $\alpha , b , \ldots$ ; confidence 0.439
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015018.png ; $( G )$ ; confidence 0.889
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030032.png ; $e ^ { x } \alpha + 1$ ; confidence 0.439
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180167.png ; $i , j \in \omega$ ; confidence 0.889
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040671.png ; $\{ X , v \}$ ; confidence 0.439
+
87. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090388.png ; $\pi$ ; confidence 0.889
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022081.png ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300205.png ; $X \subset R ^ { n }$ ; confidence 0.439
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021057.png ; $( \frac { a - x } { z ^ { x } } + \ldots + \frac { a - 2 } { z ^ { 2 } } + f ( z ) ) d z$ ; confidence 0.439
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022051.png ; $U W ^ { T } = 0$ ; confidence 0.439
+
91. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210107.png ; $k , b + k$ ; confidence 0.439
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028067.png ; $x y \in E ( D )$ ; confidence 0.889
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438
+
94. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249023.png ; $F = G _ { 0 } \subset G _ { 1 } \subset \ldots$ ; confidence 0.888
  
95. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888
  
96. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055026.png ; $S ^ { x - 1 } = O ( n ) / O ( n - 1 )$ ; confidence 0.438
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148078.png ; $a ^ { 1 / n }$ ; confidence 0.888
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058010.png ; $\chi _ { k + 1 } ( \int _ { x _ { 0 } } ^ { x _ { n } } \Omega ( x , t ) y ^ { ( k + 2 ) } ( t ) d t ) h ^ { k + 1 } + O ( h ^ { k + 2 } )$ ; confidence 0.437
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054047.png ; $\{ a , b \} = 1$ ; confidence 0.888
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680195.png ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020066.png ; $A \oplus B$ ; confidence 0.887
  
101. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042030/f04203082.png ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437
+
101. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590191.png ; $u , v , u v \in U _ { 2 }$ ; confidence 0.887
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001094.png ; $\overline { X } \rightarrow X$ ; confidence 0.437
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110170/d11017032.png ; $C _ { 3 }$ ; confidence 0.887
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024030.png ; $n \times p$ ; confidence 0.435
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017010.png ; $b ( t ) = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) p ( \alpha , t ) d \alpha$ ; confidence 0.887
  
104. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
+
104. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649064.png ; $R < \infty$ ; confidence 0.887
  
105. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091011.png ; $C _ { 1 } \frac { u ( t _ { n } + 1 ) - u ( t _ { n } ) } { \tau _ { n } } = f - A u ( t _ { n } )$ ; confidence 0.887
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102208.png ; $w _ { \nu } = ( \omega _ { 1 } \nu , \ldots , \omega _ { p } \nu ) , \quad \nu = 1 , \ldots , 2 p$ ; confidence 0.435
+
106. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027240/c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060143.png ; $\pi$ ; confidence 0.434
+
107. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063140/m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434
+
108. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
  
109. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
+
109. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018040.png ; $s = s 1$ ; confidence 0.434
+
110. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101204.png ; $\{ A _ { N } \}$ ; confidence 0.433
+
111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029080.png ; $\pi x : X _ { \delta } \rightarrow X$ ; confidence 0.433
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200603.png ; $\Omega \subset R ^ { m }$ ; confidence 0.887
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417020.png ; $M = P ^ { 1 } ( C )$ ; confidence 0.887
  
114. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433
+
114. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590485.png ; $X ( a ) = 0$ ; confidence 0.887
  
115. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650457.png ; $d \equiv \square _ { \Phi } h \Leftrightarrow \{ \alpha \in \Lambda : d ( \alpha ) = h ( \alpha ) \} \in \Phi \quad ( d , h \in D )$ ; confidence 0.886
  
116. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073840/p0738407.png ; $A \supset B$ ; confidence 0.432
+
116. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451033.png ; $\phi : M ( pt ) \rightarrow h _ { M } ( pt )$ ; confidence 0.886
  
117. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077370/r07737019.png ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432
+
117. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747034.png ; $( i i + 1 )$ ; confidence 0.886
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220106.png ; $i$ ; confidence 0.432
+
118. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006036.png ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } } \end{array} \right.$ ; confidence 0.432
+
119. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431
+
120. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png ; $n \geq 12$ ; confidence 0.886
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033014.png ; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028069.png ; $x z \in E ( D )$ ; confidence 0.886
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $\varepsilon \in X$ ; confidence 0.430
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068033.png ; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886
  
124. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430
+
124. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120252.png ; $\operatorname { Re } ( z e ^ { - i \phi } ) > c$ ; confidence 0.886
  
125. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256016.png ; $1$ ; confidence 0.430
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138046.png ; $x \& ( y \vee z ) = ( x \& y ) \vee ( x \& z )$ ; confidence 0.886
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
+
126. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310143.png ; $( t _ { j } )$ ; confidence 0.885
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650236.png ; $\alpha \in \Lambda$ ; confidence 0.885
  
128. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071026.png ; $( A _ { i } )$ ; confidence 0.428
+
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
+
130. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $t \subset v$ ; confidence 0.885
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004090.png ; $d > 5$ ; confidence 0.427
+
131. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
+
132. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i0523503.png ; $y \rightarrow \gamma x + \delta y$ ; confidence 0.885
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102405.png ; $\alpha ; ( z )$ ; confidence 0.427
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650447.png ; $2$ ; confidence 0.885
  
134. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015014.png ; $\alpha ( t )$ ; confidence 0.885
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016026.png ; $x _ { k + 1 } = D ^ { - 1 } ( b - ( L + U ) x _ { k } )$ ; confidence 0.426
+
135. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310124.png ; $R ^ { 23 } = \sum _ { i } 1 \otimes x _ { i } \otimes y _ { i }$ ; confidence 0.885
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426
+
136. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830319.png ; $u _ { A }$ ; confidence 0.885
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037019.png ; $s \in R _ { + }$ ; confidence 0.425
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164098.png ; $V \rightarrow V ^ { \prime }$ ; confidence 0.885
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130170/a13017025.png ; $B \circ \Pi$ ; confidence 0.885
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023068.png ; $c _ { q }$ ; confidence 0.425
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005024.png ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885
  
140. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233050.png ; $x <$ ; confidence 0.424
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121077.png ; $y _ { j } ( x ) = Y _ { j } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] , \quad a \leq x \leq x _ { 0 } , \quad j = 0,1$ ; confidence 0.884
  
142. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240334.png ; $\Gamma = B X$ ; confidence 0.884
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240239.png ; $MS _ { e }$ ; confidence 0.884
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024077.png ; $\int _ { P _ { 1 } } ^ { P _ { 2 } } \omega _ { P _ { 3 } P _ { 4 } } = \int _ { P _ { 3 } } ^ { P _ { 4 } } \omega _ { P _ { 1 } P _ { 2 } }$ ; confidence 0.423
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
  
145. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
+
145. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $T ( M )$ ; confidence 0.884
  
146. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055037.png ; $G = Z _ { p }$ ; confidence 0.884
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a1101607.png ; $a _ { i }$ ; confidence 0.422
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081061.png ; $\int _ { t _ { 0 } } ^ { t _ { 1 } } [ \overline { \xi } l ( y ) - \overline { l ^ { * } ( \xi ) } y ] d t = 0$ ; confidence 0.884
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102205.png ; $X _ { t }$ ; confidence 0.422
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040021.png ; $t \mapsto T ^ { * } ( t ) x ^ { * } \text { is strongly continuous on } [ 0 , \infty ) \}$ ; confidence 0.884
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040240.png ; $\varphi _ { L } : A \hookrightarrow P ^ { S }$ ; confidence 0.422
+
149. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e0369602.png ; $F \supset F _ { 0 }$ ; confidence 0.883
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421
+
150. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820155.png ; $\alpha _ { \gamma } ( \gamma _ { 0 } ( T ) ) = \gamma ( T )$ ; confidence 0.883
  
151. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
+
151. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058030.png ; $k = 1 , v _ { 1 } = 1 / 2 , v 0 = 1 / 2$ ; confidence 0.421
+
152. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010267.png ; $\hat { \lambda } = \lambda + \epsilon ^ { 1 / m } \lambda _ { 1 } + \epsilon ^ { 2 / m } \lambda _ { 2 } +$ ; confidence 0.420
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020064.png ; $T : \mathfrak { A } \rightarrow \mathfrak { A } / \mathfrak { A } _ { 1 }$ ; confidence 0.420
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c02542017.png ; $i = 0,1$ ; confidence 0.883
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006018.png ; $N ( n )$ ; confidence 0.419
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018054.png ; $( S _ { n } )$ ; confidence 0.882
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018018.png ; $Z 1,22$ ; confidence 0.419
+
157. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610069.png ; $\pi _ { i } ( M ) = 0$ ; confidence 0.882
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174022.png ; $\operatorname { PLG } ( N , k )$ ; confidence 0.882
  
159. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700100.png ; $q ^ { 1 }$ ; confidence 0.419
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070111.png ; $U _ { a }$ ; confidence 0.882
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018063.png ; $S _ { 1 } , \ldots , S _ { k }$ ; confidence 0.418
+
160. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010224.png ; $E _ { i } = x ^ { i } y ^ { i }$ ; confidence 0.418
+
161. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882
  
162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418
+
162. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882
  
163. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417
+
163. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $\epsilon$ ; confidence 0.882
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006086.png ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417
+
165. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310123.png ; $R ^ { 13 } = \sum _ { i } x _ { i } \otimes 1 \otimes y _ { i }$ ; confidence 0.882
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040434.png ; $F _ { 0 }$ ; confidence 0.417
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121031.png ; $\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } a _ { n } z ^ { - 3 n / 2 } \quad \text { for } | \operatorname { arg } z | \leq \pi - \epsilon$ ; confidence 0.882
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040786.png ; $A , B \in K$ ; confidence 0.882
  
168. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040126.png ; $4$ ; confidence 0.882
  
169. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416
+
169. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427080.png ; $[ \alpha , \mathfrak { g } - 1 ] = 0$ ; confidence 0.882
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004054.png ; $F \subset A$ ; confidence 0.416
+
170. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090295.png ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040242.png ; $Q \in H ^ { 0 } ( P ^ { 8 } , I _ { A / P ^ { 8 } } ( 2 ) )$ ; confidence 0.415
+
171. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590402.png ; $y = \sum _ { i \geq n } a _ { i } t$ ; confidence 0.881
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415
+
172. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058470/l0584705.png ; $90 = g$ ; confidence 0.881
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164035.png ; $t = r = d = 0$ ; confidence 0.881
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414
+
175. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
+
176. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881
  
177. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
+
177. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040527.png ; $\{ A , C \}$ ; confidence 0.413
+
178. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510105.png ; $\operatorname { dim } \mathfrak { g } = n ( n + 2 )$ ; confidence 0.881
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a0107008.png ; $r$ ; confidence 0.881
  
180. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027061.png ; $p _ { j } \geq 0$ ; confidence 0.881
  
181. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005095.png ; $v \in G$ ; confidence 0.413
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539044.png ; $i , j = 1,2$ ; confidence 0.881
  
182. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
+
182. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631012.png ; $S : A \rightarrow A \otimes A$ ; confidence 0.881
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413
+
183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090355.png ; $M _ { K } = K \otimes _ { Z } M$ ; confidence 0.880
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006040.png ; $40$ ; confidence 0.413
+
184. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120443.png ; $A \cup \{ O \}$ ; confidence 0.880
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016028.png ; $x _ { k + 1 } = ( D + L ) ^ { - 1 } ( b - U _ { x _ { k } } )$ ; confidence 0.412
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050176.png ; $F _ { q }$ ; confidence 0.880
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a1100708.png ; $\langle \sum _ { k = 1 } ^ { n } \| T x _ { k } \| ^ { p } ) ^ { 1 / p } \leq$ ; confidence 0.412
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950110.png ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X , \quad \nabla _ { f } Y X = f \nabla _ { Y } X$ ; confidence 0.880
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029078.png ; $( X _ { \delta } , \pi X )$ ; confidence 0.412
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040403.png ; $P K$ ; confidence 0.879
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043024.png ; $q i$ ; confidence 0.412
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879
  
189. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007020.png ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879
  
190. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
+
190. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021030.png ; $A _ { j } = \int _ { a _ { j } } \omega , \quad B _ { j } = \int _ { b _ { j } } \omega , \quad j = 1 , \ldots , g$ ; confidence 0.412
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017038.png ; $F \equiv \operatorname { grad } \phi$ ; confidence 0.879
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017045.png ; $[ T ] n = - \rho U [ a ]$ ; confidence 0.412
+
192. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797085.png ; $H ^ { * } ( G , K )$ ; confidence 0.879
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040218.png ; $I _ { A / P } ^ { 7 }$ ; confidence 0.411
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006026.png ; $| I | = \operatorname { card } ( R / I )$ ; confidence 0.879
  
194. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810261.png ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411
+
194. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630100.png ; $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ ; confidence 0.879
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070011.png ; $r = \{ \alpha \in A : ( \alpha , 0 ) \in r \}$ ; confidence 0.410
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240222.png ; $r$ ; confidence 0.879
  
196. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029079.png ; $X _ { \delta }$ ; confidence 0.879
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006042.png ; $P _ { q }$ ; confidence 0.879
  
198. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008026.png ; $C _ { \psi }$ ; confidence 0.409
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111603.png ; $X = \operatorname { Spec } A$ ; confidence 0.879
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $\tau ^ { n }$ ; confidence 0.408
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093030.png ; $\psi _ { n + 1 } = \text { const, } \quad \omega _ { n + 1 } = \alpha \frac { \partial \psi _ { n } } { \partial n } + \omega _ { n }$ ; confidence 0.879
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040120.png ; $( F _ { 1 } . F _ { 2 } ) = d$ ; confidence 0.408
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a11038049.png ; $T ^ { * }$ ; confidence 0.878
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099043.png ; $N \nu = 1$ ; confidence 0.878
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040225.png ; $\hat { K } _ { A }$ ; confidence 0.407
+
202. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590501.png ; $X : G \rightarrow R$ ; confidence 0.878
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020640/c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406
+
203. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025170/c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
  
204. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406
+
204. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010213.png ; $\delta \lambda _ { i } \approx \frac { y ^ { i } ^ { * } \delta A x ^ { i } } { y ^ { i ^ { * } } x ^ { i } }$ ; confidence 0.406
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $H \phi$ ; confidence 0.878
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106706.png ; $\overline { v }$ ; confidence 0.405
+
206. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
  
207. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010039.png ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878
  
208. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
+
208. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310113.png ; $( \text { id } \otimes \Delta ) ( R ) = R ^ { 13 } R ^ { 12 }$ ; confidence 0.878
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040649.png ; $57$ ; confidence 0.404
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105803.png ; $y _ { n + 1 } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k } u _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } )$ ; confidence 0.404
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150023.png ; $x = \lambda ( \theta ) , y = \Delta ( \theta )$ ; confidence 0.878
  
211. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
+
211. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b1105803.png ; $E ^ { * }$ ; confidence 0.878
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103209.png ; $i = 2 , \ldots , s$ ; confidence 0.404
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050058.png ; $K ^ { \prime }$ ; confidence 0.878
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005069.png ; $0 , T$ ; confidence 0.403
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040153.png ; $C ^ { 2 } : 1 E$ ; confidence 0.878
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070012.png ; $r = K e r r ^ { - 1 }$ ; confidence 0.403
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640114.png ; $p _ { g } = 0$ ; confidence 0.877
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121021.png ; $x \rightarrow - \infty$ ; confidence 0.877
  
216. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877
  
217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600205.png ; $( \frac { K / k } { \mathfrak { p } } ) )$ ; confidence 0.877
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002050.png ; $21$ ; confidence 0.401
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l05866032.png ; $N ( n , R )$ ; confidence 0.877
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
+
219. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877
  
220. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $Z \in G$ ; confidence 0.401
+
220. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040116.png ; $2$ ; confidence 0.401
+
221. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m06443090.png ; $B O$ ; confidence 0.877
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102403.png ; $Z , W$ ; confidence 0.401
+
222. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520250.png ; $d j \neq 0$ ; confidence 0.877
  
223. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p07283021.png ; $\epsilon _ { i j } ^ { k }$ ; confidence 0.400
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002062.png ; $3$ ; confidence 0.876
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012084.png ; $c _ { t } ^ { \prime } \geq c _ { t }$ ; confidence 0.400
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007023.png ; $: C ( K ) \rightarrow L _ { p } ( K , \mu )$ ; confidence 0.876
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018031.png ; $A _ { x } = \alpha _ { 1 } + \ldots + \alpha _ { x }$ ; confidence 0.399
+
225. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043620/g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033032.png ; $\hat { N }$ ; confidence 0.399
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101806.png ; $z = z 0$ ; confidence 0.876
  
227. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060090/l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015049.png ; $N = \{ X \in \mathfrak { g } :$ ; confidence 0.876
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004099.png ; $\psi \in S$ ; confidence 0.398
+
228. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120403.png ; $y = 0$ ; confidence 0.876
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104209.png ; $\{ X _ { n } \}$ ; confidence 0.398
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201304.png ; $E _ { \theta } [ H ( \theta , X ) ] = 0 , \quad \text { if } \theta = \theta ^ { * }$ ; confidence 0.398
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145024.png ; $p 3$ ; confidence 0.875
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028035.png ; $( - 1 ) ^ { x } \chi ( G ; - k )$ ; confidence 0.398
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149063.png ; $f _ { 1 } ^ { \prime } ( x ) , \ldots , f _ { k } ^ { \prime } ( x )$ ; confidence 0.875
  
232. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052150/i0521507.png ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302403.png ; $n \times 1$ ; confidence 0.875
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042079.png ; $25$ ; confidence 0.396
+
233. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868042.png ; $Z _ { g } = \Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.875
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022033.png ; $5$ ; confidence 0.396
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233063.png ; $f ( X )$ ; confidence 0.875
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050014.png ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
  
236. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081560/r081560116.png ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600189.png ; $( K / k )$ ; confidence 0.875
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021070.png ; $P _ { 2 }$ ; confidence 0.396
+
237. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525091.png ; $z _ { k } \in L$ ; confidence 0.875
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718064.png ; $H ( K )$ ; confidence 0.395
+
238. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
  
239. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020144.png ; $\operatorname { gr } D _ { X }$ ; confidence 0.395
+
239. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
  
240. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008028.png ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394
+
240. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110340/a1103408.png ; $\theta _ { i }$ ; confidence 0.393
+
241. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012057.png ; $k = 0,1 , \ldots ,$ ; confidence 0.393
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164087.png ; $H _ { 2 } ( V , Z )$ ; confidence 0.875
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040281.png ; $X \rightarrow y$ ; confidence 0.392
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007019.png ; $| \frac { \partial U ( t , s ) } { \partial t } | | \leq \frac { C } { t - s } , \quad s , t \in [ 0 , T ]$ ; confidence 0.392
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050132.png ; $R ^ { N }$ ; confidence 0.875
  
245. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093570/t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220067.png ; $f _ { 0 } ( z )$ ; confidence 0.874
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010194.png ; $\hat { \lambda } I - A - \delta A = ( \hat { \lambda } I - A ) [ I - ( \hat { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.391
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010299.png ; $m$ ; confidence 0.874
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040181.png ; $\alpha \in G$ ; confidence 0.390
+
247. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064440/m06444056.png ; $c = 0$ ; confidence 0.874
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001086.png ; $\| \delta x \| = \| A ^ { - 1 } B ^ { - 1 } B N \| =$ ; confidence 0.390
+
248. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085830/s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874
  
249. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001061.png ; $| \delta b | \leq \epsilon | b |$ ; confidence 0.389
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060031.png ; $p = - \infty$ ; confidence 0.874
  
250. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780377.png ; $1 B S G$ ; confidence 0.389
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076024.png ; $J = I + \epsilon \omega ^ { \prime } x v / \omega ^ { 2 }$ ; confidence 0.874
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240508.png ; $E ( Z _ { 13 } ) = 0$ ; confidence 0.388
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162016.png ; $m > 2$ ; confidence 0.874
  
252. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388
+
252. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043930/g0439306.png ; $h ; G \rightarrow A$ ; confidence 0.874
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200601.png ; $\left. \begin{array} { c } { \frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u = f ( x , t ) } \\ { ( x , t ) \in \Omega \times [ 0 , T ] } \\ { u ( x , 0 ) = u _ { 0 } ( x ) , \quad x \in \Omega } \end{array} \right.$ ; confidence 0.387
+
253. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883010.png ; $\epsilon \neq 0$ ; confidence 0.874
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006018.png ; $P _ { B }$ ; confidence 0.385
+
254. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100235.png ; $D _ { n }$ ; confidence 0.874
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a1106409.png ; $S U N$ ; confidence 0.385
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046086.png ; $f ( \alpha + h ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( h )$ ; confidence 0.873
  
256. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004015.png ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385
+
256. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590274.png ; $\phi _ { \alpha } ( \alpha ) \neq 0$ ; confidence 0.873
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010054.png ; $X ^ { * }$ ; confidence 0.384
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236032.png ; $E ^ { 3 }$ ; confidence 0.873
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024066.png ; $y _ { i j k } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j } + e _ { j k }$ ; confidence 0.384
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040741.png ; $R ^ { \prime }$ ; confidence 0.873
  
259. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099015.png ; $P _ { \alpha }$ ; confidence 0.384
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028054.png ; $AO ( G )$ ; confidence 0.873
  
260. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132023.png ; $v _ { 0 } ^ { k }$ ; confidence 0.384
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240408.png ; $y _ { i j k }$ ; confidence 0.873
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105807.png ; $y _ { n + 1 } ^ { ( i + 1 ) } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k - 1 } v _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } ) + h v _ { 1 } f ( x _ { n + 1 } , y _ { n + 1 } ^ { ( i ) } )$ ; confidence 0.383
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600131.png ; $d ( n )$ ; confidence 0.873
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032036.png ; $n _ { S }$ ; confidence 0.383
+
262. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700270.png ; $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ ; confidence 0.873
  
263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202805.png ; $X *$ ; confidence 0.383
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015019.png ; $\tau ( S )$ ; confidence 0.873
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382
+
264. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764042.png ; $C _ { n } + 1$ ; confidence 0.872
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016053.png ; $N ( . )$ ; confidence 0.872
  
266. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050970/i05097047.png ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010222.png ; $E$ ; confidence 0.382
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010196.png ; $( \hat { \lambda } I - A ) ^ { - 1 } = T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 }$ ; confidence 0.382
+
268. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046064.png ; $x , h \in X$ ; confidence 0.382
+
269. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021013.png ; $G$ ; confidence 0.872
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040405.png ; $P _ { U } K$ ; confidence 0.381
+
270. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427061.png ; $\{ a b c \} = ( a b ) c + ( b c ) a - ( c a ) b$ ; confidence 0.872
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025920/c02592019.png ; $631$ ; confidence 0.381
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055028.png ; $O ( n ) / O ( m )$ ; confidence 0.872
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012029.png ; $| \lambda _ { X } | \leq ( n + 1 ) ^ { \alpha - 1 }$ ; confidence 0.381
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101209.png ; $P _ { n } ^ { ( k ) } ( \lambda _ { k } ) = 0 , \quad k = 0 , \ldots , n - 1 ; \quad P _ { n } ^ { ( n ) } ( z ) \equiv 1$ ; confidence 0.872
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015010.png ; $F ( . | S _ { i } )$ ; confidence 0.381
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024049.png ; $\int _ { L } * \phi _ { i }$ ; confidence 0.871
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033016.png ; $\beta _ { y }$ ; confidence 0.380
+
274. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046071.png ; $P _ { m } ( x , h ) \neq 0$ ; confidence 0.871
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021055.png ; $a - 1$ ; confidence 0.380
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png ; $Q$ ; confidence 0.380
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010013.png ; $p _ { U } ( x ) = \operatorname { sup } \{ \mu ( x ) : \mu \in U ^ { \circ } \}$ ; confidence 0.871
  
277. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778021.png ; $w ^ { \prime }$ ; confidence 0.380
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022062.png ; $R ^ { 2 p }$ ; confidence 0.871
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040213.png ; $^ { * } S \text { s } 5$ ; confidence 0.380
+
278. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png ; $m = 2 i + 1$ ; confidence 0.871
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020088.png ; $\phi \gamma$ ; confidence 0.380
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033038.png ; $P ^ { \prime }$ ; confidence 0.871
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070106.png ; $d | n$ ; confidence 0.379
+
280. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930181.png ; $Y = C$ ; confidence 0.871
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010035.png ; $X = R$ ; confidence 0.378
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054032.png ; $x ( \alpha ) = x _ { 12 } ( \alpha )$ ; confidence 0.871
  
282. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $Sp ( 0 )$ ; confidence 0.378
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380155.png ; $x \rightarrow y = x \& y , \quad x \sim y = ( x + y ) + 1$ ; confidence 0.871
  
283. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635060.png ; $\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$ ; confidence 0.378
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380156.png ; $x + y = ( x \& y ) \vee ( x \& \overline { y } ) , \quad 1 = x \vee x$ ; confidence 0.871
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035011.png ; $n$ ; confidence 0.377
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022092.png ; $f \circ \pi$ ; confidence 0.871
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240236.png ; $n - r$ ; confidence 0.377
+
285. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631018.png ; $i ( c ) = c .1 _ { A }$ ; confidence 0.871
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015019.png ; $( g )$ ; confidence 0.376
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016071.png ; $d S _ { t } / d u _ { t } = c _ { 1 }$ ; confidence 0.870
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010246.png ; $( A - \hat { \lambda } I ) x ^ { ( i + 1 ) } = x ^ { ( i ) } , \quad i = 1 , \ldots , n$ ; confidence 0.376
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160163.png ; $\sum _ { j = 1 } ^ { M } \sum _ { t = 1 } ^ { T } c _ { j t } x _ { j t } \leq B$ ; confidence 0.870
  
288. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120321.png ; $4 x$ ; confidence 0.375
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302405.png ; $( n \times m )$ ; confidence 0.870
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035028.png ; $\lambda ( x ) \phi _ { \lambda } ( y )$ ; confidence 0.374
+
289. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590458.png ; $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ ; confidence 0.870
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374
+
290. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070086.png ; $Y \rightarrow S$ ; confidence 0.870
  
291. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471603.png ; $H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$ ; confidence 0.374
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870
  
292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k055850103.png ; $D _ { \alpha }$ ; confidence 0.374
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650499.png ; $A _ { a }$ ; confidence 0.870
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006032.png ; $\pi _ { K } ( x ) = \sum _ { n \leq x } P _ { K } ( n ) \sim \frac { x } { \operatorname { log } x } \operatorname { asx } \rightarrow \infty$ ; confidence 0.374
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007084.png ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240377.png ; $T ^ { 2 }$ ; confidence 0.373
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png ; $M _ { A g }$ ; confidence 0.870
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071047.png ; $n _ { j \neq i } Q _ { j } \subset Q _ { i }$ ; confidence 0.373
+
295. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703046.png ; $\mathfrak { M } _ { n }$ ; confidence 0.373
+
296. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870
  
297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
+
297. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087350/s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006014.png ; $n = ( n 1 , \ldots , n _ { m } )$ ; confidence 0.372
+
298. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004059.png ; $S \supset T$ ; confidence 0.870
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010139.png ; $i = 1 , \dots , r$ ; confidence 0.372
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540124.png ; $1 + a b \in R ^ { x }$ ; confidence 0.869
  
300. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450154.png ; $M _ { g }$ ; confidence 0.869

Latest revision as of 09:58, 17 October 2019

List

1. a13012061.png ; $A G ( 2 , q )$ ; confidence 0.896

2. i05235022.png ; $D = b ^ { 2 } - a c$ ; confidence 0.896

3. w098100198.png ; $f V = V f = p$ ; confidence 0.896

4. a11002010.png ; $g \neq 1$ ; confidence 0.896

5. a0117402.png ; $X$ ; confidence 0.896

6. a014170110.png ; $X \rightarrow X$ ; confidence 0.896

7. a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896

8. i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896

9. s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896

10. a01099050.png ; $g ^ { i j } T _ { i j k } = 0$ ; confidence 0.896

11. t13013030.png ; $F = \{ C : \operatorname { Hom } _ { \Lambda } ( T , C ) = 0 \}$ ; confidence 0.896

12. a01138045.png ; $x \& ( x \vee y ) = x , \quad x \vee ( x \& y ) = x$ ; confidence 0.895

13. a130240363.png ; $SS _ { H }$ ; confidence 0.895

14. a130180179.png ; $V \subseteq \square ^ { \alpha } U$ ; confidence 0.895

15. a01086036.png ; $M \mapsto M ^ { * }$ ; confidence 0.895

16. a1300106.png ; $B$ ; confidence 0.895

17. a130240106.png ; $t$ ; confidence 0.895

18. b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895

19. g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895

20. h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895

21. i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895

22. s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895

23. w120110192.png ; $X \in \Phi$ ; confidence 0.895

24. a12018010.png ; $\Delta ^ { 2 } S _ { n } = \Delta S _ { n + 1 } - \Delta S _ { n } = S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n }$ ; confidence 0.895

25. a11016023.png ; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895

26. t130130124.png ; $\Gamma = \operatorname { End } _ { \Lambda } T$ ; confidence 0.895

27. a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894

28. a01018022.png ; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894

29. a12020030.png ; $N > 2$ ; confidence 0.894

30. a12022022.png ; $Y$ ; confidence 0.894

31. a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894

32. a01431027.png ; $\exists x A$ ; confidence 0.894

33. l05876050.png ; $\| \xi _ { i j } \|$ ; confidence 0.894

34. a01146084.png ; $m > 1$ ; confidence 0.894

35. a011650391.png ; $K S$ ; confidence 0.893

36. a12008029.png ; $v \in V$ ; confidence 0.893

37. c11048046.png ; $D ^ { \perp }$ ; confidence 0.893

38. e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893

39. q07631089.png ; $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ ; confidence 0.893

40. a011640156.png ; $p _ { g } = 1$ ; confidence 0.893

41. d034120219.png ; $H _ { K } ^ { p } ( X , F )$ ; confidence 0.893

42. n06690054.png ; $C ^ { k } = \operatorname { Map } ( G ^ { k } , A ) , \quad k = 0,1,2$ ; confidence 0.893

43. t130140149.png ; $K$ ; confidence 0.892

44. a01121070.png ; $q ( x ) \neq 0 \quad \text { for } x \in I , x \neq x _ { 0 } , \quad q ^ { \prime } ( x _ { 0 } ) > 0$ ; confidence 0.892

45. a0116408.png ; $| K _ { V } |$ ; confidence 0.892

46. e03696093.png ; $\eta ^ { \prime }$ ; confidence 0.892

47. a13008035.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892

48. c022780356.png ; $\Omega$ ; confidence 0.892

49. c02490030.png ; $q = p ^ { r }$ ; confidence 0.892

50. e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892

51. h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892

52. l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892

53. m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892

54. s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892

55. w09771016.png ; $W ( G )$ ; confidence 0.892

56. s085590596.png ; $\frac { d w } { d z } = P ( z , w )$ ; confidence 0.892

57. w120090299.png ; $n ^ { + }$ ; confidence 0.892

58. a01064019.png ; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892

59. a11046021.png ; $\frac { \partial E } { \partial t } + \frac { \partial F } { \partial l } = 0$ ; confidence 0.892

60. a130050182.png ; $a ( n )$ ; confidence 0.892

61. l05848081.png ; $( G )$ ; confidence 0.892

62. d034120552.png ; $- F ^ { * } ( 0 , y ^ { * } ) \rightarrow \operatorname { sup } , \quad y ^ { * } \in Y ^ { * }$ ; confidence 0.892

63. f040820111.png ; $A \otimes z Q$ ; confidence 0.892

64. a0109907.png ; $k = ( \frac { d ^ { 2 } r } { d s ^ { 2 } } , \frac { d ^ { 3 } r } { d s ^ { 3 } } )$ ; confidence 0.891

65. a13024051.png ; $3$ ; confidence 0.891

66. b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891

67. c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891

68. f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891

69. l05868023.png ; $\Gamma ( G ) \subset \mathfrak { h }$ ; confidence 0.891

70. a0141708.png ; $X = M / \Gamma$ ; confidence 0.891

71. a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891

72. c02565076.png ; $\{ f _ { n } \}$ ; confidence 0.891

73. a1100208.png ; $n = k - \lambda$ ; confidence 0.891

74. a110040127.png ; $A$ ; confidence 0.891

75. q07631097.png ; $\Delta ( \alpha ) = \alpha \otimes 1 + 1 \otimes \alpha$ ; confidence 0.891

76. a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891

77. e03696064.png ; $y _ { j } \theta$ ; confidence 0.890

78. a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890

79. a12015040.png ; $( g ) Y = g Y g ^ { - 1 } , ( \text { ad } X ) Y = X Y - Y X$ ; confidence 0.890

80. a011300141.png ; $\tau \in P _ { \mu } / \Pi$ ; confidence 0.890

81. k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890

82. l058510120.png ; $\operatorname { dim } \mathfrak { g } = n ( 2 n - 1 )$ ; confidence 0.890

83. h047970120.png ; $( A , m , e )$ ; confidence 0.889

84. t13014091.png ; $R \simeq K Q / I$ ; confidence 0.889

85. a12015018.png ; $( G )$ ; confidence 0.889

86. a130180167.png ; $i , j \in \omega$ ; confidence 0.889

87. w120090388.png ; $\pi$ ; confidence 0.889

88. a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889

89. a13013047.png ; $i$ ; confidence 0.889

90. a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889

91. s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889

92. a11028067.png ; $x y \in E ( D )$ ; confidence 0.889

93. a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889

94. d03249023.png ; $F = G _ { 0 } \subset G _ { 1 } \subset \ldots$ ; confidence 0.888

95. a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888

96. a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888

97. a01148078.png ; $a ^ { 1 / n }$ ; confidence 0.888

98. s13054047.png ; $\{ a , b \} = 1$ ; confidence 0.888

99. a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887

100. a01020066.png ; $A \oplus B$ ; confidence 0.887

101. l058590191.png ; $u , v , u v \in U _ { 2 }$ ; confidence 0.887

102. d11017032.png ; $C _ { 3 }$ ; confidence 0.887

103. a12017010.png ; $b ( t ) = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) p ( \alpha , t ) d \alpha$ ; confidence 0.887

104. n06649064.png ; $R < \infty$ ; confidence 0.887

105. a01091011.png ; $C _ { 1 } \frac { u ( t _ { n } + 1 ) - u ( t _ { n } ) } { \tau _ { n } } = f - A u ( t _ { n } )$ ; confidence 0.887

106. c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887

107. m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887

108. p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887

109. q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887

110. v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887

111. w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887

112. a1200603.png ; $\Omega \subset R ^ { m }$ ; confidence 0.887

113. a01417020.png ; $M = P ^ { 1 } ( C )$ ; confidence 0.887

114. s085590485.png ; $X ( a ) = 0$ ; confidence 0.887

115. a011650457.png ; $d \equiv \square _ { \Phi } h \Leftrightarrow \{ \alpha \in \Lambda : d ( \alpha ) = h ( \alpha ) \} \in \Phi \quad ( d , h \in D )$ ; confidence 0.886

116. m06451033.png ; $\phi : M ( pt ) \rightarrow h _ { M } ( pt )$ ; confidence 0.886

117. b01747034.png ; $( i i + 1 )$ ; confidence 0.886

118. m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886

119. p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886

120. v0966506.png ; $n \geq 12$ ; confidence 0.886

121. a11033014.png ; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886

122. a11028069.png ; $x z \in E ( D )$ ; confidence 0.886

123. a01068033.png ; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886

124. d034120252.png ; $\operatorname { Re } ( z e ^ { - i \phi } ) > c$ ; confidence 0.886

125. a01138046.png ; $x \& ( y \vee z ) = ( x \& y ) \vee ( x \& z )$ ; confidence 0.886

126. q076310143.png ; $( t _ { j } )$ ; confidence 0.885

127. a011650236.png ; $\alpha \in \Lambda$ ; confidence 0.885

128. b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885

129. t12001030.png ; $5$ ; confidence 0.885

130. f11015067.png ; $t \subset v$ ; confidence 0.885

131. w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885

132. i0523503.png ; $y \rightarrow \gamma x + \delta y$ ; confidence 0.885

133. a011650447.png ; $2$ ; confidence 0.885

134. a11015014.png ; $\alpha ( t )$ ; confidence 0.885

135. q076310124.png ; $R ^ { 23 } = \sum _ { i } 1 \otimes x _ { i } \otimes y _ { i }$ ; confidence 0.885

136. d031830319.png ; $u _ { A }$ ; confidence 0.885

137. a01164098.png ; $V \rightarrow V ^ { \prime }$ ; confidence 0.885

138. a13017025.png ; $B \circ \Pi$ ; confidence 0.885

139. a12005024.png ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885

140. a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884

141. a01121077.png ; $y _ { j } ( x ) = Y _ { j } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] , \quad a \leq x \leq x _ { 0 } , \quad j = 0,1$ ; confidence 0.884

142. a130240334.png ; $\Gamma = B X$ ; confidence 0.884

143. a130240239.png ; $MS _ { e }$ ; confidence 0.884

144. c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884

145. c12019044.png ; $T ( M )$ ; confidence 0.884

146. a01055037.png ; $G = Z _ { p }$ ; confidence 0.884

147. a01081061.png ; $\int _ { t _ { 0 } } ^ { t _ { 1 } } [ \overline { \xi } l ( y ) - \overline { l ^ { * } ( \xi ) } y ] d t = 0$ ; confidence 0.884

148. a11040021.png ; $t \mapsto T ^ { * } ( t ) x ^ { * } \text { is strongly continuous on } [ 0 , \infty ) \}$ ; confidence 0.884

149. e0369602.png ; $F \supset F _ { 0 }$ ; confidence 0.883

150. f040820155.png ; $\alpha _ { \gamma } ( \gamma _ { 0 } ( T ) ) = \gamma ( T )$ ; confidence 0.883

151. l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883

152. m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883

153. a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883

154. a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883

155. c02542017.png ; $i = 0,1$ ; confidence 0.883

156. a12018054.png ; $( S _ { n } )$ ; confidence 0.882

157. s08610069.png ; $\pi _ { i } ( M ) = 0$ ; confidence 0.882

158. a01174022.png ; $\operatorname { PLG } ( N , k )$ ; confidence 0.882

159. a130070111.png ; $U _ { a }$ ; confidence 0.882

160. c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882

161. c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882

162. i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882

163. l11014038.png ; $\epsilon$ ; confidence 0.882

164. s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

165. q076310123.png ; $R ^ { 13 } = \sum _ { i } x _ { i } \otimes 1 \otimes y _ { i }$ ; confidence 0.882

166. a01121031.png ; $\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } a _ { n } z ^ { - 3 n / 2 } \quad \text { for } | \operatorname { arg } z | \leq \pi - \epsilon$ ; confidence 0.882

167. a130040786.png ; $A , B \in K$ ; confidence 0.882

168. a110040126.png ; $4$ ; confidence 0.882

169. j05427080.png ; $[ \alpha , \mathfrak { g } - 1 ] = 0$ ; confidence 0.882

170. w120090295.png ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882

171. s085590402.png ; $y = \sum _ { i \geq n } a _ { i } t$ ; confidence 0.881

172. l0584705.png ; $90 = g$ ; confidence 0.881

173. a01164035.png ; $t = r = d = 0$ ; confidence 0.881

174. a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881

175. h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881

176. r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881

177. y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881

178. l058510105.png ; $\operatorname { dim } \mathfrak { g } = n ( n + 2 )$ ; confidence 0.881

179. a0107008.png ; $r$ ; confidence 0.881

180. b12027061.png ; $p _ { j } \geq 0$ ; confidence 0.881

181. b01539044.png ; $i , j = 1,2$ ; confidence 0.881

182. q07631012.png ; $S : A \rightarrow A \otimes A$ ; confidence 0.881

183. w120090355.png ; $M _ { K } = K \otimes _ { Z } M$ ; confidence 0.880

184. d034120443.png ; $A \cup \{ O \}$ ; confidence 0.880

185. a130050176.png ; $F _ { q }$ ; confidence 0.880

186. a010950110.png ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X , \quad \nabla _ { f } Y X = f \nabla _ { Y } X$ ; confidence 0.880

187. a130040403.png ; $P K$ ; confidence 0.879

188. a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879

189. a13007020.png ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879

190. d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879

191. a11017038.png ; $F \equiv \operatorname { grad } \phi$ ; confidence 0.879

192. h04797085.png ; $H ^ { * } ( G , K )$ ; confidence 0.879

193. a13006026.png ; $| I | = \operatorname { card } ( R / I )$ ; confidence 0.879

194. r077630100.png ; $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ ; confidence 0.879

195. a130240222.png ; $r$ ; confidence 0.879

196. a01029079.png ; $X _ { \delta }$ ; confidence 0.879

197. a13006042.png ; $P _ { q }$ ; confidence 0.879

198. a0111603.png ; $X = \operatorname { Spec } A$ ; confidence 0.879

199. a01093030.png ; $\psi _ { n + 1 } = \text { const, } \quad \omega _ { n + 1 } = \alpha \frac { \partial \psi _ { n } } { \partial n } + \omega _ { n }$ ; confidence 0.879

200. a11038049.png ; $T ^ { * }$ ; confidence 0.878

201. a01099043.png ; $N \nu = 1$ ; confidence 0.878

202. s085590501.png ; $X : G \rightarrow R$ ; confidence 0.878

203. c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878

204. c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878

205. l12006098.png ; $H \phi$ ; confidence 0.878

206. t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878

207. a12010039.png ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878

208. q076310113.png ; $( \text { id } \otimes \Delta ) ( R ) = R ^ { 13 } R ^ { 12 }$ ; confidence 0.878

209. a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878

210. a01150023.png ; $x = \lambda ( \theta ) , y = \Delta ( \theta )$ ; confidence 0.878

211. b1105803.png ; $E ^ { * }$ ; confidence 0.878

212. a11050058.png ; $K ^ { \prime }$ ; confidence 0.878

213. a110040153.png ; $C ^ { 2 } : 1 E$ ; confidence 0.878

214. a011640114.png ; $p _ { g } = 0$ ; confidence 0.877

215. a01121021.png ; $x \rightarrow - \infty$ ; confidence 0.877

216. a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877

217. a011600205.png ; $( \frac { K / k } { \mathfrak { p } } ) )$ ; confidence 0.877

218. l05866032.png ; $N ( n , R )$ ; confidence 0.877

219. c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877

220. f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877

221. m06443090.png ; $B O$ ; confidence 0.877

222. n067520250.png ; $d j \neq 0$ ; confidence 0.877

223. a11002062.png ; $3$ ; confidence 0.876

224. a11007023.png ; $: C ( K ) \rightarrow L _ { p } ( K , \mu )$ ; confidence 0.876

225. g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876

226. a0101806.png ; $z = z 0$ ; confidence 0.876

227. a12015049.png ; $N = \{ X \in \mathfrak { g } :$ ; confidence 0.876

228. d034120403.png ; $y = 0$ ; confidence 0.876

229. a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875

230. a01145024.png ; $p 3$ ; confidence 0.875

231. a01149063.png ; $f _ { 1 } ^ { \prime } ( x ) , \ldots , f _ { k } ^ { \prime } ( x )$ ; confidence 0.875

232. a1302403.png ; $n \times 1$ ; confidence 0.875

233. l05868042.png ; $Z _ { g } = \Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.875

234. a01233063.png ; $f ( X )$ ; confidence 0.875

235. a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875

236. a011600189.png ; $( K / k )$ ; confidence 0.875

237. e03525091.png ; $z _ { k } \in L$ ; confidence 0.875

238. i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875

239. l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875

240. l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875

241. t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875

242. a01164087.png ; $H _ { 2 } ( V , Z )$ ; confidence 0.875

243. a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875

244. a120050132.png ; $R ^ { N }$ ; confidence 0.875

245. a01220067.png ; $f _ { 0 } ( z )$ ; confidence 0.874

246. a110010299.png ; $m$ ; confidence 0.874

247. m06444056.png ; $c = 0$ ; confidence 0.874

248. s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874

249. a01060031.png ; $p = - \infty$ ; confidence 0.874

250. a01076024.png ; $J = I + \epsilon \omega ^ { \prime } x v / \omega ^ { 2 }$ ; confidence 0.874

251. a01162016.png ; $m > 2$ ; confidence 0.874

252. g0439306.png ; $h ; G \rightarrow A$ ; confidence 0.874

253. l05883010.png ; $\epsilon \neq 0$ ; confidence 0.874

254. b110100235.png ; $D _ { n }$ ; confidence 0.874

255. a01046086.png ; $f ( \alpha + h ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( h )$ ; confidence 0.873

256. s085590274.png ; $\phi _ { \alpha } ( \alpha ) \neq 0$ ; confidence 0.873

257. c02236032.png ; $E ^ { 3 }$ ; confidence 0.873

258. a130040741.png ; $R ^ { \prime }$ ; confidence 0.873

259. a11028054.png ; $AO ( G )$ ; confidence 0.873

260. a130240408.png ; $y _ { i j k }$ ; confidence 0.873

261. a011600131.png ; $d ( n )$ ; confidence 0.873

262. d030700270.png ; $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ ; confidence 0.873

263. a11015019.png ; $\tau ( S )$ ; confidence 0.873

264. r07764042.png ; $C _ { n } + 1$ ; confidence 0.872

265. a12016053.png ; $N ( . )$ ; confidence 0.872

266. a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872

267. a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872

268. l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872

269. d13021013.png ; $G$ ; confidence 0.872

270. j05427061.png ; $\{ a b c \} = ( a b ) c + ( b c ) a - ( c a ) b$ ; confidence 0.872

271. a01055028.png ; $O ( n ) / O ( m )$ ; confidence 0.872

272. a0101209.png ; $P _ { n } ^ { ( k ) } ( \lambda _ { k } ) = 0 , \quad k = 0 , \ldots , n - 1 ; \quad P _ { n } ^ { ( n ) } ( z ) \equiv 1$ ; confidence 0.872

273. a01024049.png ; $\int _ { L } * \phi _ { i }$ ; confidence 0.871

274. a01046071.png ; $P _ { m } ( x , h ) \neq 0$ ; confidence 0.871

275. a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871

276. a11010013.png ; $p _ { U } ( x ) = \operatorname { sup } \{ \mu ( x ) : \mu \in U ^ { \circ } \}$ ; confidence 0.871

277. a01022062.png ; $R ^ { 2 p }$ ; confidence 0.871

278. t1200107.png ; $m = 2 i + 1$ ; confidence 0.871

279. b11033038.png ; $P ^ { \prime }$ ; confidence 0.871

280. i051930181.png ; $Y = C$ ; confidence 0.871

281. s13054032.png ; $x ( \alpha ) = x _ { 12 } ( \alpha )$ ; confidence 0.871

282. a011380155.png ; $x \rightarrow y = x \& y , \quad x \sim y = ( x + y ) + 1$ ; confidence 0.871

283. a011380156.png ; $x + y = ( x \& y ) \vee ( x \& \overline { y } ) , \quad 1 = x \vee x$ ; confidence 0.871

284. a11022092.png ; $f \circ \pi$ ; confidence 0.871

285. q07631018.png ; $i ( c ) = c .1 _ { A }$ ; confidence 0.871

286. a12016071.png ; $d S _ { t } / d u _ { t } = c _ { 1 }$ ; confidence 0.870

287. a120160163.png ; $\sum _ { j = 1 } ^ { M } \sum _ { t = 1 } ^ { T } c _ { j t } x _ { j t } \leq B$ ; confidence 0.870

288. a1302405.png ; $( n \times m )$ ; confidence 0.870

289. s085590458.png ; $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ ; confidence 0.870

290. d03070086.png ; $Y \rightarrow S$ ; confidence 0.870

291. a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870

292. a011650499.png ; $A _ { a }$ ; confidence 0.870

293. a12007084.png ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870

294. b11069080.png ; $M _ { A g }$ ; confidence 0.870

295. d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870

296. m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870

297. s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870

298. s13004059.png ; $S \supset T$ ; confidence 0.870

299. s130540124.png ; $1 + a b \in R ^ { x }$ ; confidence 0.869

300. a011450154.png ; $M _ { g }$ ; confidence 0.869

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/16. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/16&oldid=43923