Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/15"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 15 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.)
 
(AUTOMATIC EDIT of page 15 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040189.png ; $2 t ^ { * } s ^ { * } s$ ; confidence 0.257
+
1. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031930/d031930232.png ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020058.png ; $\operatorname { Ker } \beta \in \mathfrak { A } _ { 1 }$ ; confidence 0.257
+
2. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040400.png ; $Mod ^ { * } S _ { D } = P _ { SD } Mod ^ { * } L _ { D }$ ; confidence 0.256
+
3. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080020/r080020171.png ; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918
  
4. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001026.png ; $\| A ^ { - 1 } \delta A \| < 1$ ; confidence 0.918
  
5. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160049.png ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918
  
6. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
+
6. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464020.png ; $H \rightarrow H / G$ ; confidence 0.918
  
7. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101009.png ; $U ^ { 0 }$ ; confidence 0.918
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021042.png ; $i , j = 1 , \dots , g$ ; confidence 0.255
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095052.png ; $\Omega _ { j } ^ { i }$ ; confidence 0.918
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n } - 1 , \varphi _ { n }$ ; confidence 0.255
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490123.png ; $\tau = x - x _ { 0 }$ ; confidence 0.917
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
+
10. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451016.png ; $f : T \rightarrow S$ ; confidence 0.917
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
+
11. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851057.png ; $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ ; confidence 0.917
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040241.png ; $\Gamma \dagger _ { D } \varphi \text { iff } K ( \Gamma ) \approx L ( \Gamma ) \vDash _ { K } K ( \varphi ) \approx L ( \varphi )$ ; confidence 0.254
+
12. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868309.png ; $B = B _ { 0 } \supset B _ { 1 } \supset \ldots \supset B _ { t } = \{ 1 \}$ ; confidence 0.917
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010281.png ; $( A _ { x } \lambda ^ { x } + A _ { x - 1 } \lambda ^ { x - 1 } + \ldots + A _ { 0 } ) x = 0$ ; confidence 0.253
+
13. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940146.png ; $k ^ { n + 1 }$ ; confidence 0.917
  
14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917
  
15. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
+
15. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010073.png ; $E _ { 7 }$ ; confidence 0.917
  
16. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $Z _ { 12 }$ ; confidence 0.917
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
+
17. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
+
18. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917
  
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
+
19. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917
  
20. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149081.png ; $f _ { 1 } ( x ) , \ldots , f _ { k } ( x )$ ; confidence 0.917
  
21. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024063.png ; $g \times 2 g$ ; confidence 0.917
  
22. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
+
22. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868065.png ; $\Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.917
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040612.png ; $97$ ; confidence 0.250
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020069.png ; $Q : \mathfrak { A } / \mathfrak { A } _ { 1 } \rightarrow \mathfrak { A }$ ; confidence 0.917
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
+
24. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830233.png ; $G ( G / F )$ ; confidence 0.916
  
25. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916
  
26. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
+
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001043.png ; $\| \delta x \| f \| x \| \approx \epsilon . k ( A )$ ; confidence 0.247
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023620/c0236203.png ; $| \alpha ( z ) |$ ; confidence 0.916
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
+
28. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054070/j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916
  
29. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210106.png ; $\int _ { \gamma } \omega _ { 3 } = \sum _ { k = 1 } ^ { g } ( l _ { k } A _ { k } + b _ { + k } B _ { k } ) + 2 \pi i \sum _ { j = 1 } ^ { n } m _ { j } c _ { j }$ ; confidence 0.916
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040526.png ; $Co _ { Alg } FMod ^ { * } L _ { D } A$ ; confidence 0.246
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106701.png ; $Q ( y , . )$ ; confidence 0.916
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174031.png ; $\operatorname { Aut } _ { T } ( X \times T )$ ; confidence 0.916
  
32. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120428.png ; $| ( . y ) |$ ; confidence 0.916
  
33. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
+
33. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427079.png ; $91$ ; confidence 0.915
  
34. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003011.png ; $a , b$ ; confidence 0.915
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081071.png ; $\ddot { y } + \alpha ( t ) y = 0 , \quad 0 \leq t \leq 1$ ; confidence 0.915
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010251.png ; $\| v \| = \| A x - \hat { \lambda } x \| _ { 2 } \leq \epsilon \| A \| _ { 2 } \| x \| _ { 2 }$ ; confidence 0.243
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544057.png ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010207.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \rho ( | T ^ { - 1 } | | \delta A | | T | )$ ; confidence 0.242
+
38. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046600/h0466006.png ; $\{ x : | x - y | < r \}$ ; confidence 0.915
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040227.png ; $\Gamma \approx \Delta \operatorname { mod } e l s _ { K } \varphi \approx \psi \text { iff } E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.241
+
39. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780212.png ; $31$ ; confidence 0.915
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
+
40. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590492.png ; $X ( x _ { 0 } , y _ { 0 } ) = Y ( x _ { 0 } , y _ { 0 } ) = 0$ ; confidence 0.915
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004050.png ; $\mathfrak { A } = \langle A , F \rangle$ ; confidence 0.241
+
41. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320183.png ; $K$ ; confidence 0.915
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010110.png ; $A N = \operatorname { max } _ { 1 } \leq i _ { j } \leq n | \alpha _ { \xi } j |$ ; confidence 0.241
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137095.png ; $J ( x _ { 0 } )$ ; confidence 0.915
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021045.png ; $( \operatorname { Im } B _ { i j } )$ ; confidence 0.915
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024036.png ; $g \geq 1$ ; confidence 0.914
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121073.png ; $Y _ { 1 } ( x ) = ( \xi ^ { \prime } ( x ) ) ^ { - 1 / 2 } \operatorname { Bi } ( - \lambda ^ { 2 / 3 } \xi ( x ) )$ ; confidence 0.914
  
46. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
+
46. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524038.png ; $\sqrt { n / 12 }$ ; confidence 0.914
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000141.png ; $f$ ; confidence 0.914
  
48. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
+
48. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056015.png ; $C$ ; confidence 0.914
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022047.png ; $p \times 2 p$ ; confidence 0.914
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240370.png ; $2$ ; confidence 0.235
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012013.png ; $h$ ; confidence 0.914
  
51. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
+
51. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700276.png ; $( V )$ ; confidence 0.914
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040163.png ; $\langle A , F \rangle$ ; confidence 0.234
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914
  
53. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
+
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $h \in \Omega$ ; confidence 0.914
  
56. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010229.png ; $\frac { \| x ^ { 2 } - x ^ { i } \| } { \| x ^ { i } \| } \leq \frac { \psi } { \operatorname { min } _ { j \neq i } | \lambda _ { i } - \lambda _ { j } | - 2 \psi }$ ; confidence 0.233
+
57. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $T$ ; confidence 0.914
  
58. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
+
58. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
  
59. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
+
59. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004024.png ; $\Delta \operatorname { log } \varphi$ ; confidence 0.232
+
60. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082110/r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145020.png ; $k ( x )$ ; confidence 0.914
  
62. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084015.png ; $B = \overline { G } ^ { - 1 } A ^ { * } \overline { G }$ ; confidence 0.914
  
63. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210101.png ; $A _ { k } , B _ { k }$ ; confidence 0.914
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004022.png ; $\Delta H _ { D } \psi$ ; confidence 0.230
+
64. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763026.png ; $V = \oplus _ { \chi \in P _ { \phi } } V ( \chi )$ ; confidence 0.914
  
65. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370162.png ; $\rho _ { A }$ ; confidence 0.914
  
66. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160045.png ; $n !$ ; confidence 0.914
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210112.png ; $( \omega ) = P _ { 1 } ^ { \alpha _ { 1 } } 1 ^ { \square } \ldots P _ { n } ^ { \alpha _ { R } }$ ; confidence 0.228
+
67. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769076.png ; $[ \mathfrak { m } , \mathfrak { m } ] \subseteq \mathfrak { f }$ ; confidence 0.914
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240536.png ; $Z _ { 23 }$ ; confidence 0.228
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914
  
69. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913
  
70. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300402.png ; $Fm$ ; confidence 0.913
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145072.png ; $\operatorname { deg } K _ { X } = 2 g - 2$ ; confidence 0.913
  
72. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012015.png ; $P _ { X } ( z ) = \frac { 1 } { n ! } ( z - \alpha ) ( z - \alpha - n h ) ^ { \gamma - 1 }$ ; confidence 0.226
+
73. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040415.png ; $\operatorname { Aod } ^ { * } L _ { D }$ ; confidence 0.225
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001051.png ; $| A |$ ; confidence 0.913
  
75. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380185.png ; $f _ { 3 } \neq f _ { 3 } ^ { * }$ ; confidence 0.913
  
76. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
+
76. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590543.png ; $f ( x ) = o ( \| x \| )$ ; confidence 0.912
  
77. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950118.png ; $R ( X , Y ) = \nabla _ { X } \nabla _ { Y } Z - \nabla _ { Y } \nabla _ { X } Z - \nabla _ { [ X , Y ] } Z$ ; confidence 0.912
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003012.png ; $x - a | < b - a$ ; confidence 0.223
+
78. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060530/l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912
  
79. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137084.png ; $\hat { f } ( x )$ ; confidence 0.912
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050159.png ; $c ^ { - 2 }$ ; confidence 0.222
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046083.png ; $0 \in D$ ; confidence 0.912
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012038.png ; $\{ \lambda _ { n } \} \in \Lambda _ { \alpha }$ ; confidence 0.221
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a11046026.png ; $\{ \frac { \partial ^ { 2 } } { \partial t ^ { 2 } } - A ^ { 2 } \frac { \partial ^ { 2 } } { \partial l } - ( \chi + \eta ) \frac { \partial } { \partial t } \nabla ^ { 2 } + \chi \eta \nabla ^ { 4 } \} \vec { v } , \vec { h } ( \vec { x } , t ) = 0$ ; confidence 0.911
  
82. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022089.png ; $L ^ { 0 } ( H , m )$ ; confidence 0.911
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007017.png ; $1$ ; confidence 0.911
  
84. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012025.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } ( n ! ) ^ { - \alpha } a _ { n } z ^ { n } , \quad \underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } \leq r$ ; confidence 0.220
+
85. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
+
86. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219
+
87. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020082.png ; $3$ ; confidence 0.218
+
88. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $\beta$ ; confidence 0.911
  
89. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012032.png ; $S _ { a }$ ; confidence 0.216
+
91. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830382.png ; $k a \neq 0$ ; confidence 0.910
  
92. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a011460126.png ; $( X ) / C _ { \tau } ( X )$ ; confidence 0.910
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040808.png ; $^ { * } L D S$ ; confidence 0.214
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a11049012.png ; $D R = I$ ; confidence 0.910
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020063.png ; $21 / 21$ ; confidence 0.212
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
  
96. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
+
96. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710106.png ; $P \rightarrow e$ ; confidence 0.910
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040661.png ; $= \{ M e _ { S _ { i } }$ ; confidence 0.212
+
97. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464012.png ; $\phi ( x , g h ) = \phi ( x , g ) h , \quad x \in U , \quad g , h \in G$ ; confidence 0.910
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004085.png ; $\{ 21 , n \}$ ; confidence 0.211
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017048.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha ) + \mu _ { 1 } ( \alpha ) K \Psi ( x )$ ; confidence 0.910
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007015.png ; $x _ { k } \in X$ ; confidence 0.211
+
99. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590491.png ; $( x _ { 0 } , y _ { 0 } ) \in G$ ; confidence 0.910
  
100. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024048.png ; $F ^ { * }$ ; confidence 0.910
  
101. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
+
101. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120537.png ; $f ^ { * * } = f$ ; confidence 0.910
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160046.png ; $\eta = x _ { 0 } + y 0 \sqrt { D }$ ; confidence 0.909
  
103. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050261.png ; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909
  
104. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040791.png ; $K _ { 0 } \subseteq K$ ; confidence 0.909
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020048.png ; $B \in Ob \mathfrak { A } _ { 1 }$ ; confidence 0.209
+
105. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820147.png ; $W ( A ) = C ( G _ { W } ; A )$ ; confidence 0.909
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208
+
106. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820205.png ; $f ( p ) ( X ) = X + a _ { p } X ^ { p } + a _ { p } 2 X ^ { p ^ { 2 } } +$ ; confidence 0.909
  
107. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029069.png ; $\pi x = f g$ ; confidence 0.909
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020049.png ; $A , C \in Ob A _ { 1 }$ ; confidence 0.207
+
108. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207
+
109. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909
  
110. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f042060121.png ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207
+
110. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096770/v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
+
111. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180102.png ; $x _ { n + 1 } = u _ { 0 } - \frac { \Delta u _ { 0 } } { \Delta ^ { 2 } u _ { 0 } }$ ; confidence 0.909
  
113. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006020.png ; $\pi ( x ) = \sum _ { n \leq x } P _ { N } ( n )$ ; confidence 0.909
  
114. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040205.png ; $T$ ; confidence 0.909
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010162.png ; $\hat { \kappa } ( A )$ ; confidence 0.201
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950104.png ; $\omega ^ { i } ( \nabla \gamma X ) = Y \omega ^ { i } ( X ) + \omega _ { k } ^ { i } ( Y ) \omega ^ { k } ( X )$ ; confidence 0.908
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022086.png ; $\alpha _ { j k }$ ; confidence 0.201
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040641.png ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145039.png ; $\operatorname { Pic } ( X )$ ; confidence 0.908
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
+
119. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631030.png ; $j < l$ ; confidence 0.908
  
120. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
+
120. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $x \in J$ ; confidence 0.908
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a1106404.png ; $S U M \leftarrow + \backslash B \leftarrow 04 ^ { - 68 < 71 ^ { - } 29.9 }$ ; confidence 0.199
+
121. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026600/c026600121.png ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970198.png ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199
+
122. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010273.png ; $( A \otimes I + I \otimes B ^ { T } ) \operatorname { vect } ( X ) = \operatorname { vect } ( C )$ ; confidence 0.199
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022028.png ; $C \in C$ ; confidence 0.908
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004045.png ; $a$ ; confidence 0.199
+
124. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797093.png ; $x ^ { s } = 0$ ; confidence 0.908
  
125. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a1103306.png ; $U$ ; confidence 0.908
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $Mod ^ { * } S _ { D }$ ; confidence 0.198
+
126. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472077.png ; $x , y \in \Gamma$ ; confidence 0.908
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021090.png ; $A _ { k } ^ { \prime } = \int _ { a _ { k } } \omega _ { 3 } , \quad B _ { k } ^ { \prime } = \int _ { b _ { k } } \omega _ { 3 } , \quad k = 1 , \ldots , g$ ; confidence 0.197
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011070/a01107014.png ; $\nabla _ { X ( t ) } \dot { x } ( t ) = 0$ ; confidence 0.907
  
128. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040437.png ; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907
  
129. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008031.png ; $S ( t )$ ; confidence 0.907
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044013.png ; $f _ { 2 }$ ; confidence 0.907
  
131. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015028.png ; $( g )$ ; confidence 0.907
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001010.png ; $\delta _ { a }$ ; confidence 0.195
+
132. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013037.png ; $X = \{ C : \operatorname { Hom } _ { \Lambda } ( C , Y ) = 0 \}$ ; confidence 0.907
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020040.png ; $Z ^ { x } , B ^ { x } , H ^ { x }$ ; confidence 0.194
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040801.png ; $C \subseteq D$ ; confidence 0.907
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022046.png ; $v$ ; confidence 0.193
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907
  
135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
+
135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $K ( L )$ ; confidence 0.907
  
136. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
+
136. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
+
137. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014048.png ; $E = E$ ; confidence 0.907
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490131.png ; $k < s$ ; confidence 0.907
  
140. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007026.png ; $c = 5$ ; confidence 0.907
  
141. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191
+
141. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054070.png ; $K _ { 2 } Q = \coprod _ { p } \mu _ { p }$ ; confidence 0.907
  
142. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050268.png ; $k > 0$ ; confidence 0.907
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004059.png ; $\phi _ { L } ^ { * } \hat { \lambda } = d _ { 1 } d _ { 2 } \lambda \Leftrightarrow \phi _ { L } \phi _ { L } = d _ { 1 } d _ { 2 } id A$ ; confidence 0.191
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010065.png ; $u \in D ( \Delta )$ ; confidence 0.907
  
144. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a0114802.png ; $f _ { n }$ ; confidence 0.907
  
145. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
+
145. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861048.png ; $SU ( n + 1 )$ ; confidence 0.907
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189
+
146. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024230/c024230121.png ; $\Sigma _ { 2 }$ ; confidence 0.907
  
147. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188
+
147. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830322.png ; $\operatorname { deg } _ { A } ( F ) < \operatorname { deg } _ { A } ( A )$ ; confidence 0.907
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188
+
148. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470228.png ; $2 g$ ; confidence 0.907
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
  
150. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010137.png ; $\| A ^ { + } \| _ { 2 } = \frac { 1 } { \sigma _ { r } ( A ) }$ ; confidence 0.906
  
151. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
+
151. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630106.png ; $\phi _ { i } ^ { Fr ^ { i } }$ ; confidence 0.906
  
152. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png ; $x , y \in A$ ; confidence 0.906
  
153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a01318019.png ; $C ^ { 1 }$ ; confidence 0.906
  
154. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780231.png ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185
+
154. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906
  
155. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406028.png ; $20$ ; confidence 0.906
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101008.png ; $V ^ { \ominus }$ ; confidence 0.185
+
156. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
+
157. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183
+
158. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127050.png ; $x \in D ( A )$ ; confidence 0.906
  
159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
+
159. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043330/g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906
  
160. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
+
160. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906
  
161. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
+
161. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075650/p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a0102909.png ; $\pi X : \alpha X \rightarrow X$ ; confidence 0.180
+
162. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r08113085.png ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240282.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180
+
163. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
  
164. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022085.png ; $g : R ^ { j } \rightarrow R$ ; confidence 0.906
  
165. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334048.png ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180
+
165. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002057.png ; $SO ( n )$ ; confidence 0.906
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197046.png ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012290/a01229032.png ; $U ^ { p ^ { 2 } }$ ; confidence 0.905
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006043.png ; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905
  
168. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ { i \psi }$ ; confidence 0.179
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150016.png ; $E$ ; confidence 0.905
  
169. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p0728502.png ; $_ { k }$ ; confidence 0.179
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050134.png ; $( N \times N )$ ; confidence 0.905
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040129.png ; $\tilde { \varphi } _ { L } : \tilde { A } \rightarrow P ^ { 1 }$ ; confidence 0.179
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240177.png ; $\alpha$ ; confidence 0.905
  
171. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
+
171. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060970/l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001030.png ; $\frac { \delta x } { \| x \| } \leq \frac { k ( A ) } { 1 - k ( A ) \frac { \| \delta A \| } { \| A \| } } ( \frac { \| \delta A \| } { \| A \| } + \frac { \| \delta b \| } { \| b \| } )$ ; confidence 0.176
+
172. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040688.png ; $F m _ { F }$ ; confidence 0.175
+
173. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072510/p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
+
174. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073090/p07309030.png ; $V \cap L$ ; confidence 0.905
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210131.png ; $L ( \mathfrak { a } ^ { - 1 } ) - \operatorname { dim } \Omega ( \mathfrak { a } ) = d [ \mathfrak { a } ] - \mathfrak { g } + 1$ ; confidence 0.174
+
175. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081470/r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
+
176. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905
  
177. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018032.png ; $A _ { n } = B n ^ { s _ { 1 } } ( \operatorname { ln } n ) ^ { \alpha } + O ( n ^ { \beta } )$ ; confidence 0.905
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450122.png ; $m \equiv l ( D ) - 1$ ; confidence 0.905
  
179. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png ; $n _ { s } + n _ { u } = n$ ; confidence 0.172
+
179. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780539.png ; $p$ ; confidence 0.905
  
180. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068010.png ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172
+
180. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797069.png ; $\iota = p ^ { * }$ ; confidence 0.905
  
181. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099021.png ; $a , b , c$ ; confidence 0.904
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022031.png ; $\mathfrak { c } _ { 1 } , \ldots , \mathfrak { c } _ { p }$ ; confidence 0.172
+
182. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524049.png ; $F ^ { - 1 } ( y ) = \operatorname { inf } \{ x : F ( x ) \leq y \leq F ( x + 0 ) \}$ ; confidence 0.904
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu , n } ) \text { as } n \rightarrow \infty$ ; confidence 0.172
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050267.png ; $C > 0$ ; confidence 0.904
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040193.png ; $\tilde { \Omega } _ { D } F$ ; confidence 0.172
+
184. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110010/c1100101.png ; $A _ { 0 }$ ; confidence 0.904
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022012.png ; $w ^ { r } v$ ; confidence 0.171
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325046.png ; $0 \notin f ( \partial D )$ ; confidence 0.904
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012075.png ; $a _ { U _ { 2 } }$ ; confidence 0.171
+
186. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104202.png ; $E ( X _ { 1 } ) = 0 \quad \text { and } \quad E ( X _ { n } + 1 | X _ { 1 } , \ldots , X _ { n } ) = 0$ ; confidence 0.170
+
187. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043290/g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
  
188. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
+
188. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076059.png ; $p ( \alpha )$ ; confidence 0.904
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ { j k }$ ; confidence 0.169
+
189. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094600/t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png ; $L f \theta$ ; confidence 0.169
+
190. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769029.png ; $e H = H$ ; confidence 0.904
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\epsilon _ { 2,0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { i , 1 } ^ { A } ( \alpha , b , c , d ) \text { for all } i < m$ ; confidence 0.169
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040789.png ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101805.png ; $\alpha _ { k } , b , z$ ; confidence 0.168
+
192. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058690/l05869019.png ; $t ( F )$ ; confidence 0.904
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046010.png ; $\operatorname { lim } _ { \| x \| \rightarrow 0 } \| h \| ^ { - 1 } \| f ( a + h ) - f ( a ) - \delta f ( a , h ) \| = 0$ ; confidence 0.167
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240335.png ; $F = E X$ ; confidence 0.904
  
194. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095093.png ; $\{ e _ { i } ( t ) \}$ ; confidence 0.903
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040337.png ; $\operatorname { tg } E ( \lambda x _ { 0 } , \ldots , x _ { x } - 1 , \lambda y 0 , \ldots , y _ { n } - 1 )$ ; confidence 0.167
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700246.png ; $H ^ { 2 } ( \mathfrak { A } , V ) = 0$ ; confidence 0.903
  
196. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160117.png ; $x _ { i j }$ ; confidence 0.903
  
197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
+
197. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830198.png ; $\partial F / \partial Y _ { i j }$ ; confidence 0.903
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\overline { D }$ ; confidence 0.164
+
198. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830241.png ; $G ( G / F _ { 1 } )$ ; confidence 0.903
  
199. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
+
199. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010150.png ; $\frac { \| ( A + \delta A ) ^ { + } - A ^ { + } \| } { \| A ^ { + } \| _ { 2 } } \leq \mu \frac { k ( A ) \frac { \| \delta A \| _ { 2 } } { \| A \| _ { 2 } } } { 1 - k ( A ) \frac { \| \delta A \| _ { 2 } } { \| ^ { A } \| _ { 2 } } }$ ; confidence 0.162
+
200. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png ; $N$ ; confidence 0.161
+
201. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
+
202. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903
  
203. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
+
203. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004014.png ; $D = \{ F m , \dagger _ { D } )$ ; confidence 0.159
+
204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040063.png ; $G / B$ ; confidence 0.903
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162012.png ; $L _ { p }$ ; confidence 0.903
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020054.png ; $\left. \begin{array} { r c c } { R } & { \stackrel { \mu \pi _ { 1 } } { \rightarrow } } & { A } \\ { \mu \pi _ { 2 } \downarrow } & { \square } & { \downarrow \alpha } \\ { B } & { \rightarrow } & { X } \end{array} \right.$ ; confidence 0.157
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146065.png ; $C ( X ) / C _ { rat } ( X )$ ; confidence 0.903
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040255.png ; $D _ { c } = A _ { c } - A _ { c } ^ { \varnothing }$ ; confidence 0.157
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a1103703.png ; $0 \leq t _ { 0 } < \ldots < t _ { n }$ ; confidence 0.903
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110045.png ; $\alpha , b \in A ^ { \prime }$ ; confidence 0.903
  
209. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240223.png ; $\zeta _ { i } = E ( z _ { i } )$ ; confidence 0.903
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001025.png ; $\| \delta x \| \leq \| A ^ { - 1 } \delta A \| \| _ { x } \| + \| A ^ { - 1 } \delta A \| _ { \| } \delta x \| + \| A ^ { - 1 } \delta b \|$ ; confidence 0.156
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417037.png ; $M / \Gamma$ ; confidence 0.903
  
211. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040244.png ; $x + \operatorname { tg } E ( K ( x ) , L ( x ) )$ ; confidence 0.154
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040207.png ; $\sigma \in H ^ { 0 } ( P ^ { 4 } , F )$ ; confidence 0.902
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040461.png ; $^ { \times } L D ( K ) = S P P _ { U } K$ ; confidence 0.152
+
213. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530106.png ; $| W |$ ; confidence 0.902
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040634.png ; $S _ { P } ^ { \mathfrak { D } \mathfrak { I } }$ ; confidence 0.152
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081043.png ; $( \overline { \psi } ( t ) , x ( t ) ) \equiv \text { const, } \quad t \in I$ ; confidence 0.902
  
215. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040102.png ; $G$ ; confidence 0.152
+
216. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110330/s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010108.png ; $p = \operatorname { max } _ { 1 \leq i \leq n } \frac { | b _ { i } - \sum _ { j = 1 } ^ { n } \alpha _ { i } x _ { j } | } { B N + A N \cdot \sum _ { j = 1 } ^ { n } | x _ { j } | }$ ; confidence 0.152
+
217. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830160.png ; $u = \frac { F ( t _ { 1 } , \ldots , t _ { x } ) } { G ( t _ { 1 } , \ldots , t _ { x } ) }$ ; confidence 0.902
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $N _ { 0 }$ ; confidence 0.151
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861082.png ; $T ^ { 2 x }$ ; confidence 0.902
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240314.png ; $\hat { \beta } = ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } y$ ; confidence 0.148
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104206.png ; $Y _ { n } = X _ { 1 } + \ldots + X _ { n } + c$ ; confidence 0.902
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020061.png ; $H _ { 2 / / } \otimes l _ { 1 } ( A , B )$ ; confidence 0.148
+
220. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077670/r07767031.png ; $SO ( n , f )$ ; confidence 0.902
  
221. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
+
221. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510115.png ; $\operatorname { dim } \mathfrak { g } = n ( 2 n + 1 )$ ; confidence 0.902
  
222. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016029.png ; $x _ { k + 1 } = ( D + \omega L ) ^ { - 1 } ( \omega b - ( ( 1 - \omega ) D - \omega U ) x _ { k } )$ ; confidence 0.902
  
223. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021056.png ; $n = 1$ ; confidence 0.901
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010118.png ; $A \in R ^ { m \times n }$ ; confidence 0.144
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076017.png ; $p , q , p ^ { \prime } , q ^ { \prime }$ ; confidence 0.901
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040412.png ; $Mod ^ { * } L D = S P Mod ^ { * } L D$ ; confidence 0.144
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600204.png ; $\sigma _ { p }$ ; confidence 0.901
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020084.png ; $r$ ; confidence 0.144
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001071.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.901
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144
+
227. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m064510131.png ; $A _ { 8 }$ ; confidence 0.901
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010164.png ; $\tilde { \varepsilon } [ ( 1 + \eta \tilde { k } ) \alpha + \beta \gamma ]$ ; confidence 0.144
+
228. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901
  
229. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $F = p t$ ; confidence 0.143
+
229. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014031.png ; $\beta : i \rightarrow j$ ; confidence 0.901
  
230. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081073.png ; $\dot { y } ( 0 ) + \gamma y ( 1 ) + \delta \dot { y } ( 1 ) = 0$ ; confidence 0.901
  
231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040113.png ; $T , \varphi \operatorname { lo } \psi$ ; confidence 0.142
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901
  
233. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
+
233. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067940/n06794014.png ; $N > 5$ ; confidence 0.901
  
234. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142
+
234. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690120.png ; $\operatorname { Sp } ( k ) \times U ( 1 )$ ; confidence 0.901
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240331.png ; $p _ { 1 }$ ; confidence 0.141
+
235. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763085.png ; $S _ { d } ^ { d }$ ; confidence 0.901
  
236. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $5 + 7 n$ ; confidence 0.141
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146092.png ; $W Z = W Z ^ { \prime }$ ; confidence 0.901
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004037.png ; $\varphi \in T$ ; confidence 0.901
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
+
238. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852046.png ; $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ ; confidence 0.901
  
239. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138044.png ; $( x \& y ) \& z = x \& ( y \& z ) , \quad ( x \vee y ) \vee z = x \vee ( y \vee z )$ ; confidence 0.901
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006032.png ; $\operatorname { lim } _ { s \rightarrow \infty } \beta _ { X } ( s ) = 0$ ; confidence 0.900
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040613.png ; $h : F m _ { P } \rightarrow M e _ { S _ { P } } \mathfrak { M }$ ; confidence 0.136
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033012.png ; $\beta _ { \gamma } = \int _ { - \infty } ^ { + \infty } | x | ^ { r } p ( x ) d x$ ; confidence 0.900
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180112.png ; $c _ { i } ^ { U }$ ; confidence 0.900
  
243. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
+
243. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120193.png ; $H ^ { n - p } ( X , O _ { X } ( K - D ) )$ ; confidence 0.900
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
+
244. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690073.png ; $R _ { G } ^ { k } ( X )$ ; confidence 0.900
  
245. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040132.png ; $IPC$ ; confidence 0.900
  
246. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
+
246. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590520.png ; $X _ { i } \in C ^ { 1 } ( G )$ ; confidence 0.900
  
247. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $p i n$ ; confidence 0.132
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040581.png ; $S 5 ^ { W }$ ; confidence 0.900
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006023.png ; $= \frac { 1 } { 2 } \operatorname { sup } \sum _ { i = 1 } ^ { I } \sum _ { j = 1 } ^ { J } \operatorname { Pr } ( A _ { i } \cap B _ { j } ) - P ( A _ { i } ) P ( B _ { j } )$ ; confidence 0.132
+
248. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900
  
249. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031018.png ; $22 ^ { x }$ ; confidence 0.131
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016850/b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
  
251. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
+
251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900
  
252. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081980/r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002023.png ; $t \in I$ ; confidence 0.900
  
253. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
+
253. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120535.png ; $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ ; confidence 0.900
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001065.png ; $0$ ; confidence 0.129
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080024.png ; $\overline { \nabla }$ ; confidence 0.900
  
255. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128
+
255. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301401.png ; $Q = ( Q _ { 0 } , Q _ { 1 } )$ ; confidence 0.900
  
256. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071017.png ; $A B \subseteq Q , A \nsubseteq Q \Rightarrow B \subseteq \operatorname { pr } ( Q )$ ; confidence 0.899
  
257. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593092.png ; $\Lambda \in \mathfrak { g } ^ { * }$ ; confidence 0.899
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010185.png ; $\lambda$ ; confidence 0.899
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043022.png ; $p _ { k A } ^ { * } ( t ) = 1 , \quad h \in H ; \quad p _ { i A } ^ { * } ( t ) = 0 , \quad i , h \in H , i \neq h$ ; confidence 0.120
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240496.png ; $s = 2$ ; confidence 0.899
  
260. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020027.png ; $3$ ; confidence 0.899
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040336.png ; $E ( x _ { 0 } , y _ { 0 } ) , \ldots , E ( x _ { x } - 1 , y _ { n } - 1 ) \operatorname { t } _ { D }$ ; confidence 0.118
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119906.png ; $\pi _ { k } ( x )$ ; confidence 0.899
  
262. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140169.png ; $q _ { A }$ ; confidence 0.118
+
262. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
+
263. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
+
264. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png ; $x$ ; confidence 0.899
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040186.png ; $( A / S 2 DF , F / S 2 DF )$ ; confidence 0.116
+
265. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899
  
266. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
+
266. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055028.png ; $V _ { 1 } \subset \ldots \subset V _ { n - 1 }$ ; confidence 0.899
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043021.png ; $p _ { i A } ^ { * } ( t + 1 ) = \sum _ { j \in S } p _ { j } p _ { i A } ^ { * } ( t ) , \quad t \geq 0 , \quad i \in S \backslash H , \quad h \in H$ ; confidence 0.114
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011580/a0115804.png ; $( z - z _ { 0 } ) ^ { - s } [ \operatorname { ln } ( z - z _ { 0 } ) ] ^ { k } g ( z )$ ; confidence 0.899
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040520.png ; $d ^ { * } L D$ ; confidence 0.112
+
268. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027560/c0275606.png ; $k = Q$ ; confidence 0.899
  
269. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $2$ ; confidence 0.110
+
269. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057038.png ; $O ^ { p } \rightarrow O ^ { q } \rightarrow S \rightarrow 0$ ; confidence 0.899
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043026.png ; $q _ { k h } = 1 , \quad h \in H ; \quad q _ { k } = 0 , \quad i , h \in H , i \neq h$ ; confidence 0.109
+
270. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l059250103.png ; $SK _ { 1 } = UL ( n , K ) / SL ( n , K )$ ; confidence 0.898
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004045.png ; $\Gamma \operatorname { tg } \varphi$ ; confidence 0.107
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139021.png ; $\hat { \mu } ( \chi ) = \int _ { G } \overline { \chi } d \mu$ ; confidence 0.898
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040548.png ; $v$ ; confidence 0.106
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004016.png ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898
  
273. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046080/h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116030.png ; $B = k$ ; confidence 0.898
  
274. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106
+
274. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041061.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { n - 2 } ) \geq 6$ ; confidence 0.898
  
275. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a011460100.png ; $C _ { \tau } ( X ) \neq C _ { hom } ( X )$ ; confidence 0.898
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041094.png ; $\sigma > n / 2 + 1$ ; confidence 0.898
  
277. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898
  
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004010.png ; $\lambda \varphi 0 , \ldots , \varphi _ { x } - 1$ ; confidence 0.095
+
279. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
+
280. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050216.png ; $A _ { 2 } = \prod _ { m _ { 2 } } ^ { 2 } \geq 2 \zeta ( m ^ { 2 } ) = 2.49$ ; confidence 0.094
+
281. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014036.png ; $S \square T$ ; confidence 0.898
  
282. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
+
282. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830186.png ; $F \{ u \}$ ; confidence 0.898
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040331.png ; $\operatorname { Id } E ( x , x ) \text { and } x , E ( x , y ) | _ { D } y$ ; confidence 0.093
+
283. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851043.png ; $\alpha \in \Sigma$ ; confidence 0.898
  
284. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092
+
284. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700137.png ; $\kappa ^ { \prime } \rightarrow \operatorname { Spec } \Lambda$ ; confidence 0.898
  
285. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073760/p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002046.png ; $GF ( q )$ ; confidence 0.897
  
286. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
+
286. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593036.png ; $( e )$ ; confidence 0.897
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
+
287. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690090.png ; $C ^ { * } ( G , B )$ ; confidence 0.897
  
288. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103305.png ; $\beta _ { r } = E | X | ^ { r }$ ; confidence 0.897
  
289. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024018.png ; $E _ { i }$ ; confidence 0.085
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121030.png ; $v ( z ) \sim \frac { 1 } { 2 \sqrt { \pi } } z ^ { - 1 / 4 } \operatorname { exp } ( - \frac { 2 } { 3 } z ^ { 3 / 2 } ) \times$ ; confidence 0.897
  
291. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046014.png ; $\delta f ( \alpha , h )$ ; confidence 0.897
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006022.png ; $\beta ( A , B ) = \operatorname { sup } _ { C \in A \otimes B } | P _ { A \otimes B } ( C ) - ( P _ { A } \times P _ { B } ) ( C ) | =$ ; confidence 0.084
+
292. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055049.png ; $1$ ; confidence 0.897
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040304.png ; $O ( a , b )$ ; confidence 0.083
+
293. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897
  
294. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
+
294. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
+
295. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593048.png ; $d \phi$ ; confidence 0.897
  
296. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053036.png ; $\chi ( x )$ ; confidence 0.897
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043025.png ; $q _ { i h } = \sum _ { j \in S } p _ { i } q _ { h } , \quad i \in S \backslash H , \quad h \in H$ ; confidence 0.082
+
297. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700232.png ; $K = \operatorname { Comm } ( V )$ ; confidence 0.897
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099036.png ; $\nabla _ { k }$ ; confidence 0.897
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300409.png ; $\lambda ^ { F m } ( \varphi 0 , \dots , \varphi _ { m } - 1 )$ ; confidence 0.080
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018010.png ; $R \in [ 0 , \infty ]$ ; confidence 0.897
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040736.png ; $^ { * } L D S = \cup \{ \text { Alg } Mod ^ { * } L D S _ { P } : \text { Paset } \}$ ; confidence 0.080
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041059.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { n - 2 } ) \geq 2$ ; confidence 0.897

Latest revision as of 09:58, 17 October 2019

List

1. d031930232.png ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918

2. f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918

3. r080020171.png ; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918

4. a11001026.png ; $\| A ^ { - 1 } \delta A \| < 1$ ; confidence 0.918

5. a01160049.png ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918

6. p07464020.png ; $H \rightarrow H / G$ ; confidence 0.918

7. a1101009.png ; $U ^ { 0 }$ ; confidence 0.918

8. a01095052.png ; $\Omega _ { j } ^ { i }$ ; confidence 0.918

9. a011490123.png ; $\tau = x - x _ { 0 }$ ; confidence 0.917

10. m06451016.png ; $f : T \rightarrow S$ ; confidence 0.917

11. l05851057.png ; $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ ; confidence 0.917

12. s0868309.png ; $B = B _ { 0 } \supset B _ { 1 } \supset \ldots \supset B _ { t } = \{ 1 \}$ ; confidence 0.917

13. h047940146.png ; $k ^ { n + 1 }$ ; confidence 0.917

14. a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917

15. r13010073.png ; $E _ { 7 }$ ; confidence 0.917

16. a130240518.png ; $Z _ { 12 }$ ; confidence 0.917

17. b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917

18. b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917

19. d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917

20. a01149081.png ; $f _ { 1 } ( x ) , \ldots , f _ { k } ( x )$ ; confidence 0.917

21. a01024063.png ; $g \times 2 g$ ; confidence 0.917

22. l05868065.png ; $\Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.917

23. a01020069.png ; $Q : \mathfrak { A } / \mathfrak { A } _ { 1 } \rightarrow \mathfrak { A }$ ; confidence 0.917

24. d031830233.png ; $G ( G / F )$ ; confidence 0.916

25. t120010109.png ; $m > 3$ ; confidence 0.916

26. t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916

27. c0236203.png ; $| \alpha ( z ) |$ ; confidence 0.916

28. j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916

29. a010210106.png ; $\int _ { \gamma } \omega _ { 3 } = \sum _ { k = 1 } ^ { g } ( l _ { k } A _ { k } + b _ { + k } B _ { k } ) + 2 \pi i \sum _ { j = 1 } ^ { n } m _ { j } c _ { j }$ ; confidence 0.916

30. a0106701.png ; $Q ( y , . )$ ; confidence 0.916

31. a01174031.png ; $\operatorname { Aut } _ { T } ( X \times T )$ ; confidence 0.916

32. d034120428.png ; $| ( . y ) |$ ; confidence 0.916

33. j05427079.png ; $91$ ; confidence 0.915

34. a12003011.png ; $a , b$ ; confidence 0.915

35. a01081071.png ; $\ddot { y } + \alpha ( t ) y = 0 , \quad 0 \leq t \leq 1$ ; confidence 0.915

36. b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915

37. c02544057.png ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915

38. h0466006.png ; $\{ x : | x - y | < r \}$ ; confidence 0.915

39. l057780212.png ; $31$ ; confidence 0.915

40. s085590492.png ; $X ( x _ { 0 } , y _ { 0 } ) = Y ( x _ { 0 } , y _ { 0 } ) = 0$ ; confidence 0.915

41. c027320183.png ; $K$ ; confidence 0.915

42. a01137095.png ; $J ( x _ { 0 } )$ ; confidence 0.915

43. a01021045.png ; $( \operatorname { Im } B _ { i j } )$ ; confidence 0.915

44. a01024036.png ; $g \geq 1$ ; confidence 0.914

45. a01121073.png ; $Y _ { 1 } ( x ) = ( \xi ^ { \prime } ( x ) ) ^ { - 1 / 2 } \operatorname { Bi } ( - \lambda ^ { 2 / 3 } \xi ( x ) )$ ; confidence 0.914

46. u09524038.png ; $\sqrt { n / 12 }$ ; confidence 0.914

47. a013000141.png ; $f$ ; confidence 0.914

48. c02056015.png ; $C$ ; confidence 0.914

49. a01022047.png ; $p \times 2 p$ ; confidence 0.914

50. a01012013.png ; $h$ ; confidence 0.914

51. d030700276.png ; $( V )$ ; confidence 0.914

52. a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914

53. a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914

54. a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914

55. b12037030.png ; $h \in \Omega$ ; confidence 0.914

56. b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914

57. e12002045.png ; $T$ ; confidence 0.914

58. e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914

59. g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914

60. r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914

61. a01145020.png ; $k ( x )$ ; confidence 0.914

62. a01084015.png ; $B = \overline { G } ^ { - 1 } A ^ { * } \overline { G }$ ; confidence 0.914

63. a010210101.png ; $A _ { k } , B _ { k }$ ; confidence 0.914

64. r07763026.png ; $V = \oplus _ { \chi \in P _ { \phi } } V ( \chi )$ ; confidence 0.914

65. a011370162.png ; $\rho _ { A }$ ; confidence 0.914

66. a01160045.png ; $n !$ ; confidence 0.914

67. h04769076.png ; $[ \mathfrak { m } , \mathfrak { m } ] \subseteq \mathfrak { f }$ ; confidence 0.914

68. a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914

69. a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913

70. a1300402.png ; $Fm$ ; confidence 0.913

71. a01145072.png ; $\operatorname { deg } K _ { X } = 2 g - 2$ ; confidence 0.913

72. c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913

73. g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913

74. a11001051.png ; $| A |$ ; confidence 0.913

75. a011380185.png ; $f _ { 3 } \neq f _ { 3 } ^ { * }$ ; confidence 0.913

76. s085590543.png ; $f ( x ) = o ( \| x \| )$ ; confidence 0.912

77. a010950118.png ; $R ( X , Y ) = \nabla _ { X } \nabla _ { Y } Z - \nabla _ { Y } \nabla _ { X } Z - \nabla _ { [ X , Y ] } Z$ ; confidence 0.912

78. l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912

79. a01137084.png ; $\hat { f } ( x )$ ; confidence 0.912

80. a01046083.png ; $0 \in D$ ; confidence 0.912

81. a11046026.png ; $\{ \frac { \partial ^ { 2 } } { \partial t ^ { 2 } } - A ^ { 2 } \frac { \partial ^ { 2 } } { \partial l } - ( \chi + \eta ) \frac { \partial } { \partial t } \nabla ^ { 2 } + \chi \eta \nabla ^ { 4 } \} \vec { v } , \vec { h } ( \vec { x } , t ) = 0$ ; confidence 0.911

82. a11022089.png ; $L ^ { 0 } ( H , m )$ ; confidence 0.911

83. a13007017.png ; $1$ ; confidence 0.911

84. a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911

85. d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911

86. f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911

87. r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911

88. w13007023.png ; $\beta$ ; confidence 0.911

89. a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911

90. a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911

91. d031830382.png ; $k a \neq 0$ ; confidence 0.910

92. a011460126.png ; $( X ) / C _ { \tau } ( X )$ ; confidence 0.910

93. a11049012.png ; $D R = I$ ; confidence 0.910

94. a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910

95. a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910

96. p074710106.png ; $P \rightarrow e$ ; confidence 0.910

97. p07464012.png ; $\phi ( x , g h ) = \phi ( x , g ) h , \quad x \in U , \quad g , h \in G$ ; confidence 0.910

98. a12017048.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha ) + \mu _ { 1 } ( \alpha ) K \Psi ( x )$ ; confidence 0.910

99. s085590491.png ; $( x _ { 0 } , y _ { 0 } ) \in G$ ; confidence 0.910

100. a01024048.png ; $F ^ { * }$ ; confidence 0.910

101. d034120537.png ; $f ^ { * * } = f$ ; confidence 0.910

102. a01160046.png ; $\eta = x _ { 0 } + y 0 \sqrt { D }$ ; confidence 0.909

103. a130050261.png ; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909

104. a130040791.png ; $K _ { 0 } \subseteq K$ ; confidence 0.909

105. f040820147.png ; $W ( A ) = C ( G _ { W } ; A )$ ; confidence 0.909

106. f040820205.png ; $f ( p ) ( X ) = X + a _ { p } X ^ { p } + a _ { p } 2 X ^ { p ^ { 2 } } +$ ; confidence 0.909

107. a01029069.png ; $\pi x = f g$ ; confidence 0.909

108. b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909

109. h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909

110. v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909

111. w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909

112. a120180102.png ; $x _ { n + 1 } = u _ { 0 } - \frac { \Delta u _ { 0 } } { \Delta ^ { 2 } u _ { 0 } }$ ; confidence 0.909

113. a13006020.png ; $\pi ( x ) = \sum _ { n \leq x } P _ { N } ( n )$ ; confidence 0.909

114. a130040205.png ; $T$ ; confidence 0.909

115. a010950104.png ; $\omega ^ { i } ( \nabla \gamma X ) = Y \omega ^ { i } ( X ) + \omega _ { k } ^ { i } ( Y ) \omega ^ { k } ( X )$ ; confidence 0.908

116. a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908

117. a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908

118. a01145039.png ; $\operatorname { Pic } ( X )$ ; confidence 0.908

119. q07631030.png ; $j < l$ ; confidence 0.908

120. b13002056.png ; $x \in J$ ; confidence 0.908

121. c026600121.png ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908

122. e1300704.png ; $S = o ( \# A )$ ; confidence 0.908

123. a11022028.png ; $C \in C$ ; confidence 0.908

124. h04797093.png ; $x ^ { s } = 0$ ; confidence 0.908

125. a1103306.png ; $U$ ; confidence 0.908

126. p07472077.png ; $x , y \in \Gamma$ ; confidence 0.908

127. a01107014.png ; $\nabla _ { X ( t ) } \dot { x } ( t ) = 0$ ; confidence 0.907

128. a130040437.png ; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907

129. a12008031.png ; $S ( t )$ ; confidence 0.907

130. a11044013.png ; $f _ { 2 }$ ; confidence 0.907

131. a12015028.png ; $( g )$ ; confidence 0.907

132. t13013037.png ; $X = \{ C : \operatorname { Hom } _ { \Lambda } ( C , Y ) = 0 \}$ ; confidence 0.907

133. a130040801.png ; $C \subseteq D$ ; confidence 0.907

134. a01020080.png ; $6$ ; confidence 0.907

135. e12024025.png ; $K ( L )$ ; confidence 0.907

136. h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907

137. p12014048.png ; $E = E$ ; confidence 0.907

138. a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907

139. a011490131.png ; $k < s$ ; confidence 0.907

140. a13007026.png ; $c = 5$ ; confidence 0.907

141. s13054070.png ; $K _ { 2 } Q = \coprod _ { p } \mu _ { p }$ ; confidence 0.907

142. a130050268.png ; $k > 0$ ; confidence 0.907

143. a12010065.png ; $u \in D ( \Delta )$ ; confidence 0.907

144. a0114802.png ; $f _ { n }$ ; confidence 0.907

145. l05861048.png ; $SU ( n + 1 )$ ; confidence 0.907

146. c024230121.png ; $\Sigma _ { 2 }$ ; confidence 0.907

147. d031830322.png ; $\operatorname { deg } _ { A } ( F ) < \operatorname { deg } _ { A } ( A )$ ; confidence 0.907

148. b017470228.png ; $2 g$ ; confidence 0.907

149. a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906

150. a110010137.png ; $\| A ^ { + } \| _ { 2 } = \frac { 1 } { \sigma _ { r } ( A ) }$ ; confidence 0.906

151. r077630106.png ; $\phi _ { i } ^ { Fr ^ { i } }$ ; confidence 0.906

152. a110420109.png ; $x , y \in A$ ; confidence 0.906

153. a01318019.png ; $C ^ { 1 }$ ; confidence 0.906

154. t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906

155. a01406028.png ; $20$ ; confidence 0.906

156. d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906

157. d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906

158. f04127050.png ; $x \in D ( A )$ ; confidence 0.906

159. g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906

160. l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906

161. p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906

162. r08113085.png ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906

163. w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906

164. a11022085.png ; $g : R ^ { j } \rightarrow R$ ; confidence 0.906

165. c12002057.png ; $SO ( n )$ ; confidence 0.906

166. a01229032.png ; $U ^ { p ^ { 2 } }$ ; confidence 0.905

167. a13006043.png ; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905

168. a01150016.png ; $E$ ; confidence 0.905

169. a120050134.png ; $( N \times N )$ ; confidence 0.905

170. a130240177.png ; $\alpha$ ; confidence 0.905

171. l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905

172. n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905

173. p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905

174. p07309030.png ; $V \cap L$ ; confidence 0.905

175. r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905

176. u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905

177. a01018032.png ; $A _ { n } = B n ^ { s _ { 1 } } ( \operatorname { ln } n ) ^ { \alpha } + O ( n ^ { \beta } )$ ; confidence 0.905

178. a011450122.png ; $m \equiv l ( D ) - 1$ ; confidence 0.905

179. c022780539.png ; $p$ ; confidence 0.905

180. h04797069.png ; $\iota = p ^ { * }$ ; confidence 0.905

181. a01099021.png ; $a , b , c$ ; confidence 0.904

182. u09524049.png ; $F ^ { - 1 } ( y ) = \operatorname { inf } \{ x : F ( x ) \leq y \leq F ( x + 0 ) \}$ ; confidence 0.904

183. a130050267.png ; $C > 0$ ; confidence 0.904

184. c1100101.png ; $A _ { 0 }$ ; confidence 0.904

185. a01325046.png ; $0 \notin f ( \partial D )$ ; confidence 0.904

186. e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904

187. g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904

188. s09076059.png ; $p ( \alpha )$ ; confidence 0.904

189. t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904

190. h04769029.png ; $e H = H$ ; confidence 0.904

191. a130040789.png ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904

192. l05869019.png ; $t ( F )$ ; confidence 0.904

193. a130240335.png ; $F = E X$ ; confidence 0.904

194. a01095093.png ; $\{ e _ { i } ( t ) \}$ ; confidence 0.903

195. d030700246.png ; $H ^ { 2 } ( \mathfrak { A } , V ) = 0$ ; confidence 0.903

196. a120160117.png ; $x _ { i j }$ ; confidence 0.903

197. d031830198.png ; $\partial F / \partial Y _ { i j }$ ; confidence 0.903

198. d031830241.png ; $G ( G / F _ { 1 } )$ ; confidence 0.903

199. c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903

200. e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903

201. i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903

202. o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903

203. v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903

204. b12040063.png ; $G / B$ ; confidence 0.903

205. a01162012.png ; $L _ { p }$ ; confidence 0.903

206. a01146065.png ; $C ( X ) / C _ { rat } ( X )$ ; confidence 0.903

207. a1103703.png ; $0 \leq t _ { 0 } < \ldots < t _ { n }$ ; confidence 0.903

208. a01110045.png ; $\alpha , b \in A ^ { \prime }$ ; confidence 0.903

209. a130240223.png ; $\zeta _ { i } = E ( z _ { i } )$ ; confidence 0.903

210. a01417037.png ; $M / \Gamma$ ; confidence 0.903

211. a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903

212. a110040207.png ; $\sigma \in H ^ { 0 } ( P ^ { 4 } , F )$ ; confidence 0.902

213. s130530106.png ; $| W |$ ; confidence 0.902

214. a01081043.png ; $( \overline { \psi } ( t ) , x ( t ) ) \equiv \text { const, } \quad t \in I$ ; confidence 0.902

215. a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902

216. s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902

217. d031830160.png ; $u = \frac { F ( t _ { 1 } , \ldots , t _ { x } ) } { G ( t _ { 1 } , \ldots , t _ { x } ) }$ ; confidence 0.902

218. l05861082.png ; $T ^ { 2 x }$ ; confidence 0.902

219. a0104206.png ; $Y _ { n } = X _ { 1 } + \ldots + X _ { n } + c$ ; confidence 0.902

220. r07767031.png ; $SO ( n , f )$ ; confidence 0.902

221. l058510115.png ; $\operatorname { dim } \mathfrak { g } = n ( 2 n + 1 )$ ; confidence 0.902

222. a11016029.png ; $x _ { k + 1 } = ( D + \omega L ) ^ { - 1 } ( \omega b - ( ( 1 - \omega ) D - \omega U ) x _ { k } )$ ; confidence 0.902

223. a01021056.png ; $n = 1$ ; confidence 0.901

224. a01076017.png ; $p , q , p ^ { \prime } , q ^ { \prime }$ ; confidence 0.901

225. a011600204.png ; $\sigma _ { p }$ ; confidence 0.901

226. a11001071.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.901

227. m064510131.png ; $A _ { 8 }$ ; confidence 0.901

228. t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901

229. t13014031.png ; $\beta : i \rightarrow j$ ; confidence 0.901

230. a01081073.png ; $\dot { y } ( 0 ) + \gamma y ( 1 ) + \delta \dot { y } ( 1 ) = 0$ ; confidence 0.901

231. a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901

232. c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901

233. n06794014.png ; $N > 5$ ; confidence 0.901

234. h047690120.png ; $\operatorname { Sp } ( k ) \times U ( 1 )$ ; confidence 0.901

235. r07763085.png ; $S _ { d } ^ { d }$ ; confidence 0.901

236. a01146092.png ; $W Z = W Z ^ { \prime }$ ; confidence 0.901

237. a13004037.png ; $\varphi \in T$ ; confidence 0.901

238. l05852046.png ; $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ ; confidence 0.901

239. a01138044.png ; $( x \& y ) \& z = x \& ( y \& z ) , \quad ( x \vee y ) \vee z = x \vee ( y \vee z )$ ; confidence 0.901

240. a11006032.png ; $\operatorname { lim } _ { s \rightarrow \infty } \beta _ { X } ( s ) = 0$ ; confidence 0.900

241. a01033012.png ; $\beta _ { \gamma } = \int _ { - \infty } ^ { + \infty } | x | ^ { r } p ( x ) d x$ ; confidence 0.900

242. a130180112.png ; $c _ { i } ^ { U }$ ; confidence 0.900

243. d034120193.png ; $H ^ { n - p } ( X , O _ { X } ( K - D ) )$ ; confidence 0.900

244. n06690073.png ; $R _ { G } ^ { k } ( X )$ ; confidence 0.900

245. a130040132.png ; $IPC$ ; confidence 0.900

246. s085590520.png ; $X _ { i } \in C ^ { 1 } ( G )$ ; confidence 0.900

247. a130040581.png ; $S 5 ^ { W }$ ; confidence 0.900

248. b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900

249. b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900

250. b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900

251. e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900

252. a12002023.png ; $t \in I$ ; confidence 0.900

253. d034120535.png ; $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ ; confidence 0.900

254. a01080024.png ; $\overline { \nabla }$ ; confidence 0.900

255. t1301401.png ; $Q = ( Q _ { 0 } , Q _ { 1 } )$ ; confidence 0.900

256. a01071017.png ; $A B \subseteq Q , A \nsubseteq Q \Rightarrow B \subseteq \operatorname { pr } ( Q )$ ; confidence 0.899

257. c02593092.png ; $\Lambda \in \mathfrak { g } ^ { * }$ ; confidence 0.899

258. a110010185.png ; $\lambda$ ; confidence 0.899

259. a130240496.png ; $s = 2$ ; confidence 0.899

260. a01020027.png ; $3$ ; confidence 0.899

261. a0119906.png ; $\pi _ { k } ( x )$ ; confidence 0.899

262. d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899

263. e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899

264. l058360168.png ; $x$ ; confidence 0.899

265. w12007015.png ; $q$ ; confidence 0.899

266. f04055028.png ; $V _ { 1 } \subset \ldots \subset V _ { n - 1 }$ ; confidence 0.899

267. a0115804.png ; $( z - z _ { 0 } ) ^ { - s } [ \operatorname { ln } ( z - z _ { 0 } ) ] ^ { k } g ( z )$ ; confidence 0.899

268. c0275606.png ; $k = Q$ ; confidence 0.899

269. c02057038.png ; $O ^ { p } \rightarrow O ^ { q } \rightarrow S \rightarrow 0$ ; confidence 0.899

270. l059250103.png ; $SK _ { 1 } = UL ( n , K ) / SL ( n , K )$ ; confidence 0.898

271. a01139021.png ; $\hat { \mu } ( \chi ) = \int _ { G } \overline { \chi } d \mu$ ; confidence 0.898

272. a12004016.png ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898

273. a01116030.png ; $B = k$ ; confidence 0.898

274. a11041061.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { n - 2 } ) \geq 6$ ; confidence 0.898

275. a011460100.png ; $C _ { \tau } ( X ) \neq C _ { hom } ( X )$ ; confidence 0.898

276. a11041094.png ; $\sigma > n / 2 + 1$ ; confidence 0.898

277. a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898

278. c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898

279. h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898

280. r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898

281. w12014036.png ; $S \square T$ ; confidence 0.898

282. d031830186.png ; $F \{ u \}$ ; confidence 0.898

283. l05851043.png ; $\alpha \in \Sigma$ ; confidence 0.898

284. d030700137.png ; $\kappa ^ { \prime } \rightarrow \operatorname { Spec } \Lambda$ ; confidence 0.898

285. a11002046.png ; $GF ( q )$ ; confidence 0.897

286. c02593036.png ; $( e )$ ; confidence 0.897

287. n06690090.png ; $C ^ { * } ( G , B )$ ; confidence 0.897

288. a0103305.png ; $\beta _ { r } = E | X | ^ { r }$ ; confidence 0.897

289. a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897

290. a01121030.png ; $v ( z ) \sim \frac { 1 } { 2 \sqrt { \pi } } z ^ { - 1 / 4 } \operatorname { exp } ( - \frac { 2 } { 3 } z ^ { 3 / 2 } ) \times$ ; confidence 0.897

291. a01046014.png ; $\delta f ( \alpha , h )$ ; confidence 0.897

292. c02055049.png ; $1$ ; confidence 0.897

293. f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897

294. o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897

295. c02593048.png ; $d \phi$ ; confidence 0.897

296. s13053036.png ; $\chi ( x )$ ; confidence 0.897

297. d030700232.png ; $K = \operatorname { Comm } ( V )$ ; confidence 0.897

298. a01099036.png ; $\nabla _ { k }$ ; confidence 0.897

299. a01018010.png ; $R \in [ 0 , \infty ]$ ; confidence 0.897

300. a11041059.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { n - 2 } ) \geq 2$ ; confidence 0.897

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/15. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/15&oldid=43905