Namespaces
Variants
Actions

Difference between revisions of "Symmetric algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX partly done)
(TeX done)
 
Line 6: Line 6:
  
 
For any homomorphism of A-modules, the p-th tensor power T^p(f) induces a homomorphism S^p(f) : S^p(M) \to S^p(N) (the p-th symmetric power of the homomorphism f). A homomorphism S(f) : S(M) \to S(N) of A-algebras is obtained. The correspondences f \mapsto S^p(f) and f \mapsto S(f) are, respectively, covariant functors from the category of A-modules into itself and into the category of A-algebras. For any two A-modules M and N there is a natural isomorphism S(M\oplus N) = S(M) \otimes_A S(N).
 
For any homomorphism f:M \to N of A-modules, the p-th tensor power T^p(f) induces a homomorphism S^p(f) : S^p(M) \to S^p(N) (the p-th symmetric power of the homomorphism f). A homomorphism S(f) : S(M) \to S(N) of A-algebras is obtained. The correspondences f \mapsto S^p(f) and f \mapsto S(f) are, respectively, covariant functors from the category of A-modules into itself and into the category of A-algebras. For any two A-modules M and N there is a natural isomorphism S(M\oplus N) = S(M) \otimes_A S(N).
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159043.png" /> is a vector space over a field of characteristic 0, then the symmetrization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159044.png" /> (cf. [[Symmetrization (of tensors)|Symmetrization (of tensors)]]) defines an isomorphism from the symmetric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159045.png" /> onto the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159046.png" /> of symmetric contravariant tensors over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159047.png" /> relative to symmetric multiplication:
+
If M is a vector space over a field of characteristic 0, then the [[Symmetrization (of tensors)|symmetrization]] $\sigma : T(M) \to T(M)$ defines an isomorphism from the symmetric algebra S(M) onto the algebra \tilde S(M) \subset T(M) of symmetric contravariant tensors over M relative to symmetric multiplication:
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159048.png" /></td> </tr></table>
+
x \vee y = \sigma(x \otimes y)\,,\ \ \ x \in \tilde S^p(M)\,,\ \ y \in \tilde S^q(M) \ .
 +
$$
  
 
====References====
 
====References====
Line 19: Line 20:
  
 
====Comments====
 
====Comments====
The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159049.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159050.png" />-modules to commutative unitary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159051.png" />-algebras solves the following universal problem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159052.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159053.png" />-module and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159054.png" /> a commutative unitary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159055.png" />-algebra. For each homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159057.png" />-modules there is a unique homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159058.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159059.png" />-algebras such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159060.png" /> restricted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159061.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159062.png" />. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159063.png" /> is a left-adjoint functor of the underlying functor from the category of commutative unitary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159064.png" />-algebras to the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159065.png" />-modules.
+
The functor S from A-modules to commutative unitary A-algebras solves the following universal problem. Let M be an A-module and B a commutative unitary A-algebra. For each homomorphism $f : M \to B$ of A-modules there is a unique homomorphism $g : S(M) \to B$ of A-algebras such that g restricted to S^1(M) coincides with f. Thus, S is a left-adjoint functor of the underlying functor from the category of commutative unitary A-algebras to the category of A-modules.

Latest revision as of 18:21, 11 April 2017

A generalization of a polynomial algebra. If M is a unital module over a commutative associative ring A with an identity, then the symmetric algebra of M is the algebra S(M) = T(M)/I, where T(M) is the tensor algebra of M and I is the ideal generated by the elements of the form x \otimes y - y \otimes x (x,y \in M). A symmetric algebra is a commutative associative A-algebra with an identity. It is graded: S(M) = \bigoplus_{p \ge 0} S^p(M) where S^p(M) = T^p(M)/(T^p(M)\cap I), and S^0(M) = A, S^1(M) = M. The module S^p(M) is called the p-th symmetric power of the module M. If M is a free module with finite basis x_1,\ldots,x_n, then the correspondence x_i \mapsto X_i (i=1,\ldots,n) extends to an isomorphism of S(M) onto the polynomial algebra A[X_1,\ldots,X_n] (see Ring of polynomials).

For any homomorphism f:M \to N of A-modules, the p-th tensor power T^p(f) induces a homomorphism S^p(f) : S^p(M) \to S^p(N) (the p-th symmetric power of the homomorphism f). A homomorphism S(f) : S(M) \to S(N) of A-algebras is obtained. The correspondences f \mapsto S^p(f) and f \mapsto S(f) are, respectively, covariant functors from the category of A-modules into itself and into the category of A-algebras. For any two A-modules M and N there is a natural isomorphism S(M\oplus N) = S(M) \otimes_A S(N). If M is a vector space over a field of characteristic 0, then the symmetrization \sigma : T(M) \to T(M) defines an isomorphism from the symmetric algebra S(M) onto the algebra \tilde S(M) \subset T(M) of symmetric contravariant tensors over M relative to symmetric multiplication: x \vee y = \sigma(x \otimes y)\,,\ \ \ x \in \tilde S^p(M)\,,\ \ y \in \tilde S^q(M) \ .

References

[1] N. Bourbaki, "Eléments de mathématique" , 2. Algèbre , Hermann (1964) pp. Chapt. IV-VI
[2] A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian)


Comments

The functor S from A-modules to commutative unitary A-algebras solves the following universal problem. Let M be an A-module and B a commutative unitary A-algebra. For each homomorphism f : M \to B of A-modules there is a unique homomorphism g : S(M) \to B of A-algebras such that g restricted to S^1(M) coincides with f. Thus, S is a left-adjoint functor of the underlying functor from the category of commutative unitary A-algebras to the category of A-modules.

How to Cite This Entry:
Symmetric algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_algebra&oldid=40937
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article