Difference between revisions of "Stirling formula"
m (I gave the largest region of validity of the asymptotics for $\Gamma(z)$.) |
m (spacing) |
||
Line 19: | Line 19: | ||
$$ | $$ | ||
\Gamma(z+1) \approx \sqrt{2\pi z}\; z^z e^{-z}, \quad | \Gamma(z+1) \approx \sqrt{2\pi z}\; z^z e^{-z}, \quad | ||
− | z \rightarrow \infty,\; |\arg z|<\pi, | + | z \rightarrow \infty,\; |{\arg z}|<\pi, |
$$ | $$ | ||
− | hold, and mean that when $n\rightarrow\infty$ or $z \rightarrow \infty$, $|\arg z|<\pi$, the ratio of the left- and right-hand sides tends to one. | + | hold, and mean that when $n\rightarrow\infty$ or $z \rightarrow \infty$, $|{\arg z}|<\pi$, the ratio of the left- and right-hand sides tends to one. |
The representation (*) was established by J. Stirling (1730). | The representation (*) was established by J. Stirling (1730). |
Latest revision as of 15:21, 14 February 2020
2020 Mathematics Subject Classification: Primary: 33B15 [MSN][ZBL]
$$ \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\Re}{\mathrm{Re}} $$ An asymptotic representation which provides approximate values of the factorials $n! = 1 \ldots n$ and of the gamma-function for large values of $n$. This representation has the form $$ n! = \sqrt{2\pi n}\; n^n e^{-n} e^{\theta(n)}, \tag{$^*$} $$ where $\abs{\theta(n)} < 1/12n$. The asymptotic equalities $$ n! \approx \sqrt{2\pi n}\; n^n e^{-n}, \quad n \rightarrow \infty, $$ $$ \Gamma(z+1) \approx \sqrt{2\pi z}\; z^z e^{-z}, \quad z \rightarrow \infty,\; |{\arg z}|<\pi, $$ hold, and mean that when $n\rightarrow\infty$ or $z \rightarrow \infty$, $|{\arg z}|<\pi$, the ratio of the left- and right-hand sides tends to one.
The representation (*) was established by J. Stirling (1730).
Comments
See Gamma-function for the corresponding asymptotic series (Stirling series) and additional references.
References
[Br] | N.G. de Bruijn, "Asymptotic methods in analysis", Dover, reprint (1981) |
[MaMa] | G. Marsaglia, J.C.W. Marsaglia, "A new derivation of Stirling's approximation of $n!$" Amer. Math. Monthly, 97 (1990) pp. 826–829 |
[Na] | V. Namias, "A simple derivation of Stirling's asymptotic series" Amer. Math. Monthly, 93 (1986) pp. 25–29 |
Stirling formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stirling_formula&oldid=36832