Difference between revisions of "Bendixson criterion"
(TeX) |
m (label) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | A theorem that permits one to establish the absence of closed trajectories of dynamical | + | A theorem that permits one to establish the absence of closed trajectories of [[dynamical system]]s in the plane, defined by the equation |
− | $$x'=P(x,y),\quad y'=Q(x,y).\tag{*}$$ | + | $$x'=P(x,y),\quad y'=Q(x,y).\label{*}\tag{*}$$ |
− | The criterion was first formulated by I. Bendixson [[#References|[1]]] as follows: If in a simply-connected domain $G$ the expression $P_x'+Q_y'$ has constant sign (i.e. the sign remains unchanged and the expression vanishes only at isolated points or on a curve), then the system \ | + | The criterion was first formulated by I. Bendixson [[#References|[1]]] as follows: If in a [[simply-connected domain]] $G$ the expression $P_x'+Q_y'$ has constant sign (i.e. the sign remains unchanged and the expression vanishes only at isolated points or on a curve), then the system \eqref{*} has no closed trajectories in the domain $G$. This criterion was generalized by H. Dulac [[#References|[2]]] as follows: If $G$ is a simply-connected domain in the $(x,y)$-plane, if the functions $P$ and $Q\in C^1(G)$, and if a function $f(x,y)\in C^1(G)$ can be found such that |
$$\int\int\limits_D\left\lbrace\frac{\partial(fP)}{\partial x}+\frac{\partial(fQ)}{\partial y}\right\rbrace dxdy\neq0$$ | $$\int\int\limits_D\left\lbrace\frac{\partial(fP)}{\partial x}+\frac{\partial(fQ)}{\partial y}\right\rbrace dxdy\neq0$$ | ||
− | for any simply-connected subdomain $D\subset G$, then the domain $G$ does not contain any simple rectifiable closed curve consisting of trajectories and singular points of the system \ | + | for any simply-connected subdomain $D\subset G$, then the domain $G$ does not contain any simple rectifiable closed curve consisting of trajectories and singular points of the system \eqref{*}. If the domain $G$ is an annulus, a similar theorem states that a closed trajectory of \eqref{*}, if it exists, is unique. A generalization applying to the case of system \eqref{*} with cylindrical phase space [[#References|[3]]] is also possible. |
====References==== | ====References==== | ||
Line 20: | Line 20: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)</TD></TR></table> | ||
+ | |||
+ | [[Category:Dynamical systems and ergodic theory]] |
Latest revision as of 15:57, 14 February 2020
A theorem that permits one to establish the absence of closed trajectories of dynamical systems in the plane, defined by the equation
$$x'=P(x,y),\quad y'=Q(x,y).\label{*}\tag{*}$$
The criterion was first formulated by I. Bendixson [1] as follows: If in a simply-connected domain $G$ the expression $P_x'+Q_y'$ has constant sign (i.e. the sign remains unchanged and the expression vanishes only at isolated points or on a curve), then the system \eqref{*} has no closed trajectories in the domain $G$. This criterion was generalized by H. Dulac [2] as follows: If $G$ is a simply-connected domain in the $(x,y)$-plane, if the functions $P$ and $Q\in C^1(G)$, and if a function $f(x,y)\in C^1(G)$ can be found such that
$$\int\int\limits_D\left\lbrace\frac{\partial(fP)}{\partial x}+\frac{\partial(fQ)}{\partial y}\right\rbrace dxdy\neq0$$
for any simply-connected subdomain $D\subset G$, then the domain $G$ does not contain any simple rectifiable closed curve consisting of trajectories and singular points of the system \eqref{*}. If the domain $G$ is an annulus, a similar theorem states that a closed trajectory of \eqref{*}, if it exists, is unique. A generalization applying to the case of system \eqref{*} with cylindrical phase space [3] is also possible.
References
[1] | I. Bendixson, "Sur les courbes définies par des équations différentielles" Acta Math. , 24 (1901) pp. 1–88 |
[2] | H. Dulac, "Récherches des cycles limites" C.R. Acad. Sci. Paris Sér. I Math. , 204 (1937) pp. 1703–1706 |
[3] | A.A. Andronov, A.A. Vitt, A.E. Khaikin, "Theory of oscillators" , Pergamon (1966) (Translated from Russian) |
Comments
Bendixson's criterion is also called the Poincaré–Bendixson theorem.
References
[a1] | A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian) |
Bendixson criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bendixson_criterion&oldid=32809