|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | The Jordan decomposition of an endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431011.png" /> of a finite-dimensional vector space is the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431012.png" /> as the sum of a semi-simple and a nilpotent endomorphism that commute with each other: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431013.png" />. The endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431015.png" /> are said to be the semi-simple and the nilpotent component of the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431016.png" />. This decomposition is called the additive Jordan decomposition. (A semi-simple endomorphism is one having a basis of eigen vectors for some extension of the ground field, a nilpotent endomorphism is one some power of which is the zero endomorphism.) If in some basis of the space the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431018.png" /> is a [[Jordan matrix|Jordan matrix]] (i.e., a matrix in Jordan canonical form), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431019.png" /> is an endomorphism such that the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431021.png" /> in the same basis has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431022.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431024.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431025.png" />, then
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431026.png" /></td> </tr></table>
| + | The Jordan decomposition of an endomorphism $ g $ |
| + | of a finite-dimensional vector space is the representation of $ g $ |
| + | as the sum of a semi-simple and a nilpotent endomorphism that commute with each other: $ g = g _{s} + g _{n} $. |
| + | The endomorphisms $ g _{s} $ |
| + | and $ g _{n} $ |
| + | are said to be the semi-simple and the nilpotent component of the Jordan decomposition of $ g $. |
| + | This decomposition is called the additive Jordan decomposition. (A semi-simple endomorphism is one having a basis of eigen vectors for some extension of the ground field, a nilpotent endomorphism is one some power of which is the zero endomorphism.) If in some basis of the space the matrix $ \| a _{ij} \| $ |
| + | of $ g $ |
| + | is a [[Jordan matrix|Jordan matrix]] (i.e., a matrix in Jordan canonical form), and $ t $ |
| + | is an endomorphism such that the matrix $ \| b _{ij} \| $ |
| + | of $ t $ |
| + | in the same basis has $ b _{ij} = 0 $ |
| + | for $ i \neq j $ |
| + | and $ b _{ii} = a _{ii} $ |
| + | for all $ i $, |
| + | then |
| | | |
− | is the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431027.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431029.png" />.
| + | $$ |
| + | g \ = \ t + ( g - t ) |
| + | $$ |
| | | |
− | The Jordan decomposition exists and is unique for any endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431030.png" /> of a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431031.png" /> over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431032.png" />. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431034.png" /> for some polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431036.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431037.png" /> (depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431038.png" />) with constant terms equal to zero. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431039.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431040.png" />-invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431042.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431044.png" />, and
| + | is the Jordan decomposition of $ g $ |
| + | with $ g _{s} = t $ |
| + | and $ g _{n} = g -t $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431045.png" /></td> </tr></table>
| + | The Jordan decomposition exists and is unique for any endomorphism $ g $ |
| + | of a vector space $ V $ |
| + | over an algebraically closed field $ K $. |
| + | Moreover, $ g _{s} = P (g) $ |
| + | and $ g _{n} = Q (g) $ |
| + | for some polynomials $ P $ |
| + | and $ Q $ |
| + | over $ K $ (depending on $ g $) |
| + | with constant terms equal to zero. If $ W $ |
| + | is a $ g $-invariant subspace of $ V $, |
| + | then $ W $ |
| + | is invariant under $ g _{s} $ |
| + | and $ g _{n} $, |
| + | and |
| | | |
− | is the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431046.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431047.png" /> means restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431048.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431049.png" /> is a subfield of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431051.png" /> is rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431052.png" /> (with respect to some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431053.png" />-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431054.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431056.png" /> need not be rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431057.png" />; one may only assert that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431059.png" /> are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431060.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431061.png" /> is the characteristic exponent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431062.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431064.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431065.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431066.png" /> it is the set of all elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431067.png" /> that are purely inseparable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431068.png" />, cf. [[Separable extension|Separable extension]]).
| + | $$ |
| + | g \mid _{W} \ = \ |
| + | \left . g _{s} \right | _{W} + \left . g _{n} \right | _{W} $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431069.png" /> is an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431070.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431071.png" /> is also an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431072.png" />, and | + | is the Jordan decomposition of $ g \mid _{W} $ (here $ \mid _{W} $ |
| + | means restriction to $ W $). |
| + | If $ k $ |
| + | is a subfield of $ K $ |
| + | and $ g $ |
| + | is rational over $ k $ (with respect to some $ k $-structure on $ V $), |
| + | then $ g _{s} $ |
| + | and $ g _{n} $ |
| + | need not be rational over $ k $; |
| + | one may only assert that $ g _{s} $ |
| + | and $ g _{n} $ |
| + | are rational over $ k ^ {p ^ {- \infty}} $, |
| + | where $ p $ |
| + | is the characteristic exponent of $ k $ (for $ p = 1 $, |
| + | $ k ^ {p ^ {- \infty}} $ |
| + | is $ k $, |
| + | and for $ p > 1 $ |
| + | it is the set of all elements of $ K $ |
| + | that are [[Purely inseparable extension|purely inseparable]] over $ k $. |
| + | |
| + | If $ g $ |
| + | is an automorphism of $ V $, |
| + | then $ g _{s} $ |
| + | is also an automorphism of $ V $, |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431073.png" /></td> </tr></table>
| + | $$ |
| + | g = g _{s} g _{u} \ = \ g _{u} g _{s} , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431075.png" /> is the identity automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431076.png" />. The automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431077.png" /> is unipotent, that is, all its eigen values are equal to one. Every representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431078.png" /> as a product of commuting semi-simple and unipotent automorphisms coincides with the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431079.png" /> already described. This representation is called the multiplicative Jordan decomposition of the automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431080.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431081.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431082.png" /> are called the semi-simple and unipotent components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431083.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431084.png" /> is rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431085.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431087.png" /> are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431088.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431089.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431090.png" />-invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431091.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431092.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431094.png" />, and | + | where $ g _{u} = 1 _{V} + g _ s^{-1} g _{n} $ |
| + | and $ 1 _{V} $ |
| + | is the identity automorphism of $ V $. |
| + | The automorphism $ g _{u} $ |
| + | is unipotent, that is, all its eigen values are equal to one. Every representation of $ g $ |
| + | as a product of commuting semi-simple and unipotent automorphisms coincides with the representation $ g = g _{s} g _{u} = g _{u} g _{s} $ |
| + | already described. This representation is called the multiplicative Jordan decomposition of the automorphism $ g $, |
| + | and $ g _{s} $ |
| + | and $ g _{u} $ |
| + | are called the semi-simple and unipotent components of $ g $. |
| + | If $ g $ |
| + | is rational over $ k $, |
| + | then $ g _{s} $ |
| + | and $ g _{u} $ |
| + | are rational over $ k ^ {p ^ {- \infty}} $. |
| + | If $ W $ |
| + | is a $ g $-invariant subspace of $ V $, |
| + | then $ W $ |
| + | is invariant under $ g _{s} $ |
| + | and $ g _{u} $, |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431095.png" /></td> </tr></table>
| + | $$ |
| + | g \mid _{W} \ = \ |
| + | \left . g _{s} \right | _{W} \left . g _{u} \right | _{W} $$ |
| | | |
− | is the multiplicative Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431096.png" />. | + | is the multiplicative Jordan decomposition of $ g \mid _{W} $. |
| | | |
− | The concept of a Jordan decomposition can be generalized to locally finite endomorphisms of an infinite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431097.png" />, that is, endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431098.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431099.png" /> is generated by finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310100.png" />-invariant subspaces. For such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310101.png" />, there is one and only one decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310102.png" /> as a sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310103.png" /> (and in the case of an automorphism, one and only one decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310104.png" /> as a product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310105.png" />) of commuting locally finite semi-simple and nilpotent endomorphisms (semi-simple and unipotent automorphisms, respectively), that is, endomorphisms (automorphisms) such that every finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310106.png" />-invariant subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310107.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310108.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310110.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310111.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310112.png" />, respectively) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310113.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310114.png" />, respectively) is the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310115.png" />. | + | The concept of a Jordan decomposition can be generalized to locally finite endomorphisms of an infinite-dimensional vector space $ V $, |
| + | that is, endomorphisms $ g $ |
| + | such that $ V $ |
| + | is generated by finite-dimensional $ g $-invariant subspaces. For such $ g $, |
| + | there is one and only one decomposition of $ g $ |
| + | as a sum $ g = g _{s} + g _{n} $ (and in the case of an automorphism, one and only one decomposition of $ g $ |
| + | as a product $ g _{s} g _{u} $) |
| + | of commuting locally finite semi-simple and nilpotent endomorphisms (semi-simple and unipotent automorphisms, respectively), that is, endomorphisms (automorphisms) such that every finite-dimensional $ g $-invariant subspace $ W $ |
| + | of $ V $ |
| + | is invariant under $ g _{s} $ |
| + | and $ g _{n} $ ($ g _{s} $ |
| + | and $ g _{u} $, |
| + | respectively) and $ g | _{W} = g _{s} \mid _{W} + g _{n} | _{W} $ ($ g \mid _{W} = g _{s} | _{W} g _{u} | _{W} $, |
| + | respectively) is the Jordan decomposition of $ g \mid _{W} $. |
| | | |
− | This extension of the concept of a Jordan decomposition allows one to introduce the concept of a Jordan decomposition in algebraic groups and algebras. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310116.png" /> be an affine algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310117.png" /> (cf. [[Affine group|Affine group]]), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310118.png" /> be its [[Lie algebra|Lie algebra]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310119.png" /> be the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310120.png" /> in the group of automorphisms of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310121.png" /> of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310122.png" /> defined by right translations, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310123.png" /> be its derivation. For arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310124.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310125.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310126.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310127.png" />, the endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310128.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310129.png" /> of the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310130.png" /> are locally finite, so that one can speak of their Jordan decompositions: | + | This extension of the concept of a Jordan decomposition allows one to introduce the concept of a Jordan decomposition in algebraic groups and algebras. Let $ G $ |
| + | be an affine algebraic group over $ K $ (cf. [[Affine group|Affine group]]), let $ {\mathcal G} $ |
| + | be its [[Lie algebra|Lie algebra]], let $ \rho $ |
| + | be the representation of $ G $ |
| + | in the group of automorphisms of the algebra $ K [ G ] $ |
| + | of regular functions on $ G $ |
| + | defined by right translations, and let $ d \rho $ |
| + | be its derivation. For arbitrary $ g $ |
| + | in $ G $ |
| + | and $ X $ |
| + | in $ {\mathcal G} $, |
| + | the endomorphisms $ \rho (g) $ |
| + | and $ d \rho (X) $ |
| + | of the vector space $ K [ G ] $ |
| + | are locally finite, so that one can speak of their Jordan decompositions: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310131.png" /></td> </tr></table>
| + | $$ |
| + | \rho (g) \ = \ \rho (g) _{s} \rho (g) _{u} $$ |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310132.png" /></td> </tr></table>
| + | $$ |
| + | d \rho (X) \ = \ d \rho (X) _{s} + d \rho (X) _{n} . |
| + | $$ |
| | | |
− | One of the important results in the theory of algebraic groups is that the Jordan decomposition just indicated is realized by the use of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310133.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310134.png" />, respectively. More exactly, there exist unique elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310135.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310136.png" /> such that | + | One of the important results in the theory of algebraic groups is that the Jordan decomposition just indicated is realized by the use of elements of $ G $ |
| + | and $ {\mathcal G} $, |
| + | respectively. More exactly, there exist unique elements $ g _{s} ,\ g _{u} \in G $ |
| + | and $ X _{s} ,\ X _{n} \in {\mathcal G} $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310137.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$ \tag{1} |
| + | g \ = \ g _{s} g _{u} \ = \ g _{u} g _{s} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310138.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2} |
| + | X \ = \ X _{s} + X _{n} ,\ \ [ X _{s} ,\ X _{n} ] \ = \ 0 , |
| + | $$ |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310139.png" /></td> </tr></table>
| + | $$ |
| + | \rho ( g _{s} ) \ = \ \rho (g) _{s} ,\ \ |
| + | \rho ( g _{u} ) \ = \ \rho (g) _{u} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310140.png" /></td> </tr></table>
| + | $$ |
| + | d \rho ( X _{s} ) \ = \ ( d \rho (X) ) _{s} ,\ \ d \rho ( X _{n} ) \ = \ ( d \rho (X) ) _{n} . |
| + | $$ |
| | | |
− | The decomposition (1) is called the Jordan decomposition in the algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310141.png" />, and (2) the Jordan decomposition in the algebraic Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310142.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310143.png" /> is defined over a subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310144.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310145.png" /> and the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310146.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310147.png" />, respectively) is rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310148.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310149.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310150.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310151.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310152.png" />, respectively) are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310153.png" />. Moreover, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310154.png" /> is realized as a closed subgroup of the general linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310155.png" /> of automorphisms of some finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310156.png" /> (and thus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310157.png" /> is realized as a subalgebra of the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310158.png" />), then the Jordan decomposition (1) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310159.png" /> coincides with the multiplicative decomposition introduced above for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310160.png" />, while the decomposition (2) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310161.png" /> coincides with the additive Jordan decomposition for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310162.png" /> (considered as endomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310163.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310164.png" /> is a rational homomorphism of affine algebraic groups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310165.png" /> is the corresponding homomorphism of their Lie algebras, then | + | The decomposition (1) is called the Jordan decomposition in the algebraic group $ G $, |
| + | and (2) the Jordan decomposition in the algebraic Lie algebra $ {\mathcal G} $. |
| + | If $ G $ |
| + | is defined over a subfield $ k $ |
| + | of $ K $ |
| + | and the element $ g \in G $ ($ X \in {\mathcal G} $, |
| + | respectively) is rational over $ k $, |
| + | then $ g _{s} $ |
| + | and $ g _{u} $ ($ X _{s} $ |
| + | and $ X _{n} $, |
| + | respectively) are rational over $ k ^ {p ^ {- \infty}} $. |
| + | Moreover, if $ G $ |
| + | is realized as a closed subgroup of the general linear group $ \mathop{\rm GL}\nolimits (V) $ |
| + | of automorphisms of some finite-dimensional vector space $ V $ (and thus $ {\mathcal G} $ |
| + | is realized as a subalgebra of the Lie algebra of $ \mathop{\rm GL}\nolimits (V) $), |
| + | then the Jordan decomposition (1) of $ g \in G $ |
| + | coincides with the multiplicative decomposition introduced above for $ g $, |
| + | while the decomposition (2) for $ X \in {\mathcal G} $ |
| + | coincides with the additive Jordan decomposition for $ X $ (considered as endomorphisms of $ V $). |
| + | If $ \phi : \ G _{1} \rightarrow G _{2} $ |
| + | is a rational homomorphism of affine algebraic groups and $ d \phi : \ {\mathcal G} _{1} \rightarrow {\mathcal G} _{2} $ |
| + | is the corresponding homomorphism of their Lie algebras, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310166.png" /></td> </tr></table>
| + | $$ |
| + | \phi ( g _{s} ) \ = \ \phi (g) _{s} ,\ \ |
| + | \phi ( g _{u} ) \ = \ \phi (g) _{u} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310167.png" /></td> </tr></table>
| + | $$ |
| + | d \phi ( X _{s} ) \ = \ ( d \phi (X) ) _{s} ,\ \ d \phi ( X _{n} ) \ = \ ( d \phi (X) ) _{n} $$ |
| | | |
− | for arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310168.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310169.png" />. | + | for arbitrary $ g \in G _{1} $, |
| + | $ X \in {\mathcal G} _{1} $. |
| | | |
− | The concept of a Jordan decomposition in algebraic groups and algebraic Lie algebras allows one to introduce the definitions of a semi-simple and a unipotent (nilpotent, respectively) element in an arbitrary affine algebraic group (algebraic Lie algebra, respectively). An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310170.png" /> is said to be semi-simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310171.png" />, and unipotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310172.png" />; an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310173.png" /> is said to be semi-simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310174.png" /> and nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310175.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310176.png" /> is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310177.png" />, then | + | The concept of a Jordan decomposition in algebraic groups and algebraic Lie algebras allows one to introduce the definitions of a semi-simple and a unipotent (nilpotent, respectively) element in an arbitrary affine algebraic group (algebraic Lie algebra, respectively). An element $ g \in G $ |
| + | is said to be semi-simple if $ g = g _{s} $, |
| + | and unipotent if $ g = g _{u} $; |
| + | an element $ X \in {\mathcal G} $ |
| + | is said to be semi-simple if $ X = X _{s} $ |
| + | and nilpotent if $ X = X _{n} $. |
| + | If $ G $ |
| + | is defined over $ k $, |
| + | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310178.png" /></td> </tr></table>
| + | $$ |
| + | G _{u} \ = \ \{ {g \in G} : {g = g _ u} \} |
| + | $$ |
| | | |
− | is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310179.png" />-closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310180.png" />, and | + | is a $ k $-closed subset of $ G $, |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310181.png" /></td> </tr></table>
| + | $$ |
| + | {\mathcal G} _{n} \ = \ \{ {X \in {\mathcal G}} : {X = X _ n} \} |
| + | $$ |
| | | |
− | is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310182.png" />-closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310183.png" />. In general, | + | is a $ k $-closed subset of $ {\mathcal G} $. |
| + | In general, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310184.png" /></td> </tr></table>
| + | $$ |
| + | G _{s} \ = \ \{ {g \in G} : {g = g _ s} \} |
| + | $$ |
| | | |
− | is not a closed set, but if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310185.png" /> is commutative, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310186.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310187.png" /> are closed subgroups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310188.png" />. The sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310189.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310190.png" /> in an arbitrary affine algebraic group are invariant under inner automorphisms, and the study of decompositions of these sets into classes of conjugate elements is a subject of special investigations [[#References|[3]]]. | + | is not a closed set, but if $ G $ |
| + | is commutative, then $ G _{s} $ |
| + | and $ G _{u} $ |
| + | are closed subgroups and $ G = G _{s} \times G _{u} $. |
| + | The sets $ G _{s} $ |
| + | and $ G _{u} $ |
| + | in an arbitrary affine algebraic group are invariant under inner automorphisms, and the study of decompositions of these sets into classes of conjugate elements is a subject of special investigations [[#References|[3]]]. |
| | | |
| ====References==== | | ====References==== |
Line 71: |
Line 244: |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Steinberg, "Conjugacy classes in algebraic groups" , ''Lect. notes in math.'' , '''366''' , Springer (1974) {{MR|0352279}} {{ZBL|0281.20037}} </TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Steinberg, "Conjugacy classes in algebraic groups" , ''Lect. notes in math.'' , '''366''' , Springer (1974) {{MR|0352279}} {{ZBL|0281.20037}} </TD></TR></table> |
The Jordan decomposition of an endomorphism $ g $
of a finite-dimensional vector space is the representation of $ g $
as the sum of a semi-simple and a nilpotent endomorphism that commute with each other: $ g = g _{s} + g _{n} $.
The endomorphisms $ g _{s} $
and $ g _{n} $
are said to be the semi-simple and the nilpotent component of the Jordan decomposition of $ g $.
This decomposition is called the additive Jordan decomposition. (A semi-simple endomorphism is one having a basis of eigen vectors for some extension of the ground field, a nilpotent endomorphism is one some power of which is the zero endomorphism.) If in some basis of the space the matrix $ \| a _{ij} \| $
of $ g $
is a Jordan matrix (i.e., a matrix in Jordan canonical form), and $ t $
is an endomorphism such that the matrix $ \| b _{ij} \| $
of $ t $
in the same basis has $ b _{ij} = 0 $
for $ i \neq j $
and $ b _{ii} = a _{ii} $
for all $ i $,
then
$$
g \ = \ t + ( g - t )
$$
is the Jordan decomposition of $ g $
with $ g _{s} = t $
and $ g _{n} = g -t $.
The Jordan decomposition exists and is unique for any endomorphism $ g $
of a vector space $ V $
over an algebraically closed field $ K $.
Moreover, $ g _{s} = P (g) $
and $ g _{n} = Q (g) $
for some polynomials $ P $
and $ Q $
over $ K $ (depending on $ g $)
with constant terms equal to zero. If $ W $
is a $ g $-invariant subspace of $ V $,
then $ W $
is invariant under $ g _{s} $
and $ g _{n} $,
and
$$
g \mid _{W} \ = \
\left . g _{s} \right | _{W} + \left . g _{n} \right | _{W} $$
is the Jordan decomposition of $ g \mid _{W} $ (here $ \mid _{W} $
means restriction to $ W $).
If $ k $
is a subfield of $ K $
and $ g $
is rational over $ k $ (with respect to some $ k $-structure on $ V $),
then $ g _{s} $
and $ g _{n} $
need not be rational over $ k $;
one may only assert that $ g _{s} $
and $ g _{n} $
are rational over $ k ^ {p ^ {- \infty}} $,
where $ p $
is the characteristic exponent of $ k $ (for $ p = 1 $,
$ k ^ {p ^ {- \infty}} $
is $ k $,
and for $ p > 1 $
it is the set of all elements of $ K $
that are purely inseparable over $ k $.
If $ g $
is an automorphism of $ V $,
then $ g _{s} $
is also an automorphism of $ V $,
and
$$
g = g _{s} g _{u} \ = \ g _{u} g _{s} ,
$$
where $ g _{u} = 1 _{V} + g _ s^{-1} g _{n} $
and $ 1 _{V} $
is the identity automorphism of $ V $.
The automorphism $ g _{u} $
is unipotent, that is, all its eigen values are equal to one. Every representation of $ g $
as a product of commuting semi-simple and unipotent automorphisms coincides with the representation $ g = g _{s} g _{u} = g _{u} g _{s} $
already described. This representation is called the multiplicative Jordan decomposition of the automorphism $ g $,
and $ g _{s} $
and $ g _{u} $
are called the semi-simple and unipotent components of $ g $.
If $ g $
is rational over $ k $,
then $ g _{s} $
and $ g _{u} $
are rational over $ k ^ {p ^ {- \infty}} $.
If $ W $
is a $ g $-invariant subspace of $ V $,
then $ W $
is invariant under $ g _{s} $
and $ g _{u} $,
and
$$
g \mid _{W} \ = \
\left . g _{s} \right | _{W} \left . g _{u} \right | _{W} $$
is the multiplicative Jordan decomposition of $ g \mid _{W} $.
The concept of a Jordan decomposition can be generalized to locally finite endomorphisms of an infinite-dimensional vector space $ V $,
that is, endomorphisms $ g $
such that $ V $
is generated by finite-dimensional $ g $-invariant subspaces. For such $ g $,
there is one and only one decomposition of $ g $
as a sum $ g = g _{s} + g _{n} $ (and in the case of an automorphism, one and only one decomposition of $ g $
as a product $ g _{s} g _{u} $)
of commuting locally finite semi-simple and nilpotent endomorphisms (semi-simple and unipotent automorphisms, respectively), that is, endomorphisms (automorphisms) such that every finite-dimensional $ g $-invariant subspace $ W $
of $ V $
is invariant under $ g _{s} $
and $ g _{n} $ ($ g _{s} $
and $ g _{u} $,
respectively) and $ g | _{W} = g _{s} \mid _{W} + g _{n} | _{W} $ ($ g \mid _{W} = g _{s} | _{W} g _{u} | _{W} $,
respectively) is the Jordan decomposition of $ g \mid _{W} $.
This extension of the concept of a Jordan decomposition allows one to introduce the concept of a Jordan decomposition in algebraic groups and algebras. Let $ G $
be an affine algebraic group over $ K $ (cf. Affine group), let $ {\mathcal G} $
be its Lie algebra, let $ \rho $
be the representation of $ G $
in the group of automorphisms of the algebra $ K [ G ] $
of regular functions on $ G $
defined by right translations, and let $ d \rho $
be its derivation. For arbitrary $ g $
in $ G $
and $ X $
in $ {\mathcal G} $,
the endomorphisms $ \rho (g) $
and $ d \rho (X) $
of the vector space $ K [ G ] $
are locally finite, so that one can speak of their Jordan decompositions:
$$
\rho (g) \ = \ \rho (g) _{s} \rho (g) _{u} $$
and
$$
d \rho (X) \ = \ d \rho (X) _{s} + d \rho (X) _{n} .
$$
One of the important results in the theory of algebraic groups is that the Jordan decomposition just indicated is realized by the use of elements of $ G $
and $ {\mathcal G} $,
respectively. More exactly, there exist unique elements $ g _{s} ,\ g _{u} \in G $
and $ X _{s} ,\ X _{n} \in {\mathcal G} $
such that
$$ \tag{1}
g \ = \ g _{s} g _{u} \ = \ g _{u} g _{s} ,
$$
$$ \tag{2}
X \ = \ X _{s} + X _{n} ,\ \ [ X _{s} ,\ X _{n} ] \ = \ 0 ,
$$
and
$$
\rho ( g _{s} ) \ = \ \rho (g) _{s} ,\ \
\rho ( g _{u} ) \ = \ \rho (g) _{u} ,
$$
$$
d \rho ( X _{s} ) \ = \ ( d \rho (X) ) _{s} ,\ \ d \rho ( X _{n} ) \ = \ ( d \rho (X) ) _{n} .
$$
The decomposition (1) is called the Jordan decomposition in the algebraic group $ G $,
and (2) the Jordan decomposition in the algebraic Lie algebra $ {\mathcal G} $.
If $ G $
is defined over a subfield $ k $
of $ K $
and the element $ g \in G $ ($ X \in {\mathcal G} $,
respectively) is rational over $ k $,
then $ g _{s} $
and $ g _{u} $ ($ X _{s} $
and $ X _{n} $,
respectively) are rational over $ k ^ {p ^ {- \infty}} $.
Moreover, if $ G $
is realized as a closed subgroup of the general linear group $ \mathop{\rm GL}\nolimits (V) $
of automorphisms of some finite-dimensional vector space $ V $ (and thus $ {\mathcal G} $
is realized as a subalgebra of the Lie algebra of $ \mathop{\rm GL}\nolimits (V) $),
then the Jordan decomposition (1) of $ g \in G $
coincides with the multiplicative decomposition introduced above for $ g $,
while the decomposition (2) for $ X \in {\mathcal G} $
coincides with the additive Jordan decomposition for $ X $ (considered as endomorphisms of $ V $).
If $ \phi : \ G _{1} \rightarrow G _{2} $
is a rational homomorphism of affine algebraic groups and $ d \phi : \ {\mathcal G} _{1} \rightarrow {\mathcal G} _{2} $
is the corresponding homomorphism of their Lie algebras, then
$$
\phi ( g _{s} ) \ = \ \phi (g) _{s} ,\ \
\phi ( g _{u} ) \ = \ \phi (g) _{u} ,
$$
$$
d \phi ( X _{s} ) \ = \ ( d \phi (X) ) _{s} ,\ \ d \phi ( X _{n} ) \ = \ ( d \phi (X) ) _{n} $$
for arbitrary $ g \in G _{1} $,
$ X \in {\mathcal G} _{1} $.
The concept of a Jordan decomposition in algebraic groups and algebraic Lie algebras allows one to introduce the definitions of a semi-simple and a unipotent (nilpotent, respectively) element in an arbitrary affine algebraic group (algebraic Lie algebra, respectively). An element $ g \in G $
is said to be semi-simple if $ g = g _{s} $,
and unipotent if $ g = g _{u} $;
an element $ X \in {\mathcal G} $
is said to be semi-simple if $ X = X _{s} $
and nilpotent if $ X = X _{n} $.
If $ G $
is defined over $ k $,
then
$$
G _{u} \ = \ \{ {g \in G} : {g = g _ u} \}
$$
is a $ k $-closed subset of $ G $,
and
$$
{\mathcal G} _{n} \ = \ \{ {X \in {\mathcal G}} : {X = X _ n} \}
$$
is a $ k $-closed subset of $ {\mathcal G} $.
In general,
$$
G _{s} \ = \ \{ {g \in G} : {g = g _ s} \}
$$
is not a closed set, but if $ G $
is commutative, then $ G _{s} $
and $ G _{u} $
are closed subgroups and $ G = G _{s} \times G _{u} $.
The sets $ G _{s} $
and $ G _{u} $
in an arbitrary affine algebraic group are invariant under inner automorphisms, and the study of decompositions of these sets into classes of conjugate elements is a subject of special investigations [3].
References
[1] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[2] | E.R. Kolchin, "Algebraic matrix groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations" Ann. of Math. , 49 (1948) pp. 1–42 |
[3] | A. Borel (ed.) R. Carter (ed.) C.W. Curtis (ed.) N. Iwahori (ed.) T.A. Springer (ed.) R. Steinberg (ed.) , Seminar on algebraic groups and related finite groups , Lect. notes in math. , 131 , Springer (1970) Zbl 0192.36201 |
V.L. Popov
References
[a1] | R. Steinberg, "Conjugacy classes in algebraic groups" , Lect. notes in math. , 366 , Springer (1974) MR0352279 Zbl 0281.20037 |