Namespaces
Variants
Actions

Difference between revisions of "Talk:Fourier series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(copied to discussion for TeXing)
 
(Post-TeX remarks)
 
(36 intermediate revisions by the same user not shown)
Line 1: Line 1:
''of a function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410901.png" /> in a system of  functions <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410902.png" /> which are  orthonormal on an interval <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410903.png" />''
+
Post $\TeX$ remarks
 
+
* There was a load of gibberish in two places in the original imported text (looked like a part of the index had been cut-and-pasted accidentally).  By looking at the google version of EoM I determined where it started and ended, and so could remove it cleanly.
The series
+
* In several places I have merged the explicit reference and the link, so "<nowiki>sometimes called the A of B (see [[B, A of]])</nowiki>" becomes "<nowiki>sometimes called the [[B, A of|A of B]])</nowiki>".  
 
+
* The text contains the phrase "a modulus of continuity of  function type" which is a google-whack -- according to google it occurs only in this document. I guess it is a literal translation of Russian terminology, find what it is called in the West!
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410904.png"  /></td> </tr></table>
+
--[[User:Jjg|Jjg]] 00:10, 26 April 2012 (CEST)
 
 
whose coefficients are determined by
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410905.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(1)</td></tr></table>
 
 
 
These  coefficients are called the Fourier coefficients of <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410906.png" />. In general it is  assumed that <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410907.png" /> is square  integrable on <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410908.png" />. For many systems  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f0410909.png" /> this requirement  can be relaxed by replacing it by another which ensures the existence of all the integrals in (1).
 
 
 
The Fourier series in the trigonometric system is defined for every function <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109010.png" /> that is  integrable on <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109011.png" />. It is the series
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109012.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(2)</td></tr></table>
 
 
 
with coefficients
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109013.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(3)</td></tr></table>
 
 
 
Fourier  series for functions in several variables are constructed analogously. A  further generalization leads to Fourier coefficients and Fourier series  for elements of a Hilbert space.
 
 
 
The theory of Fourier  series in the trigonometric system has been most thoroughly developed,  and these were the first examples of Fourier series. If one has in mind  Fourier series in the trigonometric system, it is usual to talk simply  of Fourier series, without indicating the system by which they are  constructed.
 
 
 
Fourier series form a considerable part of the theory of [[Trigonometric series|trigonometric series]]. Fourier  series first appeared in the papers of J. Fourier (1807) devoted to an  investigation of the problems of heat conduction. He suggested  representing a function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109014.png" /> given on <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109015.png" /> by the  trigonometric series (2) with coefficients determined by (3). Such a  choice of coefficients is natural from many points of view. For example,  if the series (2) converges uniformly to <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109016.png" />, then  term-by-term integration leads to the expressions for the coefficients  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109017.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109018.png" /> given in (3).  These formulas had been obtained already by L. Euler (1777) by  term-by-term integration.
 
 
 
Using (3) the Fourier series  (2) can be constructed for every function that is integrable over  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109019.png" />. Integrability of the function can be understood in various senses, for example  integrability according to Riemann or Lebesgue. Depending on this, one  speaks of Fourier–Riemann series, Fourier–Lebesgue series, etc. The  concepts of the Riemann and the Lebesgue integral themselves arose to a  considerable extent in connection with research on Fourier series. The  modern presentation of the theory of Fourier series was developed after  the construction of the Lebesgue integral, and since then it has  developed mainly as the theory of Fourier–Lebesgue series. Below it is  assumed that the function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109020.png" /> has period  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109021.png" /> and is Lebesgue  integrable over the period.
 
 
 
In the theory of Fourier  series one studies the relation between the properties of functions and the properties of their Fourier series; in particular, one investigates  questions on the representation of functions by Fourier series.
 
 
 
The  proof of a minimum property of the partial sums of Fourier series goes  back to the work of F. Bessel (1828): Given an <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109022.png" />, then  among all the trigonometric polynomials of order <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109024.png" />,
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109025.png"  /></td> </tr></table>
 
 
 
the smallest value of the integral
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109026.png"  /></td> </tr></table>
 
 
 
is attained  for the partial sum of the Fourier series (2) of <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109027.png" />:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109028.png"  /></td> </tr></table>
 
 
 
This smallest value is equal to
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109029.png"  /></td> </tr></table>
 
 
 
This implies the [[Bessel inequality|Bessel inequality]]
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109030.png"  /></td> </tr></table>
 
 
 
which is  satisfied for every function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109031.png" /> in <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109032.png" />.
 
 
 
The  system of trigonometric functions is a closed system (cf. [[Closed  system of elements (functions)|Closed system of elements (functions)]]),  that is, if <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109033.png" />, then the  [[Parseval equality|Parseval equality]]
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109034.png"  /></td> </tr></table>
 
 
 
is valid,  where <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109035.png" /> are the Fourier  coefficients of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109036.png" />. In particular,  for functions <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109037.png" /> in <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109038.png" /> the series
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109039.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(4)</td></tr></table>
 
 
 
is  convergent. The converse assertion also holds: If for a system of  numbers <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109040.png" /> the series (4)  converges, then these numbers are the Fourier coefficients of a certain  function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109041.png" /> (F. Riesz and E.  Fischer, 1907).
 
 
 
The Fourier coefficients of any  integrable function tend to zero. This statement is called the  Riemann–Lebesgue theorem. B. Riemann proved it for Fourier–Riemann  series and e dimension','../l/l057830.htm','Lebesgue  function','../l/l057840.htm','Lebesgue  inequality','../l/l057850.htm','Lebesgue  integral','../l/l057860.htm','Lebesgue  measure','../l/l057870.htm','Lebesgue summation  method','../l/l057940.htm','Lebesgue  theorem','../l/l057950.htm','Measure','../m/m063240.htm','Metric  space','../m/m063680.htm','Metric theory of  functions','../m/m063700.htm','Orthogonal  series','../o/o070370.htm','Perron method','../p/p072370.htm','Potential  theory','../p/p074140.htm','Regular boundary  point','../r/r080680.htm','Singular integral','../s/s085570.htm','Suslin  theorem','../s/s091480.htm','Urysohn–Brouwer  lemma','../u/u095860.htm','Vitali variation','../v/v096790.htm')"  style="background-color:yellow;">H. Lebesgue for Fourier–Lebesgue  series.
 
 
 
If the function <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109042.png" /> is  absolutely continuous, then the Fourier series for the derivative  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109043.png" /> can be obtained  by term-by-term differentation of the Fourier series for <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109044.png" />. This implies  that if the derivative of order <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109045.png" /> of a function  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109046.png" /> is absolutely  continuous, then the estimates
 
 
 
<table class="eq"  style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109047.png"  /></td> </tr></table>
 
 
 
are valid  for the Fourier coefficients of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109048.png" />.
 
 
 
The  first convergence criterion for Fourier series was obtained by P.G.L.  Dirichlet in 1829. His result (the [[Dirichlet theorem|Dirichlet  theorem]]) can be formulated as follows: If a function <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109049.png" /> has a finite  number of maxima and minima over the period and is everywhere  continuous, except at a finite number of points where it may have  discontinuities of the first kind, then the Fourier series of <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109050.png" /> converges for all  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109051.png" />, and, moreover,  at points of continuity it converges to <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109052.png" /> and at  points of discontinuity it converges to <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109053.png" />.  Subsequently, this assertion was extended to arbitrary functions of  bounded variation (C. Jordan, 1881).
 
 
 
According to the  localization principle proved by Riemann (1853), the convergence or  divergence of the Fourier series of a function <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109054.png" /> at a  point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109055.png" />, and the value of  the sum when it converges, depends only on the behaviour of <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109056.png" /> in an arbitrarily  small neighbourhood of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109057.png" />.
 
 
 
Many  different convergence criteria for Fourier series at a point are known.  R. Lipschitz (1864) established that the Fourier series of a function  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109058.png" /> converges at a  point <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109059.png" /> if <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109060.png" /> is satisfied for  all sufficiently small <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109061.png" />, where <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109062.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109063.png" /> are certain  positive constants (the Lipschitz criterion). The [[Dini criterion|Dini  criterion]] is more general: The Fourier series of a function <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109064.png" /> converges to  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109065.png" /> at a point  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109066.png" /> if the integral
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109067.png"  /></td> </tr></table>
 
 
 
converges, where <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109068.png" />. The value  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109069.png" /> is usually taken  for <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109070.png" />. For example, if  the Fourier series of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109071.png" /> converges at a  point <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109072.png" /> where this  function is continuous, then the sum of the series is necessarily equal  to <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109073.png" />.
 
 
 
Lebesgue (1905) proved that if
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109074.png"  /></td> </tr></table>
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109075.png"  /></td> </tr></table>
 
 
 
as <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109076.png" />, then the Fourier  series of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109077.png" /> converges to  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109078.png" /> at <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109079.png" />. This [[Lebesgue  criterion|Lebesgue criterion]] is stronger than all those given above  and stronger than the [[De la Vallée-Poussin criterion|de la  Vallée-Poussin criterion]] and the [[Young criterion|Young criterion]].  But verifying it is usually difficult.
 
 
 
A convergence  criterion of another type is given by the Hardy–Littlewood theorem  (1932): The Fourier series of a function <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109080.png" />  converges at a point <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109081.png" /> if the following  conditions are satisfied:
 
 
 
1)
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109082.png"  /></td> </tr></table>
 
 
 
as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109083.png" />; and
 
 
 
2) the estimates
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109084.png"  /></td> </tr></table>
 
 
 
are valid  for the Fourier coefficients of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109085.png" />.
 
 
 
Besides  convergence criteria for Fourier series at a point, criteria for  uniform convergence have been studied also. Let a function <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109086.png" /> have period  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109087.png" /> and be  continuous. Then its Fourier series converges uniformly to it on the  whole real line if the modulus of continuity (cf. [[Continuity, modulus  of|Continuity, modulus of]]) <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109088.png" /> of <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109089.png" /> satisfies the  condition
 
 
 
<table class="eq" style="width:100%;">  <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109090.png"  /></td> </tr></table>
 
 
 
(the  [[Dini–Lipschitz criterion|Dini–Lipschitz criterion]]) or if <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109091.png" /> has bounded  variation (the [[Jordan criterion|Jordan criterion]]).
 
 
 
From  this one can obtain criteria for uniform convergence of Fourier series  on a certain interval if the localization principle for uniform  convergence is used. The latter is formulated as follows. If two  functions are equal on an interval <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109092.png" />, then on each  strictly interior interval <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109093.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109094.png" />, either the  Fourier series of these functions are both uniformly convergent or  neither is uniformly convergent. In other words, the uniform convergence  of the Fourier series of a function <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109095.png" /> on an  interval depends only on the behaviour of <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109096.png" /> in an  arbitrarily small extension of this interval.
 
 
 
P. du  Bois-Reymond (1876) established that the continuity of a function at a  certain point does not guarantee that its Fourier series converges at  this point. Later it was proved that the Fourier series of a continuous  function may diverge on an everywhere-dense set of measure zero that is  of the second category.
 
 
 
If nothing is assumed about the  function except that it is integrable, then its Fourier series may turn  out to be divergent almost-everywhere, or even everywhere. The first  examples of such functions were constructed by A.N. Kolmogorov (1923,  1926). Later it was shown that this may be true both for the Fourier  series of the function itself and for the function conjugate to it.
 
 
 
As  early as 1915, N.N. Luzin made the conjecture that the Fourier series  of every <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109098.png" />-function  converges almost-everywhere. For a long time only partial results were  obtained in this direction. The general form of the problem turned out  to be very difficult and it was only in 1966 that L. Carleson proved the  validity of this conjecture (see [[Carleson theorem|Carleson  theorem]]). The Fourier series of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f04109099.png" />-functions when  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090100.png" /> also converge  almost-everywhere. Kolmogorov's example shows that it is impossible to  strengthen this result any further in terms of the spaces <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090101.png" />.
 
 
 
Since  the partial sums of a Fourier series do not always converge, one also  considers the [[Summation of Fourier series|summation of Fourier  series]] by some average of the partial sums and uses this to represent  the function. One of the simplest examples are the Fejér sums (cf.  [[Fejér sum|Fejér sum]]), which are the arithmetical means of the  partial sums <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090102.png" /> of the Fourier  series:
 
 
 
<table class="eq" style="width:100%;">  <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090103.png"  /></td> </tr></table>
 
 
 
For every  integrable function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090104.png" /> the sums <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090105.png" /> converge to  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090106.png" />  almost-everywhere and, moreover, converge at every point where <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090107.png" /> is continuous;  if <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090108.png" /> is continuous  everywhere, then they converge uniformly.
 
 
 
According to  the [[Denjoy–Luzin theorem|Denjoy–Luzin theorem]], if the trigonometric  series (2) at every <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090109.png" /> converges  absolutely on a set of positive measure, then the series
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090110.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(5)</td></tr></table>
 
 
 
converges,  and hence the series (2) converges absolutely for all <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090111.png" />. Thus, the  absolute convergence of (2) is equivalent to convergence of (5).
 
 
 
e  theorem','../l/l057530.htm','Lebesgue  constants','../l/l057800.htm','Limit  theorems','../l/l058920.htm','Lyapunov  theorem','../l/l061200.htm','Markov–Bernstein-type  inequalities','../m/m110060.htm','Orthogonal  polynomials','../o/o070340.htm')"  style="background-color:yellow;">S.N. Bernstein [S.N. Bernshtein]  (1934) proved that if the modulus of continuity <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090112.png" /> of a function  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090113.png" /> satisfies
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090114.png"  /></td> </tr></table>
 
 
 
then the  Fourier series of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090115.png" /> converges  absolutely. It is impossible to weaken this condition: If <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090116.png" /> is a modulus of  continuity of function type such that the series
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090117.png"  /></td> </tr></table>
 
 
 
diverges,  then a function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090118.png" /> can be found  with modulus of continuity satisfying <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090119.png" /> and  whose Fourier series does not converge absolutely.
 
 
 
In  particular, the Fourier series of functions satisfying a [[Lipschitz  condition|Lipschitz condition]] of order <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090120.png" />  converge absolutely. When <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090121.png" />, absolute  convergence need not hold (Bernshtein, 1914).
 
 
 
If  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090122.png" /> is a function of  bounded variation and if its modulus of continuity satisfies
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090123.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(6)</td></tr></table>
 
 
 
then  the Fourier series of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090124.png" /> converges  absolutely (see [[#References|[9]]]). Condition (6) cannot be weakened  (see [[#References|[10]]]).
 
 
 
In contrast to the above,  the following theorem gives a criterion for the absolute convergence for  an individual function. A necessary and sufficient condition for the  absolute convergence of the Fourier series of a function <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090125.png" /> is that the  series
 
 
 
<table class="eq" style="width:100%;">  <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090126.png"  /></td> </tr></table>
 
 
 
converges,  where <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090127.png" /> is the [[Best  approximation|best approximation]] to <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090128.png" /> in the metric of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090129.png" /> by trigonometric  polynomials containing <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090130.png" /> harmonics (see  [[#References|[11]]]).
 
 
 
The series (2) can be considered as the real part of the power series
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090131.png"  /></td> </tr></table>
 
 
 
The imaginary part
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090132.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(7)</td></tr></table>
 
 
 
is called the series conjugate to the series (2).
 
 
 
Let  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090133.png" /> and let (2) be  its Fourier series. Then for almost-all <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090134.png" /> the  function
 
 
 
<table class="eq" style="width:100%;">  <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090135.png"  /></td> </tr></table>
 
 
 
exists (I.I.  Privalov, 1919). The function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090136.png" /> is called the  conjugate function to <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090137.png" />; it need not be  integrable. However, if <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090138.png" />, then the  Fourier series of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090139.png" /> is the series  (7) (V.I. Smirnov, 1928).
 
 
 
In many cases one can deduce  some property or other of the conjugate series (7) from the properties  of the function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090140.png" /> or its Fourier  series (2), for example, convergence in the metric of <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090141.png" />, convergence or  summability at a point, or almost-everywhere, etc.
 
 
 
Properties  of Fourier series under special assumptions on their coefficients have  also been studied. For example, [[Lacunary trigonometric series|lacunary  trigonometric series]], when the only non-zero coefficients are those  indexed by numbers <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090142.png" /> forming a  [[Lacunary sequence|lacunary sequence]], that is, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090143.png" />. Another example  of special series are series with monotone coefficients.
 
 
 
All  that has been said above concerns Fourier series of the form (2). For  Fourier series in a rearranged trigonometric system certain properties  of the Fourier series in the trigonometric system, taken in the usual  order, do not hold. For example, there is a continuous function such  that its Fourier series after a certain rearrangement diverges  almost-everywhere (see [[#References|[12]]]–[[#References|[15]]]).
 
 
 
The  theory of Fourier series for functions in several variables (multiple  Fourier series) has been developed to a lesser extent. Some of the  multi-dimensional results are analogous to the one-dimensional results.  But there are crucial differences.
 
 
 
Let <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090144.png" /> be a point of  the <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090145.png" />-dimensional  space, let <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090146.png" /> be an <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090147.png" />-dimensional  vector with integer coordinates and let <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090148.png" />. For a  function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090149.png" /> with period  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090150.png" /> in each variable  and Lebesgue integrable over the <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090151.png" />-dimensional cube  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090152.png" />, the Fourier  series in the trigonometric system is
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090153.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(8)</td></tr></table>
 
 
 
where the summation is over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090154.png" /> and
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090155.png"  /></td> </tr></table>
 
 
 
are the  Fourier coefficients of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090156.png" />. The Fourier  series (8) is written in complex form. Writing it in trigonometric form  as a series in the products of multiple cosines and sines is rather more  clumsy.
 
 
 
Various definitions of the partial sums of the series (8) are possible; for example, partial sums over rectangles
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090157.png"  /></td> </tr></table>
 
 
 
and over circles
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090158.png"  /></td> <td valign="top"  style="width:5%;text-align:right;">(9)</td></tr></table>
 
 
 
where  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090159.png" /> is the radius  and <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090160.png" />.
 
 
 
The circular partial sums (9) are not so suitable for representing functions as are their Riesz means
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090161.png"  /></td> </tr></table>
 
 
 
For Riesz  means of order <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090162.png" /> of Fourier  series of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090163.png" />-functions the  localization principle is valid; this is not so for smaller <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090164.png" /> (S. Bochner,  1936). The Riesz means of circular partial sums of critical order  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090165.png" /> play an  essential role also in other questions about Fourier series of functions  in several variables.
 
 
 
There is a continuous function  in two variables with a Fourier series that does not converge over  rectangles at any interior point of the square <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090166.png" /> (see  [[#References|[16]]]).
 
 
 
Certain results about Fourier  series in the trigonometric system can be generalized considerably; for  example, they can be carried over in a corresponding way to the spectral  decompositions corresponding to self-adjoint elliptic differential  operators.
 
 
 
====References====
 
<table><TR><TD  valign="top">[1]</TD> <TD valign="top">  N.K. [N.K.  Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD  valign="top">[2]</TD> <TD valign="top">  A. Zygmund,    "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD  valign="top">[3]</TD> <TD valign="top">  G.H. Hardy,    W.W. Rogosinsky,  "Fourier series" , Cambridge Univ. Press  (1965)</TD></TR><TR><TD  valign="top">[4]</TD> <TD valign="top">  N.N. Luzin,    "The integral and trigonometric series" , Moscow-Leningrad  (1951)  (In  Russian)  (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp.  48–212)</TD></TR><TR><TD  valign="top">[5]</TD> <TD valign="top">  H. Lebesgue,    "Leçons sur les séries trigonométriques" , Gauthier-Villars  (1906)</TD></TR><TR><TD  valign="top">[6]</TD> <TD valign="top">  A.B. Paplauskas,    "Trigonometric series from Euler to Lebesgue" , Moscow  (1966)  (In  Russian)</TD></TR><TR><TD  valign="top">[7]</TD> <TD valign="top">  P.L. Ul'yanov,    "Solved and unsolved problems in the theory of trigonometric and  orthogonal series"  ''Russian Math. Surveys'' , '''19''' :  1  (1964)  pp. 1–62  ''Uspekhi Mat. Nauk'' , '''19''' :  1  (1964)  pp.  3–69</TD></TR><TR><TD  valign="top">[8]</TD> <TD valign="top">  Sh.A. Alimov,    V.A. Il'in,  E.M. Nikishin,  "Convergence problems of multiple  trigonometric series and spectral decomposition. I"  ''Russian Math.  Surveys'' , '''31''' :  6  (1976)  pp. 29–86  ''Uspekhi Mat. Nauk'' ,  '''31''' : 6  (1976)  pp. 28–83</TD></TR><TR><TD  valign="top">[9]</TD> <TD valign="top">  R. Salem,  "On a  theorem of Zygmund"  ''Duke Math. J.'' , '''10'''  (1943)  pp.  23–31</TD></TR><TR><TD  valign="top">[10]</TD> <TD valign="top">  S.V. Bochkarev,    "On a problem of Zygmund"  ''Math. USSR Izv.'' , '''7''' :  3  (1973)  pp. 629–637  ''Izv. Akad. Nauk SSSR'' , '''37'''  (1973)  pp.  630–638</TD></TR><TR><TD  valign="top">[11]</TD> <TD valign="to
 
p">  S.B. Stechkin,    "On absolute convergence of orthogonal series"  ''Dokl. Akad. Nauk  SSSR'' , '''102'''  (1955)  pp. 37–40  (In  Russian)</TD></TR><TR><TD  valign="top">[12]</TD> <TD valign="top">  A.N. [A.N.  Kolmogorov] Kolmogoroff,  D.E. [D.E. Menshov] Menschoff,  "Sur la  convergence des séries de fonctions orthogonales"  ''Math. Z.'' ,  '''26'''  (1927)  pp. 432–441</TD></TR><TR><TD  valign="top">[13]</TD> <TD valign="top">  Z. Zahorski,    "Une série de Fourier permutée d'une fonction de classe <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041090/f041090167.png" /> divergente  partout"  ''C.R. Acad. Sci. Paris'' , '''251'''  (1960) pp.  501–503</TD></TR><TR><TD  valign="top">[14]</TD> <TD valign="top">  P.L. Ul'yanov,    "Divergent Fourier series"  ''Russian Math. Surveys'' , '''16''' :  3  (1961)  pp. 1–75  ''Uspekhi Mat. Nauk'' , '''16''' :  3  (1961)  pp.  61–142</TD></TR><TR><TD  valign="top">[15]</TD> <TD valign="top">  A.M. Olevskii,    "Divergent Fourier series for continuous functions"  ''Soviet Math.  Dokl.'' , '''2'''  (1961)  pp. 1382–1386  ''Dokl. Akad. Nauk SSSR'' ,  '''141'''  (1961)  pp. 28–31</TD></TR><TR><TD  valign="top">[16]</TD> <TD valign="top">  C. Fefferman,    "On the divergence of multiple Fourier series"  ''Bull. Amer. Math.  Soc.'' , '''77'''  (1971)  pp.  191–195</TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
A  closed system is also called a complete system (cf. [[Complete system  of functions|Complete system of functions]]). Instead of  Riemann–Lebesgue theorem one often uses Riemann–Lebesgue lemma.
 
 
 
For multiple Fourier series see, e.g., Chapt. 7 of [[#References|[a5]]].
 
 
 
====References====
 
<table><TR><TD  valign="top">[a1]</TD> <TD valign="top">  R.E. Edwards,    "Fourier series. A modern introduction" , '''1–2''' , Springer  (1979–1982)</TD></TR><TR><TD  valign="top">[a2]</TD> <TD valign="top">  J.-P. Kahane,    "Séries de Fourier absolument convergentes" , Springer  (1970)</TD></TR><TR><TD  valign="top">[a3]</TD> <TD valign="top">  Y. Katznelson,    "An introduction to harmonic analysis" , Wiley  (1968)</TD></TR><TR><TD  valign="top">[a4]</TD> <TD valign="top">  H. Dym,  H.P.  McKean,  "Fourier series and integrals" , Acad. Press  (1972)</TD></TR><TR><TD  valign="top">[a5]</TD> <TD valign="top">  E.M. Stein,    G. Weiss,  "Introduction to Fourier analysis on Euclidean spaces" ,  Princeton Univ. Press  (1971)</TD></TR></table>
 

Latest revision as of 22:10, 25 April 2012

Post $\TeX$ remarks

  • There was a load of gibberish in two places in the original imported text (looked like a part of the index had been cut-and-pasted accidentally). By looking at the google version of EoM I determined where it started and ended, and so could remove it cleanly.
  • In several places I have merged the explicit reference and the link, so "sometimes called the A of B (see [[B, A of]])" becomes "sometimes called the [[B, A of|A of B]])".
  • The text contains the phrase "a modulus of continuity of function type" which is a google-whack -- according to google it occurs only in this document. I guess it is a literal translation of Russian terminology, find what it is called in the West!

--Jjg 00:10, 26 April 2012 (CEST)

How to Cite This Entry:
Fourier series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier_series&oldid=25421