|
|
(86 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | Any equivalence relation $\sim$ on a set of objects $\mathscr M$ defines the [[quotient set]] $\mathscr M/\sim$ whose elements are equivalence classes: the equivalence class of an element $M\in\mathscr M$ is denoted $[M]=\{M'\in\mathscr M:~M'\sim M\}$. Description of the quotient set is referred to as the ''classification problem'' for $\mathscr M$ with respect to the equivalence relation. The ''normal form'' of an object $M$ is a "selected representative" from the class $[M]$, usually possessing some nice properties (simplicity, integrability etc). Often (although not always) one requires that two ''distinct'' representatives ("normal forms") are ''not equivalent'' to each other: $M_1\ne M_2\iff M_1\not\sim M_2$.
| + | #REDIRECT [[Normal form]] |
− | | |
− | Below follows a list (very partial) of the most important classification problems in which normal forms are known and very useful.
| |
− | | |
− | ==Finite-dimensional classification problems==
| |
− | When the objects of classification form a finite-dimensional variety, in most cases it is a subvariety of matrices, with the equivalence relation induced by transformations reflecting the change of basis.
| |
− | ===Linear maps between finite-dimensional linear spaces===
| |
− | Let $\Bbbk$ be a field. A linear map from $\Bbbk^m$ to $\Bbbk^n$ is represented by an $n\times m$ matrix over $\Bbbk$ ($m$ rows and $n$ columns). A different choice of bases in the source and the target space results in a matrix $M$ being replaced by another matrix $M'=HML$, where $H$ (resp., $L$) is an ''invertible'' $m\times m$ (resp., $n\times n$) matrix of transition between the bases,
| |
− | $$
| |
− | M\sim M'\iff\exists H\in\operatorname{GL}(m,\Bbbk),\ L\in \operatorname{GL}(n,\Bbbk):\quad M'=HML.
| |
− | \tag{LR}
| |
− | $$
| |
− | | |
− | Obviously, this binary relation $\sim$ is an equivalence (symmetric, reflexive and transitive), called ''left-right linear equivalence''. Each matrix $M$ is left-right equivalent to a matrix (of the same size) with $k\leqslant\min(n,m)$ units on the diagonal and zeros everywhere else. The number $k$ is a complete invariant of equivalence (matrices of different ranks are not equivalent) and is called the [[rank]] of a matrix.
| |
− | | |
− | A similar question may be posed about homomorphisms of finitely generated modules over rings. For some rings the normal form is known as the [[Normal_form_(for_matrices)#The_Smith_normal_form|Smith normal form]].
| |
− | ===Linear operators (self-maps)===
| |
− | The matrix of a linear operator of an $n$-dimensional space over $\Bbbk$ ''into itself'' is transformed (by a change of basis) in a more restrictive way: in the definition of (LR) it is required that $n=m$ and $L=H^{-1}$ (the same change in the source and the target space). The corresponding equivalence is called [[similarity]] (sometimes ''conjugacy'' or ''linear conjugacy''), and the most well known normal form is the [[Jordan normal form]] with a specific block structure and [[Eigen value]] on the diagonal. Note that this form holds only over an algebraically closed field $\Bbbk$, e.g., $\Bbbk=\CC$.
| |
− | ===Quadrics in linear spaces===
| |
− | A quadratic form $Q\colon\Bbbk^n\Bbbk$, $(x_1,\dots,x_n)\mapsto \sum a_{i,j}^n a_{ij}x_ix_j$ with a symmetric matrix $Q$ after a ''linear invertible'' change of coordinates will have a new matrix $Q'=HQH^*$ (the asterisk means the transpose):
| |
− | $$
| |
− | Q'\sim Q\iff \exists H\in\operatorname{GL}(n,\Bbbk):\ Q'=HQH^*.\tag{QL}
| |
− | $$
| |
− | The normal form for this equivalence is diagonal, but the diagonal entries depend on the field:
| |
− | * Over $\RR$, the diagional entries can be all made $0$ or $\pm 1$. The number of entries of each type is an invariant of classification, called (or closely related) to the [[inertia index]].
| |
− | * Over $\CC$, one can keep only zeros and units (not signed). The number of units is called the [[rank]] of a quadratic form; it is a complete invariant.
| |
− | ===Quadrics in Euclidean spaces===
| |
− | This classification deals with real symmetric matrices representing quadratic forms, yet the condition (QL) is represented by a more restrictive condition that the conjugacy matrix $H$ is orthogonal (preserves the Euclidean scalar product):
| |
− | $$
| |
− | Q'\sim Q\iff \exists H\in\operatorname{O}(n,\RR)=\{H\in\operatorname{GL}(n,\RR):\ HH^*=E\}:\ Q'=HQH^*.\tag{QE}
| |
− | $$
| |
− | The normal form is diagonal, with the diagonal entries forming a complete system of invariants.
| |
− | | |
− | A similar set of normal forms exists for self-adjoint matrices conjugated by Hermitian matrices.
| |
− | ===Quadrics in the projective plane===
| |
− | ==Infinite-dimensional classification problems==
| |