|
|
Line 1: |
Line 1: |
− | Cohomology with coefficients in a non-Abelian group, a sheaf of non-Abelian groups, etc. The best known examples are the cohomology of groups, topological spaces and the more general example of the cohomology of sites (i.e. topological categories; cf. [[Topologized category|Topologized category]]) in dimensions 0, 1. A unified approach to non-Abelian cohomology can be based on the following concept. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669001.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669002.png" /> be groups, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669003.png" /> be a set with a distinguished point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669004.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669005.png" /> be the holomorph of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669006.png" /> (i.e. the semi-direct product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669007.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669008.png" />; cf. also [[Holomorph of a group|Holomorph of a group]]), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669009.png" /> be the group of permutations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690010.png" /> that leave <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690011.png" /> fixed. Then a non-Abelian cochain complex is a collection
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690012.png" /></td> </tr></table>
| + | Cohomology with coefficients in a non-Abelian group, a sheaf of non-Abelian groups, etc. The best known examples are the cohomology of groups, topological spaces and the more general example of the cohomology of sites (i.e. topological categories; cf. [[Topologized category|Topologized category]]) in dimensions 0, 1. A unified approach to non-Abelian cohomology can be based on the following concept. Let $ C ^{0} $, |
| + | $ C ^{1} $ |
| + | be groups, let $ C ^{2} $ |
| + | be a set with a distinguished point $ e $, |
| + | let $ \mathop{\rm Aff}\nolimits \ C ^{1} $ |
| + | be the holomorph of $ C ^{1} $( |
| + | i.e. the semi-direct product of $ C ^{1} $ |
| + | and $ \mathop{\rm Aut}\nolimits ( C ^{1} ) $; |
| + | cf. also [[Holomorph of a group|Holomorph of a group]]), and let $ \mathop{\rm Aut}\nolimits \ C ^{2} $ |
| + | be the group of permutations of $ C ^{2} $ |
| + | that leave $ e $ |
| + | fixed. Then a non-Abelian cochain complex is a collection $$ |
| + | C ^{*} = (C ^{0} ,\ C ^{1} ,\ C ^{2} ,\ \rho ,\ |
| + | \sigma ,\ \delta ), |
| + | $$ |
| + | where $ \rho : \ C ^{0} \rightarrow \mathop{\rm Aff}\nolimits \ C ^{1} $, |
| + | $ \sigma : \ C ^{0} \rightarrow \mathop{\rm Aut}\nolimits \ C ^{2} $ |
| + | are homomorphisms and $ \delta : \ C ^{1} \rightarrow C ^{2} $ |
| + | is a mapping such that $$ |
| + | \delta (e) = e |
| + | \textrm{ and } |
| + | \delta ( \rho (a) b) = \sigma (a) \delta (b), |
| + | a \in C ^{0} , b \in C ^{1} . |
| + | $$ |
| + | Define the $ 0 $- |
| + | dimensional cohomology group by $$ |
| + | H ^{0} (C ^{*} ) = \rho ^{-1} ( \mathop{\rm Aut}\nolimits \ C ^{1} ), |
| + | $$ |
| + | and the $ 1 $- |
| + | dimensional cohomology set (with distinguished point) by $$ |
| + | H ^{1} (C ^{*} ) = Z ^{1} / \rho , |
| + | $$ |
| + | where $ Z ^{1} = \delta ^{-1} (e) \subseteq C ^{1} $ |
| + | and the factorization is modulo the action $ \rho $ |
| + | of the group $ C ^{0} $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690014.png" /> are homomorphisms and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690015.png" /> is a mapping such that
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690016.png" /></td> </tr></table>
| |
− |
| |
− | Define the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690017.png" />-dimensional cohomology group by
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690018.png" /></td> </tr></table>
| |
− |
| |
− | and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690019.png" />-dimensional cohomology set (with distinguished point) by
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690020.png" /></td> </tr></table>
| |
− |
| |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690021.png" /> and the factorization is modulo the action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690022.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690023.png" />.
| |
| | | |
| ===Examples.=== | | ===Examples.=== |
| | | |
| | | |
− | 1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690024.png" /> be a topological space with a sheaf of groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690025.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690026.png" /> be a covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690027.png" />; one then has the Čech complex | + | 1) Let $ X $ |
− | | + | be a topological space with a sheaf of groups $ {\mathcal F} $, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690028.png" /></td> </tr></table>
| + | and let $ \mathfrak U $ |
− | | + | be a covering of $ X $; |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690029.png" /> are defined as in the Abelian case (see [[Cohomology|Cohomology]]), | + | one then has the Čech complex $$ |
− | | + | C ^{*} ( \mathfrak U ,\ {\mathcal F} ) = (C ^{0} ( \mathfrak U ,\ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690030.png" /></td> </tr></table>
| + | {\mathcal F} ), |
− | | + | C ^{1} ( \mathfrak U ,\ {\mathcal F} ), C ^{2} ( \mathfrak U ,\ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690031.png" /></td> </tr></table>
| + | {\mathcal F} )), |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690032.png" /></td> </tr></table>
| + | where $ C ^{i} ( \mathfrak U ,\ {\mathcal F} ) $ |
− | | + | are defined as in the Abelian case (see [[Cohomology|Cohomology]]), $$ |
− | Taking limits with respect to coverings, one obtains from the cohomology sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690034.png" />, the cohomology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690036.png" />, of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690037.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690038.png" />. Under these conditions, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690039.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690040.png" /> is the sheaf of germs of continuous mappings with values in a topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690042.png" /> can be interpreted as the set of isomorphism classes of topological principal bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690043.png" /> with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690044.png" />. Similarly one obtains a classification of smooth and holomorphic principal bundles. In a similar fashion one defines the non-Abelian cohomology for a site; for an interpretation see [[Principal G-object|Principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690045.png" />-object]]. | + | ( \sigma (a) (c)) _{ijk} = a _{i} c _{ijk} a _{i} ^{-1} , |
− | | + | $$ |
− | 2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690046.png" /> be a group and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690047.png" /> be a (not necessarily Abelian) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690048.png" />-group, i.e. an operator group with group of operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690049.png" />. Denote the action of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690050.png" /> on an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690051.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690052.png" />. Define a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690053.png" /> by the formulas
| + | $$ |
− | | + | ( \delta b) _{ijk} = b _{ij} b _{jk} b _{ik} ^{-1} , |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690054.png" /></td> </tr></table>
| + | $$ |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690055.png" /></td> </tr></table>
| + | a \in C ^{0} , b \in C ^{1} , c \in C ^{2} . |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690056.png" /></td> </tr></table>
| + | Taking limits with respect to coverings, one obtains from the cohomology sets $ H ^{i} (C ^{*} ( \mathfrak U ,\ {\mathcal F} )) $, |
− | | + | $ i = 0,\ 1 $, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690057.png" /></td> </tr></table>
| + | the cohomology $ H ^{i} (X,\ {\mathcal F} ) $, |
− | | + | $ i = 0,\ 1 $, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690058.png" /></td> </tr></table>
| + | of the space $ X $ |
− | | + | with coefficients in $ {\mathcal F} $. |
− | The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690059.png" /> is the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690060.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690061.png" />-fixed points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690062.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690063.png" /> is the set of equivalence classes of crossed homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690064.png" />, interpreted as the set of isomorphism classes of principal homogeneous spaces (cf. [[Principal homogeneous space|Principal homogeneous space]]) over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690065.png" />. For applications and actual computations of non-Abelian cohomology groups see [[Galois cohomology|Galois cohomology]]. Analogous definitions yield the non-Abelian cohomology of categories and semi-groups.
| + | Under these conditions, $ H ^{0} (X,\ {\mathcal F} ) = {\mathcal F} (X) $. |
− | | + | If $ {\mathcal F} $ |
− | 3) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690066.png" /> be a smooth manifold, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690067.png" /> a Lie group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690068.png" /> the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690069.png" />. The non-Abelian de Rham complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690070.png" /> is defined as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690071.png" /> is the group of all smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690072.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690074.png" />, is the space of exterior <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690075.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690076.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690077.png" />;
| + | is the sheaf of germs of continuous mappings with values in a topological group $ G $, |
− | | + | then $ H ^{1} (X,\ {\mathcal F} ) $ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690078.png" /></td> </tr></table>
| + | can be interpreted as the set of isomorphism classes of topological principal bundles over $ X $ |
− | | + | with structure group $ G $. |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690079.png" /></td> </tr></table>
| + | Similarly one obtains a classification of smooth and holomorphic principal bundles. In a similar fashion one defines the non-Abelian cohomology for a site; for an interpretation see [[Principal G-object|Principal $ G $- |
− | | + | object]]. |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690080.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690081.png" /></td> </tr></table>
| |
− | | |
− | The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690082.png" /> is the set of classes of totally-integrable equations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690083.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690084.png" />, modulo gauge transformations. An analogue of the de Rham theorem provides an interpretation of this set as a subset of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690085.png" /> of conjugacy classes of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690086.png" />. In the case of a complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690087.png" /> and a complex Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690088.png" />, one again defines a non-Abelian holomorphic de Rham complex and a non-Abelian Dolbeault complex, which are intimately connected with the problem of classifying holomorphic bundles [[#References|[3]]]. Non-Abelian complexes of differential forms are also an important tool in the theory of pseudo-group structures on manifolds.
| |
− | | |
− | For each subcomplex of a non-Abelian cochain complex there is an associated exact cohomology sequence. For example, for the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690089.png" /> of Example 2 and its subcomplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690090.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690091.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690092.png" />-invariant subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690093.png" />, this sequence is
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690094.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690095.png" /></td> </tr></table>
| |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690096.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690097.png" />, the sequence can be continued up to the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690098.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690099.png" /> is in the centre it can be continued to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900100.png" />. This sequence is exact in the category of sets with a distinguished point. In addition, a tool is available ( "twisted" cochain complexes) for describing the pre-images of all — not only the distinguished — elements (see [[#References|[1]]], [[#References|[6]]], [[#References|[3]]]). One can also construct a spectral sequence related to a double non-Abelian complex, and the corresponding exact boundary sequence.
| |
− | | |
− | Apart from the 0- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900101.png" />-dimensional non-Abelian cohomology groups just described, there are also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900102.png" />-dimensional examples. A classical example is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900103.png" />-dimensional cohomology of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900104.png" /> with coefficients in a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900105.png" />; the definition is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900106.png" /> denote the set of all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900107.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900109.png" /> are mappings such that
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900110.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900111.png" /></td> </tr></table>
| |
− | | |
− | here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900112.png" /> is the inner automorphism generated by the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900113.png" />. Define an equivalence relation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900114.png" /> by putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900115.png" /> if there is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900116.png" /> such that
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900117.png" /></td> </tr></table>
| |
| | | |
− | and | + | 2) Let $ G $ |
| + | be a group and let $ A $ |
| + | be a (not necessarily Abelian) $ G $- |
| + | group, i.e. an operator group with group of operators $ G $. |
| + | Denote the action of an operator $ g \in G $ |
| + | on an element $ a \in A $ |
| + | by $ a ^{g} $. |
| + | Define a complex $ C ^{*} (G,\ A) $ |
| + | by the formulas $$ |
| + | C ^{k} = \mathop{\rm Map}\nolimits (G ^{k} ,\ A), |
| + | k = 0,\ 1,\ 2, |
| + | $$ |
| + | $$ |
| + | ( \rho (a) (b)) (g) = ab (g) (a ^{g} ) ^{-1} , |
| + | $$ |
| + | $$ |
| + | ( \sigma (a) (c)) (g,\ h) = a ^{g} c (g,\ h) (a ^{g} ) ^{-1} , |
| + | $$ |
| + | $$ |
| + | \delta (b) (g,\ h) = b (g) ^{-1} b (gh) (b (h) ^{g} ) ^{-1} , |
| + | $$ |
| + | $$ |
| + | a \in C ^{0} , b \in C ^{1} , c \in C ^{2} , g \in G. |
| + | $$ |
| + | The group $ H ^{0} (G,\ A) = H ^{0} (C ^{*} (G,\ A)) $ |
| + | is the subgroup $ A ^{G} $ |
| + | of $ G $- |
| + | fixed points in $ A $, |
| + | while $ H ^{1} (G,\ A) = H ^{1} ( C ^{*} ( G ,\ A ) ) $ |
| + | is the set of equivalence classes of crossed homomorphisms $ G \rightarrow A $, |
| + | interpreted as the set of isomorphism classes of principal homogeneous spaces (cf. [[Principal homogeneous space|Principal homogeneous space]]) over $ A $. |
| + | For applications and actual computations of non-Abelian cohomology groups see [[Galois cohomology|Galois cohomology]]. Analogous definitions yield the non-Abelian cohomology of categories and semi-groups. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900118.png" /></td> </tr></table>
| + | 3) Let $ X $ |
| + | be a smooth manifold, $ G $ |
| + | a Lie group and $ \mathfrak g $ |
| + | the Lie algebra of $ G $. |
| + | The non-Abelian de Rham complex $ R _{G} ^{*} (X) $ |
| + | is defined as follows: $ R _{G} ^{0} (X) $ |
| + | is the group of all smooth functions $ X \rightarrow G $; |
| + | $ R _{G} ^{k} (X) $, |
| + | $ k = 1,\ 2 $, |
| + | is the space of exterior $ k $- |
| + | forms on $ X $ |
| + | with values in $ \mathfrak g $; |
| + | $$ |
| + | \rho (f \ ) ( \alpha ) = df \cdot f ^ {\ -1} + ( \mathop{\rm Ad}\nolimits \ f \ ) \alpha ; |
| + | $$ |
| + | $$ |
| + | \sigma (f \ ) ( \beta ) = ( \mathop{\rm Ad}\nolimits \ f \ ) \beta , |
| + | $$ |
| + | $$ |
| + | \delta \alpha = d \alpha - { |
| + | \frac{1}{2} |
| + | } [ \alpha ,\ \alpha ], |
| + | $$ |
| + | $$ |
| + | f \in R _{G} ^{0} , a \in R _{G} ^{1} , \beta \in R _{G} ^{2} . |
| + | $$ |
| + | The set $ H ^{1} (R _{G} (X)) $ |
| + | is the set of classes of totally-integrable equations of the form $ df \cdot f ^ {\ -1} = \alpha $, |
| + | $ \alpha \in R _{G} ^{1} $, |
| + | modulo gauge transformations. An analogue of the de Rham theorem provides an interpretation of this set as a subset of the set $ H ^{1} ( \pi _{1} (M),\ G) $ |
| + | of conjugacy classes of homomorphisms $ \pi _{1} (M) \rightarrow G $. |
| + | In the case of a complex manifold $ M $ |
| + | and a complex Lie group $ G $, |
| + | one again defines a non-Abelian holomorphic de Rham complex and a non-Abelian Dolbeault complex, which are intimately connected with the problem of classifying holomorphic bundles [[#References|[3]]]. Non-Abelian complexes of differential forms are also an important tool in the theory of pseudo-group structures on manifolds. |
| | | |
− | The equivalence classes thus obtained are the elements of the cohomology set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900119.png" />. They are in one-to-one correspondence with the equivalence classes of extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900120.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900121.png" /> (see [[Extension of a group|Extension of a group]]).
| + | For each subcomplex of a non-Abelian cochain complex there is an associated exact cohomology sequence. For example, for the complex $ C ^{*} (G,\ A) $ |
| + | of Example 2 and its subcomplex $ C ^{*} (G,\ B) $, |
| + | where $ B $ |
| + | is a $ G $- |
| + | invariant subgroup of $ A $, |
| + | this sequence is $$ |
| + | e \rightarrow H ^{0} (G,\ B) \rightarrow H ^{0} (G,\ A) \rightarrow |
| + | (A/B) ^{G } \rightarrow |
| + | $$ |
| + | $$ |
| + | \rightarrow |
| + | H ^{1} (G,\ B) \rightarrow H ^{1} (G,\ A). |
| + | $$ |
| + | If $ B $ |
| + | is a normal subgroup of $ A $, |
| + | the sequence can be continued up to the term $ H ^{1} (G,\ A/B) $, |
| + | and if $ B $ |
| + | is in the centre it can be continued to $ H ^{2} (G,\ B) $. |
| + | This sequence is exact in the category of sets with a distinguished point. In addition, a tool is available ( "twisted" cochain complexes) for describing the pre-images of all — not only the distinguished — elements (see [[#References|[1]]], [[#References|[6]]], [[#References|[3]]]). One can also construct a spectral sequence related to a double non-Abelian complex, and the corresponding exact boundary sequence. |
| | | |
− | The correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900122.png" /> gives a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900123.png" /> of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900124.png" /> into the set of all homomorphisms
| + | Apart from the 0- and $ 1 $- |
| + | dimensional non-Abelian cohomology groups just described, there are also $ 2 $- |
| + | dimensional examples. A classical example is the $ 2 $- |
| + | dimensional cohomology of a group $ G $ |
| + | with coefficients in a group $ A $; |
| + | the definition is as follows. Let $ {\mathcal Z} ^{2} (G,\ A) $ |
| + | denote the set of all pairs $ (m,\ \phi ) $, |
| + | where $ m: \ G \times G \rightarrow A $, |
| + | $ \phi : \ G \rightarrow \mathop{\rm Aut}\nolimits \ A $ |
| + | are mappings such that $$ |
| + | \phi (g _{1} ) \phi (g _{2} ) \phi (g _{1} g _{2} ) ^{-1} |
| + | = \mathop{\rm Int}\nolimits \ m (g _{1} ,\ g _{2} ), |
| + | $$ |
| + | $$ |
| + | m (g _{1} ,\ g _{2} ) m (g _{1} g _{2} ,\ g |
| + | _{3} ) = \phi (g _{1} ) (m (g _{2} ,\ g _{3} )) m (g _{1} ,\ g _{2} \ g _{3} ); |
| + | $$ |
| + | here $ \mathop{\rm Int}\nolimits \ a $ |
| + | is the inner automorphism generated by the element $ a \in A $. |
| + | Define an equivalence relation in $ {\mathcal Z} ^{2} (G,\ A) $ |
| + | by putting $ (m,\ \phi ) \sim (m ^ \prime ,\ \phi ^ \prime ) $ |
| + | if there is a mapping $ h: \ G \rightarrow A $ |
| + | such that $$ |
| + | \phi ^ \prime (g) = ( \mathop{\rm Int}\nolimits \ h (g)) \phi (g) |
| + | $$ |
| + | and $$ |
| + | m ^ \prime (g _{1} ,\ g _{2} ) = h (g _{1} ) ( \phi (g |
| + | _{1} ) (h (g _{2} ))) m (g _{1} ,\ g _{2} ) |
| + | h (g _{1} ,\ g _{2} ) ^{-1} . |
| + | $$ |
| + | The equivalence classes thus obtained are the elements of the cohomology set $ {\mathcal H} ^{2} (G,\ A) $. |
| + | They are in one-to-one correspondence with the equivalence classes of extensions of $ A $ |
| + | by $ G $( |
| + | see [[Extension of a group|Extension of a group]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900125.png" /></td> </tr></table>
| + | The correspondence $ (m,\ \phi ) \rightarrow \phi $ |
| + | gives a mapping $ \theta $ |
| + | of the set $ {\mathcal H} ^{2} (G,\ A) $ |
| + | into the set of all homomorphisms $$ |
| + | G \rightarrow \mathop{\rm Out}\nolimits \ A = \mathop{\rm Aut}\nolimits \ A/ \mathop{\rm Int}\nolimits \ A; |
| + | $$ |
| + | let $ H _ \alpha ^{2} (G,\ A) = \theta ^{-1} ( \alpha ) $ |
| + | for $ \alpha \in \mathop{\rm Out}\nolimits \ A $. |
| + | If one fixes $ \alpha \in \mathop{\rm Out}\nolimits \ A $, |
| + | the centre $ Z (A) $ |
| + | of $ A $ |
| + | takes on the structure of a $ G $- |
| + | module and so the cohomology groups $ H ^{k} (G,\ Z (A)) $ |
| + | are defined. It turns out that $ H _ \alpha ^{2} (G,\ A) $ |
| + | is non-empty if and only if a certain class in $ H ^{3} (G,\ Z (A)) $ |
| + | is trivial. Moreover, under this condition the group $ H ^{2} (G,\ Z (A)) $ |
| + | acts simplely transitively on the set $ H _ \alpha ^{2} (G,\ A) $. |
| | | |
− | let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900126.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900127.png" />. If one fixes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900128.png" />, the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900129.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900130.png" /> takes on the structure of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900131.png" />-module and so the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900132.png" /> are defined. It turns out that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900133.png" /> is non-empty if and only if a certain class in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900134.png" /> is trivial. Moreover, under this condition the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900135.png" /> acts simplely transitively on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900136.png" />.
| |
| | | |
| This definition of a two-dimensional cohomology can be generalized, carrying it over to sites (see [[#References|[2]]], where the applications of this concept are also presented). A general algebraic scheme that yields a two-dimensional cohomology is outlined in [[#References|[4]]]; just as in the special case described above, computation of two-dimensional cohomology reduces to the computation of one-dimensional non-Abelian and ordinary Abelian cohomology. | | This definition of a two-dimensional cohomology can be generalized, carrying it over to sites (see [[#References|[2]]], where the applications of this concept are also presented). A general algebraic scheme that yields a two-dimensional cohomology is outlined in [[#References|[4]]]; just as in the special case described above, computation of two-dimensional cohomology reduces to the computation of one-dimensional non-Abelian and ordinary Abelian cohomology. |
Cohomology with coefficients in a non-Abelian group, a sheaf of non-Abelian groups, etc. The best known examples are the cohomology of groups, topological spaces and the more general example of the cohomology of sites (i.e. topological categories; cf. Topologized category) in dimensions 0, 1. A unified approach to non-Abelian cohomology can be based on the following concept. Let $ C ^{0} $,
$ C ^{1} $
be groups, let $ C ^{2} $
be a set with a distinguished point $ e $,
let $ \mathop{\rm Aff}\nolimits \ C ^{1} $
be the holomorph of $ C ^{1} $(
i.e. the semi-direct product of $ C ^{1} $
and $ \mathop{\rm Aut}\nolimits ( C ^{1} ) $;
cf. also Holomorph of a group), and let $ \mathop{\rm Aut}\nolimits \ C ^{2} $
be the group of permutations of $ C ^{2} $
that leave $ e $
fixed. Then a non-Abelian cochain complex is a collection $$
C ^{*} = (C ^{0} ,\ C ^{1} ,\ C ^{2} ,\ \rho ,\
\sigma ,\ \delta ),
$$
where $ \rho : \ C ^{0} \rightarrow \mathop{\rm Aff}\nolimits \ C ^{1} $,
$ \sigma : \ C ^{0} \rightarrow \mathop{\rm Aut}\nolimits \ C ^{2} $
are homomorphisms and $ \delta : \ C ^{1} \rightarrow C ^{2} $
is a mapping such that $$
\delta (e) = e
\textrm{ and }
\delta ( \rho (a) b) = \sigma (a) \delta (b),
a \in C ^{0} , b \in C ^{1} .
$$
Define the $ 0 $-
dimensional cohomology group by $$
H ^{0} (C ^{*} ) = \rho ^{-1} ( \mathop{\rm Aut}\nolimits \ C ^{1} ),
$$
and the $ 1 $-
dimensional cohomology set (with distinguished point) by $$
H ^{1} (C ^{*} ) = Z ^{1} / \rho ,
$$
where $ Z ^{1} = \delta ^{-1} (e) \subseteq C ^{1} $
and the factorization is modulo the action $ \rho $
of the group $ C ^{0} $.
Examples.
1) Let $ X $
be a topological space with a sheaf of groups $ {\mathcal F} $,
and let $ \mathfrak U $
be a covering of $ X $;
one then has the Čech complex $$
C ^{*} ( \mathfrak U ,\ {\mathcal F} ) = (C ^{0} ( \mathfrak U ,\
{\mathcal F} ),
C ^{1} ( \mathfrak U ,\ {\mathcal F} ), C ^{2} ( \mathfrak U ,\
{\mathcal F} )),
$$
where $ C ^{i} ( \mathfrak U ,\ {\mathcal F} ) $
are defined as in the Abelian case (see Cohomology), $$
( \sigma (a) (c)) _{ijk} = a _{i} c _{ijk} a _{i} ^{-1} ,
$$
$$
( \delta b) _{ijk} = b _{ij} b _{jk} b _{ik} ^{-1} ,
$$
$$
a \in C ^{0} , b \in C ^{1} , c \in C ^{2} .
$$
Taking limits with respect to coverings, one obtains from the cohomology sets $ H ^{i} (C ^{*} ( \mathfrak U ,\ {\mathcal F} )) $,
$ i = 0,\ 1 $,
the cohomology $ H ^{i} (X,\ {\mathcal F} ) $,
$ i = 0,\ 1 $,
of the space $ X $
with coefficients in $ {\mathcal F} $.
Under these conditions, $ H ^{0} (X,\ {\mathcal F} ) = {\mathcal F} (X) $.
If $ {\mathcal F} $
is the sheaf of germs of continuous mappings with values in a topological group $ G $,
then $ H ^{1} (X,\ {\mathcal F} ) $
can be interpreted as the set of isomorphism classes of topological principal bundles over $ X $
with structure group $ G $.
Similarly one obtains a classification of smooth and holomorphic principal bundles. In a similar fashion one defines the non-Abelian cohomology for a site; for an interpretation see Principal $ G $-
object.
2) Let $ G $
be a group and let $ A $
be a (not necessarily Abelian) $ G $-
group, i.e. an operator group with group of operators $ G $.
Denote the action of an operator $ g \in G $
on an element $ a \in A $
by $ a ^{g} $.
Define a complex $ C ^{*} (G,\ A) $
by the formulas $$
C ^{k} = \mathop{\rm Map}\nolimits (G ^{k} ,\ A),
k = 0,\ 1,\ 2,
$$
$$
( \rho (a) (b)) (g) = ab (g) (a ^{g} ) ^{-1} ,
$$
$$
( \sigma (a) (c)) (g,\ h) = a ^{g} c (g,\ h) (a ^{g} ) ^{-1} ,
$$
$$
\delta (b) (g,\ h) = b (g) ^{-1} b (gh) (b (h) ^{g} ) ^{-1} ,
$$
$$
a \in C ^{0} , b \in C ^{1} , c \in C ^{2} , g \in G.
$$
The group $ H ^{0} (G,\ A) = H ^{0} (C ^{*} (G,\ A)) $
is the subgroup $ A ^{G} $
of $ G $-
fixed points in $ A $,
while $ H ^{1} (G,\ A) = H ^{1} ( C ^{*} ( G ,\ A ) ) $
is the set of equivalence classes of crossed homomorphisms $ G \rightarrow A $,
interpreted as the set of isomorphism classes of principal homogeneous spaces (cf. Principal homogeneous space) over $ A $.
For applications and actual computations of non-Abelian cohomology groups see Galois cohomology. Analogous definitions yield the non-Abelian cohomology of categories and semi-groups.
3) Let $ X $
be a smooth manifold, $ G $
a Lie group and $ \mathfrak g $
the Lie algebra of $ G $.
The non-Abelian de Rham complex $ R _{G} ^{*} (X) $
is defined as follows: $ R _{G} ^{0} (X) $
is the group of all smooth functions $ X \rightarrow G $;
$ R _{G} ^{k} (X) $,
$ k = 1,\ 2 $,
is the space of exterior $ k $-
forms on $ X $
with values in $ \mathfrak g $;
$$
\rho (f \ ) ( \alpha ) = df \cdot f ^ {\ -1} + ( \mathop{\rm Ad}\nolimits \ f \ ) \alpha ;
$$
$$
\sigma (f \ ) ( \beta ) = ( \mathop{\rm Ad}\nolimits \ f \ ) \beta ,
$$
$$
\delta \alpha = d \alpha - {
\frac{1}{2}
} [ \alpha ,\ \alpha ],
$$
$$
f \in R _{G} ^{0} , a \in R _{G} ^{1} , \beta \in R _{G} ^{2} .
$$
The set $ H ^{1} (R _{G} (X)) $
is the set of classes of totally-integrable equations of the form $ df \cdot f ^ {\ -1} = \alpha $,
$ \alpha \in R _{G} ^{1} $,
modulo gauge transformations. An analogue of the de Rham theorem provides an interpretation of this set as a subset of the set $ H ^{1} ( \pi _{1} (M),\ G) $
of conjugacy classes of homomorphisms $ \pi _{1} (M) \rightarrow G $.
In the case of a complex manifold $ M $
and a complex Lie group $ G $,
one again defines a non-Abelian holomorphic de Rham complex and a non-Abelian Dolbeault complex, which are intimately connected with the problem of classifying holomorphic bundles [3]. Non-Abelian complexes of differential forms are also an important tool in the theory of pseudo-group structures on manifolds.
For each subcomplex of a non-Abelian cochain complex there is an associated exact cohomology sequence. For example, for the complex $ C ^{*} (G,\ A) $
of Example 2 and its subcomplex $ C ^{*} (G,\ B) $,
where $ B $
is a $ G $-
invariant subgroup of $ A $,
this sequence is $$
e \rightarrow H ^{0} (G,\ B) \rightarrow H ^{0} (G,\ A) \rightarrow
(A/B) ^{G } \rightarrow
$$
$$
\rightarrow
H ^{1} (G,\ B) \rightarrow H ^{1} (G,\ A).
$$
If $ B $
is a normal subgroup of $ A $,
the sequence can be continued up to the term $ H ^{1} (G,\ A/B) $,
and if $ B $
is in the centre it can be continued to $ H ^{2} (G,\ B) $.
This sequence is exact in the category of sets with a distinguished point. In addition, a tool is available ( "twisted" cochain complexes) for describing the pre-images of all — not only the distinguished — elements (see [1], [6], [3]). One can also construct a spectral sequence related to a double non-Abelian complex, and the corresponding exact boundary sequence.
Apart from the 0- and $ 1 $-
dimensional non-Abelian cohomology groups just described, there are also $ 2 $-
dimensional examples. A classical example is the $ 2 $-
dimensional cohomology of a group $ G $
with coefficients in a group $ A $;
the definition is as follows. Let $ {\mathcal Z} ^{2} (G,\ A) $
denote the set of all pairs $ (m,\ \phi ) $,
where $ m: \ G \times G \rightarrow A $,
$ \phi : \ G \rightarrow \mathop{\rm Aut}\nolimits \ A $
are mappings such that $$
\phi (g _{1} ) \phi (g _{2} ) \phi (g _{1} g _{2} ) ^{-1}
= \mathop{\rm Int}\nolimits \ m (g _{1} ,\ g _{2} ),
$$
$$
m (g _{1} ,\ g _{2} ) m (g _{1} g _{2} ,\ g
_{3} ) = \phi (g _{1} ) (m (g _{2} ,\ g _{3} )) m (g _{1} ,\ g _{2} \ g _{3} );
$$
here $ \mathop{\rm Int}\nolimits \ a $
is the inner automorphism generated by the element $ a \in A $.
Define an equivalence relation in $ {\mathcal Z} ^{2} (G,\ A) $
by putting $ (m,\ \phi ) \sim (m ^ \prime ,\ \phi ^ \prime ) $
if there is a mapping $ h: \ G \rightarrow A $
such that $$
\phi ^ \prime (g) = ( \mathop{\rm Int}\nolimits \ h (g)) \phi (g)
$$
and $$
m ^ \prime (g _{1} ,\ g _{2} ) = h (g _{1} ) ( \phi (g
_{1} ) (h (g _{2} ))) m (g _{1} ,\ g _{2} )
h (g _{1} ,\ g _{2} ) ^{-1} .
$$
The equivalence classes thus obtained are the elements of the cohomology set $ {\mathcal H} ^{2} (G,\ A) $.
They are in one-to-one correspondence with the equivalence classes of extensions of $ A $
by $ G $(
see Extension of a group).
The correspondence $ (m,\ \phi ) \rightarrow \phi $
gives a mapping $ \theta $
of the set $ {\mathcal H} ^{2} (G,\ A) $
into the set of all homomorphisms $$
G \rightarrow \mathop{\rm Out}\nolimits \ A = \mathop{\rm Aut}\nolimits \ A/ \mathop{\rm Int}\nolimits \ A;
$$
let $ H _ \alpha ^{2} (G,\ A) = \theta ^{-1} ( \alpha ) $
for $ \alpha \in \mathop{\rm Out}\nolimits \ A $.
If one fixes $ \alpha \in \mathop{\rm Out}\nolimits \ A $,
the centre $ Z (A) $
of $ A $
takes on the structure of a $ G $-
module and so the cohomology groups $ H ^{k} (G,\ Z (A)) $
are defined. It turns out that $ H _ \alpha ^{2} (G,\ A) $
is non-empty if and only if a certain class in $ H ^{3} (G,\ Z (A)) $
is trivial. Moreover, under this condition the group $ H ^{2} (G,\ Z (A)) $
acts simplely transitively on the set $ H _ \alpha ^{2} (G,\ A) $.
This definition of a two-dimensional cohomology can be generalized, carrying it over to sites (see [2], where the applications of this concept are also presented). A general algebraic scheme that yields a two-dimensional cohomology is outlined in [4]; just as in the special case described above, computation of two-dimensional cohomology reduces to the computation of one-dimensional non-Abelian and ordinary Abelian cohomology.
References
[1] | J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) MR0180551 Zbl 0128.26303 |
[2] | J. Giraud, "Cohomologie non abélienne" , Springer (1971) MR0344253 Zbl 0226.14011 |
[3] | A.L. Onishchik, "Some concepts and applications of the theory of non-Abelian cohomology" Trans. Moscow Math. Soc. , 17 (1979) pp. 49–98 Trudy Moskov. Mat. Obshch. , 17 (1967) pp. 45–88 |
[4] | A.K. Tolpygo, "Two-dimensional cohomologies and the spectral sequence in the nonabelian theory" Selecta Math. Sov. , 6 (1987) pp. 177–197 MR0548342 Zbl 0619.18006 |
[5] | P. Dedecker, "Three-dimensional nonabelian cohomology for groups" , Category theory, homology theory and their applications (Battelle Inst. Conf.) , 2 , Springer (1968) pp. 32–64 |
[6] | J. Frenkel, "Cohomology non abélienne et espaces fibrés" Bull. Soc. Math. France , 85 : 2 (1957) pp. 135–220 |
[7] | H. Goldschmidt, "The integrability problem for Lie equations" Bull. Amer. Math. Soc. , 84 : 4 (1978) pp. 531–546 MR0517116 Zbl 0439.58025 |
[8] | T.A. Springer, "Nonabelian in Galois cohomology" A. Borel (ed.) G.D. Mostow (ed.) , Algebraic groups and discontinuous subgroups , Proc. Symp. Pure Math. , 9 , Amer. Math. Soc. (1966) pp. 164–182 MR209297 Zbl 0193.48902 |