Difference between revisions of "Zariski tangent space"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex done) |
||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
− | + | ''to an algebraic variety or scheme $ X $ | |
+ | at a point $ x $'' | ||
− | + | The vector space over the residue field $ k ( x ) $ | |
+ | of the point $ x $ | ||
+ | that is dual to the space $ \mathfrak M _ {x} / \mathfrak M _ {x} ^ {2} $, | ||
+ | where $ \mathfrak M $ | ||
+ | is the maximal ideal of the [[Local ring|local ring]] $ {\mathcal O} _ {X ,x } $ | ||
+ | of $ x $ | ||
+ | on $ X $. | ||
+ | If $ X \subset A _ {k} ^ {n} $ | ||
+ | is defined by a system of equations | ||
− | + | $$ | |
+ | F _ \alpha = 0 , | ||
+ | $$ | ||
− | + | where $ F _ \alpha \in k [ X _ {1} \dots X _ {n} ] $, | |
+ | then the Zariski tangent space at a rational point $ x = ( x _ {1} \dots x _ {n} ) $ | ||
+ | is defined by the system of linear equations | ||
− | + | $$ | |
+ | \sum _ { i=1 } ^ { n } | ||
+ | \frac{\partial F _ \alpha }{\partial X _ {i} } | ||
+ | ( x ) ( X _ {i} - x _ {i} ) = 0 . | ||
+ | $$ | ||
+ | |||
+ | A variety $ X $ | ||
+ | is non-singular at a rational point $ x $ | ||
+ | if and only if the dimension of the Zariski tangent space to $ X $ | ||
+ | at $ x $ | ||
+ | is equal to the dimension of $ X $. | ||
+ | For a rational point $ x \in X $, | ||
+ | the Zariski tangent space is dual to the space $ \Omega _ {X / k } ^ {1} \otimes k ( x ) $ | ||
+ | — the stalk at $ x $ | ||
+ | of the cotangent sheaf $ \Omega _ {X / k } ^ {1} $. | ||
+ | An irreducible variety $ X $ | ||
+ | over a perfect field $ k $ | ||
+ | is smooth if and only if the sheaf $ \Omega _ {X / k } ^ {1} $ | ||
+ | is locally free. The vector bundle $ T _ {X} = V ( \Omega _ {X /k } ^ {1} ) $ | ||
+ | associated with $ \Omega _ {X / k } ^ {1} $ | ||
+ | is called the tangent bundle of $ X $ | ||
+ | over $ k $; | ||
+ | it is functorially related to $ X $. | ||
+ | Its sheaf of sections is called the tangent sheaf to $ X $. | ||
+ | The Zariski tangent space was introduced by O. Zariski [[#References|[1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, "The concept of a simple point of an abstract algebraic variety" ''Trans. Amer. Math. Soc.'' , '''62''' (1947) pp. 1–52 {{MR|0021694}} {{ZBL|0031.26101}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1955) {{MR|0072531}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, "The concept of a simple point of an abstract algebraic variety" ''Trans. Amer. Math. Soc.'' , '''62''' (1947) pp. 1–52 {{MR|0021694}} {{ZBL|0031.26101}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1955) {{MR|0072531}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Latest revision as of 16:33, 10 February 2020
to an algebraic variety or scheme $ X $
at a point $ x $
The vector space over the residue field $ k ( x ) $ of the point $ x $ that is dual to the space $ \mathfrak M _ {x} / \mathfrak M _ {x} ^ {2} $, where $ \mathfrak M $ is the maximal ideal of the local ring $ {\mathcal O} _ {X ,x } $ of $ x $ on $ X $. If $ X \subset A _ {k} ^ {n} $ is defined by a system of equations
$$ F _ \alpha = 0 , $$
where $ F _ \alpha \in k [ X _ {1} \dots X _ {n} ] $, then the Zariski tangent space at a rational point $ x = ( x _ {1} \dots x _ {n} ) $ is defined by the system of linear equations
$$ \sum _ { i=1 } ^ { n } \frac{\partial F _ \alpha }{\partial X _ {i} } ( x ) ( X _ {i} - x _ {i} ) = 0 . $$
A variety $ X $ is non-singular at a rational point $ x $ if and only if the dimension of the Zariski tangent space to $ X $ at $ x $ is equal to the dimension of $ X $. For a rational point $ x \in X $, the Zariski tangent space is dual to the space $ \Omega _ {X / k } ^ {1} \otimes k ( x ) $ — the stalk at $ x $ of the cotangent sheaf $ \Omega _ {X / k } ^ {1} $. An irreducible variety $ X $ over a perfect field $ k $ is smooth if and only if the sheaf $ \Omega _ {X / k } ^ {1} $ is locally free. The vector bundle $ T _ {X} = V ( \Omega _ {X /k } ^ {1} ) $ associated with $ \Omega _ {X / k } ^ {1} $ is called the tangent bundle of $ X $ over $ k $; it is functorially related to $ X $. Its sheaf of sections is called the tangent sheaf to $ X $. The Zariski tangent space was introduced by O. Zariski [1].
References
[1] | O. Zariski, "The concept of a simple point of an abstract algebraic variety" Trans. Amer. Math. Soc. , 62 (1947) pp. 1–52 MR0021694 Zbl 0031.26101 |
[2] | P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1955) MR0072531 |
[3] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
Comments
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001 |
Zariski tangent space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zariski_tangent_space&oldid=24017