Namespaces
Variants
Actions

Difference between revisions of "Lindelöf hypothesis"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Lindelof hypothesis to Lindelöf hypothesis over redirect: accented title)
(back to version of Claude Henri Picard)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
''Lindelöf conjecture, on the behaviour of the Riemann <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l0589603.png" />-function''
+
{{TEX|done}}
 +
''Lindelöf conjecture, on the behaviour of the Riemann $\zeta$-function''
  
For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l0589604.png" />,
+
For any $\epsilon>0$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l0589605.png" /></td> </tr></table>
+
$$\varlimsup_{t\to\infty}\frac{|\zeta(1/2+it)|}{t^\epsilon}=0.$$
  
It was stated by E. Lindelöf [[#References|[1]]]. The Lindelöf conjecture is equivalent to the assertion that for a fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l0589606.png" /> the number of zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l0589607.png" /> that lie in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l0589608.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l0589609.png" />. The Lindelöf conjecture is therefore a consequence of the Riemann conjecture on the zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896010.png" /> (cf. [[Riemann hypotheses|Riemann hypotheses]]). It is known (1982) that
+
It was stated by E. Lindelöf [[#References|[1]]]. The Lindelöf conjecture is equivalent to the assertion that for a fixed $\sigma\in(1/2,1)$ the number of zeros of $\zeta(s)$ that lie in the domain $\operatorname{Re}s>\sigma,T<\operatorname{Im}s<T+1$ is $o(\ln T)$. The Lindelöf conjecture is therefore a consequence of the Riemann conjecture on the zeros of $\zeta(s)$ (cf. [[Riemann hypotheses|Riemann hypotheses]]). It is known (1982) that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896011.png" /></td> </tr></table>
+
$$\varlimsup_{t\to\infty}\frac{|\zeta(1/2+it)|}{t^c}=0,$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896012.png" /> is a constant such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896013.png" />.
+
where $c$ is a constant such that $0<c<6/37$.
  
There is a generalization of the Lindelöf conjecture to Dirichlet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896014.png" />-functions: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896015.png" />,
+
There is a generalization of the Lindelöf conjecture to Dirichlet $L$-functions: For any $\epsilon>0$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896016.png" /></td> </tr></table>
+
$$L\left(\frac12+t,\chi\right)=O((k|t|+1)^\epsilon),$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896017.png" /> is the modulus of the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058960/l05896018.png" />.
+
where $k$ is the modulus of the character $\chi$.
  
 
====References====
 
====References====
Line 23: Line 24:
  
 
====Comments====
 
====Comments====
 
+
The first reference of Voronin's article is false; nothing on the Lindelöf hypothesis is in "Le calcul des résidus et ses applications à la théorie des fonctions". And this is obvious: Lindelöf 's book publish date is 1905, and the Lindelöf 's artticle on the hypothesis is "Quelques remarques sur la croissance de la fonction zêta(s)", Bull. des sciences mathématiques, série 2, vol. 32, 1908. Claude Henri Picard
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Ivic,  "The Riemann zeta-function" , Wiley  (1985)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Ivic,  "The Riemann zeta-function" , Wiley  (1985)</TD></TR></table>

Latest revision as of 18:59, 7 December 2014

Lindelöf conjecture, on the behaviour of the Riemann $\zeta$-function

For any $\epsilon>0$,

$$\varlimsup_{t\to\infty}\frac{|\zeta(1/2+it)|}{t^\epsilon}=0.$$

It was stated by E. Lindelöf [1]. The Lindelöf conjecture is equivalent to the assertion that for a fixed $\sigma\in(1/2,1)$ the number of zeros of $\zeta(s)$ that lie in the domain $\operatorname{Re}s>\sigma,T<\operatorname{Im}s<T+1$ is $o(\ln T)$. The Lindelöf conjecture is therefore a consequence of the Riemann conjecture on the zeros of $\zeta(s)$ (cf. Riemann hypotheses). It is known (1982) that

$$\varlimsup_{t\to\infty}\frac{|\zeta(1/2+it)|}{t^c}=0,$$

where $c$ is a constant such that $0<c<6/37$.

There is a generalization of the Lindelöf conjecture to Dirichlet $L$-functions: For any $\epsilon>0$,

$$L\left(\frac12+t,\chi\right)=O((k|t|+1)^\epsilon),$$

where $k$ is the modulus of the character $\chi$.

References

[1] E. Lindelöf, "Le calcul des résidus et ses applications à la théorie des fonctions" , Gauthier-Villars (1905)
[2] E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Oxford Univ. Press (1951) pp. Chapt. 13


Comments

The first reference of Voronin's article is false; nothing on the Lindelöf hypothesis is in "Le calcul des résidus et ses applications à la théorie des fonctions". And this is obvious: Lindelöf 's book publish date is 1905, and the Lindelöf 's artticle on the hypothesis is "Quelques remarques sur la croissance de la fonction zêta(s)", Bull. des sciences mathématiques, série 2, vol. 32, 1908. Claude Henri Picard

References

[a1] A. Ivic, "The Riemann zeta-function" , Wiley (1985)
How to Cite This Entry:
Lindelöf hypothesis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lindel%C3%B6f_hypothesis&oldid=23388
This article was adapted from an original article by S.M. Voronin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article