|
|
(4 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | A collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929201.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929202.png" /> is a group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929203.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929204.png" /> are subgroups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929205.png" /> is a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929206.png" />, satisfying the following conditions: 1) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929207.png" /> generates the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929208.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t0929209.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292010.png" />; 3) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292011.png" /> generates the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292012.png" /> and consists of elements of order 2; 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292015.png" />; and 5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292016.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292017.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292018.png" />, called the Weyl group of the Tits system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292019.png" />, is a [[Coxeter group|Coxeter group]] with respect to the system of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292020.png" />. The correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292021.png" /> is a bijection from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292022.png" /> onto the set of double cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292023.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292024.png" />.
| + | {{MSC|20E|20G}} |
| + | {{TEX|done}} |
| | | |
− | Examples. a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292026.png" /> is any field, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292027.png" /> is the subgroup of upper triangular matrices, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292028.png" /> is the subgroup of monomial matrices (so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292029.png" /> is the subgroup of diagonal matrices and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292030.png" />, cf. [[Monomial matrix|Monomial matrix]]), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292031.png" /> is the set of transpositions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292033.png" />.
| + | A Tits system is |
| + | a collection $(G,B,N,S)$, where $G$ is a group, $B$ and $N$ are subgroups and $S$ is a subset of $N/(B\cap N)$, satisfying the following conditions: |
| | | |
− | b) More generally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292034.png" /> be a connected reductive algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292035.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292036.png" /> be a maximal torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292037.png" /> diagonalizable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292038.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292039.png" /> be its normalizer, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292040.png" /> be its centralizer, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292041.png" /> be the root system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292042.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292043.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292044.png" /> be its Weyl group, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292045.png" /> be the set of reflections corresponding to the simple roots. Moreover, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292046.png" /> be the unipotent subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292047.png" /> generated by the root subgroups corresponding to the positive roots, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292048.png" />. Then the quadruple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292049.png" /> is a Tits system.
| + | 1) the set $B\cap N$ generates the group $G$; |
| | | |
− | c) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292050.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292051.png" /> is the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292052.png" />-adic numbers, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292053.png" /> be the subgroup consisting of matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292054.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292055.png" /> is the ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292056.png" />-adic integers), such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292057.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292058.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292059.png" /> be the subgroup of monomial matrices. Then there exists a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292060.png" /> such that the quadruple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292061.png" /> is a Tits system. Here the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292062.png" /> is an infinite Coxeter group of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292063.png" />. Analogously one can define Tits systems with Weyl groups of affine type corresponding to other connected reductive groups over local fields.
| + | 2) $T=B\cap N$ is a normal subgroup of $N$; |
| | | |
− | Under certain conditions one can assert that a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292064.png" /> admitting a Tits system is simple. For example, the following conditions are sufficient for this: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292065.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292066.png" /> is a solvable group, and is not contained in any proper normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292067.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292068.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292069.png" /> is equal to its own commutator subgroup; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292070.png" />) the Coxeter group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292071.png" /> is indecomposable; or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292072.png" />) the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292073.png" /> does not contain any non-trivial normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292074.png" />. In this way one can prove the simplicity of the Chevalley groups, in particular of the finite ones (cf. [[Chevalley group|Chevalley group]]).
| + | 3) the set $S$ generates the group $W = N/T$ and consists of elements of order 2; |
| | | |
− | ====References====
| + | 4) $sBw\subset BwB\cap BswB$ for all $s\in S$, $w\in W$; and |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Tits, "Buildings of spherical type and finite BN-pairs" , ''Lect. notes in math.'' , '''386''' , Springer (1974) {{MR|0470099}} {{ZBL|0295.20047}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) pp. Chapt. 4 (Translated from French) {{MR|0682756}} {{ZBL|0319.17002}} </TD></TR></table>
| + | |
| + | 5) $sBs\not\subset B$ for $s\in S$. |
| + | |
| + | The group $W$, called the Weyl group of the Tits system $(G,B,N,S)$, is a |
| + | [[Coxeter group|Coxeter group]] with respect to the system of generators $S$. The correspondence $w\mapsto BwB$ is a bijection from $W$ onto the set of double cosets of $B$ in $G$. |
| + | |
| + | Examples. a) $G = \def\GL{\textrm{GL}}\GL_n(k)$, where $k$ is any field, $B$ is the subgroup of upper triangular matrices, $N$ is the subgroup of monomial matrices (so that $T$ is the subgroup of diagonal matrices and $W = S_n$, cf. |
| + | [[Monomial matrix|Monomial matrix]]), and $S$ is the set of transpositions $(i\; i+1)$, where $i=1,\dots,n-1$. |
| + | |
| + | b) More generally, let $G$ be a connected reductive algebraic group over $k$, let $T$ be a maximal torus in $G$ diagonalizable over $k$, let $N$ be its normalizer, let $Z$ be its centralizer, let $R$ be the root system of $G$ relative to $T$, let $W = N/Z$ be its Weyl group, and let $S$ be the set of reflections corresponding to the simple roots. Moreover, let $U$ be the unipotent subgroup of $G$ generated by the root subgroups corresponding to the positive roots, and let $P = UZ$. Then the quadruple $(G(k),P(k),N(k),S)$ is a Tits system. |
| + | |
| + | c) Let $G = GL_n(\Q_p)$, where $\Q_p$ is the field of $p$-adic numbers, let $B$ be the subgroup consisting of matrices $(a_{ij})\in \GL_n(\Z_p)$ (where $\Z_p$ is the ring of $p$-adic integers), such that $a_{ij}\in p\Z_p$ for $i>j$, and let $N$ be the subgroup of monomial matrices. Then there exists a subset $S\subset W = N/(B\cap N) $ such that the quadruple $(G,B,N,S)$ is a Tits system. Here the group $W$ is an infinite Coxeter group of type $\tilde A_{n-1}$. Analogously one can define Tits systems with Weyl groups of affine type corresponding to other connected reductive groups over local fields. |
| + | |
| + | Under certain conditions one can assert that a group $G$ admitting a Tits system is simple. For example, the following conditions are sufficient for this: |
| + | |
| + | $\alpha$) $B$ is a solvable group, and is not contained in any proper normal subgroup of $G$; |
| + | |
| + | $\beta$) $G$ is equal to its own commutator subgroup; |
| + | |
| + | $\gamma$) the Coxeter group $W$ is indecomposable; or |
| | | |
| + | $\delta$) the group $B$ does not contain any non-trivial normal subgroup of $G$. |
| | | |
| + | In this way one can prove the simplicity of the Chevalley groups, in particular of the finite ones (cf. [[Chevalley group|Chevalley group]]). |
| | | |
| ====Comments==== | | ====Comments==== |
− | A Tits system is also called a group with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292076.png" />-pair. | + | A Tits system is also called a group with a $BN$-pair. |
| + | |
| + | Let $G$ be a $2$-transitive permutation group on the set $\Omega=\{1,2,\dots\}$; then $S = \{s\}$ and $W=\{1,s\}$, where $s$ is a permutation in $G$ interchanging $1$ and $2$, $B=G_1$ and $N=G_{\{1,2\}}$. This gives a Tits system of type $A_1$. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292077.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292078.png" />-transitive permutation group on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292079.png" />; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292081.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292082.png" /> is a permutation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292083.png" /> interchanging <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292084.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292085.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292087.png" />. This gives a Tits system of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092920/t09292088.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M.A. Ronan, "Lectures on buildings" , Acad. Press (1989) {{MR|1005533}} {{ZBL|0694.51001}} </TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras", Addison-Wesley (1975) pp. Chapt. 4 (Translated from French) {{MR|0240238}} {{ZBL|1145.17001}} |
| + | |- |
| + | |valign="top"|{{Ref|Ro}}||valign="top"| M.A. Ronan, "Lectures on buildings", Acad. Press (1989) {{MR|1005533}} {{ZBL|0694.51001}} |
| + | |- |
| + | |valign="top"|{{Ref|Ti}}||valign="top"| J. Tits, "Buildings of spherical type and finite BN-pairs", ''Lect. notes in math.'', '''386''', Springer (1974) {{MR|0470099}} {{ZBL|0295.20047}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 20E Secondary: 20G [MSN][ZBL]
A Tits system is
a collection $(G,B,N,S)$, where $G$ is a group, $B$ and $N$ are subgroups and $S$ is a subset of $N/(B\cap N)$, satisfying the following conditions:
1) the set $B\cap N$ generates the group $G$;
2) $T=B\cap N$ is a normal subgroup of $N$;
3) the set $S$ generates the group $W = N/T$ and consists of elements of order 2;
4) $sBw\subset BwB\cap BswB$ for all $s\in S$, $w\in W$; and
5) $sBs\not\subset B$ for $s\in S$.
The group $W$, called the Weyl group of the Tits system $(G,B,N,S)$, is a
Coxeter group with respect to the system of generators $S$. The correspondence $w\mapsto BwB$ is a bijection from $W$ onto the set of double cosets of $B$ in $G$.
Examples. a) $G = \def\GL{\textrm{GL}}\GL_n(k)$, where $k$ is any field, $B$ is the subgroup of upper triangular matrices, $N$ is the subgroup of monomial matrices (so that $T$ is the subgroup of diagonal matrices and $W = S_n$, cf.
Monomial matrix), and $S$ is the set of transpositions $(i\; i+1)$, where $i=1,\dots,n-1$.
b) More generally, let $G$ be a connected reductive algebraic group over $k$, let $T$ be a maximal torus in $G$ diagonalizable over $k$, let $N$ be its normalizer, let $Z$ be its centralizer, let $R$ be the root system of $G$ relative to $T$, let $W = N/Z$ be its Weyl group, and let $S$ be the set of reflections corresponding to the simple roots. Moreover, let $U$ be the unipotent subgroup of $G$ generated by the root subgroups corresponding to the positive roots, and let $P = UZ$. Then the quadruple $(G(k),P(k),N(k),S)$ is a Tits system.
c) Let $G = GL_n(\Q_p)$, where $\Q_p$ is the field of $p$-adic numbers, let $B$ be the subgroup consisting of matrices $(a_{ij})\in \GL_n(\Z_p)$ (where $\Z_p$ is the ring of $p$-adic integers), such that $a_{ij}\in p\Z_p$ for $i>j$, and let $N$ be the subgroup of monomial matrices. Then there exists a subset $S\subset W = N/(B\cap N) $ such that the quadruple $(G,B,N,S)$ is a Tits system. Here the group $W$ is an infinite Coxeter group of type $\tilde A_{n-1}$. Analogously one can define Tits systems with Weyl groups of affine type corresponding to other connected reductive groups over local fields.
Under certain conditions one can assert that a group $G$ admitting a Tits system is simple. For example, the following conditions are sufficient for this:
$\alpha$) $B$ is a solvable group, and is not contained in any proper normal subgroup of $G$;
$\beta$) $G$ is equal to its own commutator subgroup;
$\gamma$) the Coxeter group $W$ is indecomposable; or
$\delta$) the group $B$ does not contain any non-trivial normal subgroup of $G$.
In this way one can prove the simplicity of the Chevalley groups, in particular of the finite ones (cf. Chevalley group).
A Tits system is also called a group with a $BN$-pair.
Let $G$ be a $2$-transitive permutation group on the set $\Omega=\{1,2,\dots\}$; then $S = \{s\}$ and $W=\{1,s\}$, where $s$ is a permutation in $G$ interchanging $1$ and $2$, $B=G_1$ and $N=G_{\{1,2\}}$. This gives a Tits system of type $A_1$.
References
[Bo] |
N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras", Addison-Wesley (1975) pp. Chapt. 4 (Translated from French) MR0240238 Zbl 1145.17001
|
[Ro] |
M.A. Ronan, "Lectures on buildings", Acad. Press (1989) MR1005533 Zbl 0694.51001
|
[Ti] |
J. Tits, "Buildings of spherical type and finite BN-pairs", Lect. notes in math., 386, Springer (1974) MR0470099 Zbl 0295.20047
|