Difference between revisions of "Semi-invariant(2)"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex done) |
||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
− | + | A common eigenvector of a family of endomorphisms of a vector space or module. If $ G $ | |
+ | is a set of linear mappings of a vector space $ V $ | ||
+ | over a field $ K $, | ||
+ | a semi-invariant of $ G $ | ||
+ | is a vector $ v \in V $, | ||
+ | $ v \neq 0 $, | ||
+ | such that $$ | ||
+ | g v = \chi ( g ) v , g \in G , | ||
+ | $$ | ||
+ | where $ \chi : \ G \rightarrow K $ | ||
+ | is a function, called the weight of the semi-invariant $ v $. | ||
+ | A semi-invariant of weight $ 1 $ | ||
+ | is also called an invariant. The most frequently considered case is that of a [[Linear group|linear group]] $ G \subset \mathop{\rm GL}\nolimits ( V ) $, | ||
+ | in which case $ \chi : \ G \rightarrow K ^{*} $ | ||
+ | is a character of $ G $ | ||
+ | and may be extended to a polynomial function on $ \mathop{\rm End}\nolimits \ V $. | ||
+ | If $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits (V) $ | ||
+ | is a [[Linear representation|linear representation]] of a group $ G $ | ||
+ | in $ V $, | ||
+ | then a semi-invariant of the group $ \phi ( G ) $ | ||
+ | is also called a semi-invariant of the representation $ \phi $( | ||
+ | cf. also [[Linear representation, invariant of a|Linear representation, invariant of a]]). Let $ G $ | ||
+ | be a [[Linear algebraic group|linear algebraic group]], $ H $ | ||
+ | a closed subgroup of $ G $ | ||
+ | and $ \mathfrak h \subset \mathfrak g $ | ||
+ | the Lie algebras of these groups. Then there exist a faithful rational linear representation $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits ( E ) $ | ||
+ | and a semi-invariant $ v \in E $ | ||
+ | of $ \phi ( H ) $ | ||
+ | such that $ H $ | ||
+ | and $ \mathfrak h $ | ||
+ | are the maximal subsets of $ G $ | ||
+ | and $ \mathfrak g $ | ||
+ | whose images in $ \mathop{\rm End}\nolimits \ V $ | ||
+ | have $ v $ | ||
+ | as semi-invariant. This implies that the mapping $ a H \mapsto K \phi ( a ) v $, | ||
+ | $ a \in G $, | ||
+ | defines an isomorphism of the algebraic homogeneous space $ G/H $ | ||
+ | onto the orbit of the straight line $ K v $ | ||
+ | in the projective space $ P ( E ) $. | ||
− | |||
− | The term semi-invariant of a set | + | The term semi-invariant of a set $ G \subset \mathop{\rm End}\nolimits \ V $ |
− | + | is sometimes applied to a polynomial function on $ \mathop{\rm End}\nolimits \ V $ | |
− | + | which is a semi-invariant of the set of linear mappings $ \eta ( G ) $ | |
− | + | of the space $ K [ \mathop{\rm End}\nolimits \ V ] $, | |
− | + | where $$ | |
− | + | ( \eta ( g ) f \ ) ( X ) = f ( X g ) , | |
− | If | + | $$ |
− | + | $$ | |
− | + | g \in G , f \in K [ \mathop{\rm End}\nolimits \ V ] , X \in \mathop{\rm End}\nolimits \ V . | |
− | + | $$ | |
− | of the same weight such that | + | If $ G \subset \mathop{\rm GL}\nolimits ( V ) $ |
+ | is a linear algebraic group and $ \mathfrak g $ | ||
+ | is its Lie algebra, then $ G $ | ||
+ | has semi-invariants $$ | ||
+ | f _{1} \dots f _{n} \in K [ \mathop{\rm End}\nolimits \ V ] | ||
+ | $$ | ||
+ | of the same weight such that $ G $ | ||
+ | and $ \mathfrak g $ | ||
+ | are the maximal subsets of $ \mathop{\rm GL}\nolimits (V) $ | ||
+ | and $ \mathop{\rm End}\nolimits \ V $ | ||
+ | for which $ f _{1} \dots f _{n} $ | ||
+ | are semi-invariants (Chevalley's theorem). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2''' , Hermann (1951) {{MR|0051242}} {{ZBL|0054.01303}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2''' , Hermann (1951) {{MR|0051242}} {{ZBL|0054.01303}} </TD></TR></table> |
Latest revision as of 20:41, 21 December 2019
A common eigenvector of a family of endomorphisms of a vector space or module. If $ G $
is a set of linear mappings of a vector space $ V $
over a field $ K $,
a semi-invariant of $ G $
is a vector $ v \in V $,
$ v \neq 0 $,
such that $$
g v = \chi ( g ) v , g \in G ,
$$
where $ \chi : \ G \rightarrow K $
is a function, called the weight of the semi-invariant $ v $.
A semi-invariant of weight $ 1 $
is also called an invariant. The most frequently considered case is that of a linear group $ G \subset \mathop{\rm GL}\nolimits ( V ) $,
in which case $ \chi : \ G \rightarrow K ^{*} $
is a character of $ G $
and may be extended to a polynomial function on $ \mathop{\rm End}\nolimits \ V $.
If $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits (V) $
is a linear representation of a group $ G $
in $ V $,
then a semi-invariant of the group $ \phi ( G ) $
is also called a semi-invariant of the representation $ \phi $(
cf. also Linear representation, invariant of a). Let $ G $
be a linear algebraic group, $ H $
a closed subgroup of $ G $
and $ \mathfrak h \subset \mathfrak g $
the Lie algebras of these groups. Then there exist a faithful rational linear representation $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits ( E ) $
and a semi-invariant $ v \in E $
of $ \phi ( H ) $
such that $ H $
and $ \mathfrak h $
are the maximal subsets of $ G $
and $ \mathfrak g $
whose images in $ \mathop{\rm End}\nolimits \ V $
have $ v $
as semi-invariant. This implies that the mapping $ a H \mapsto K \phi ( a ) v $,
$ a \in G $,
defines an isomorphism of the algebraic homogeneous space $ G/H $
onto the orbit of the straight line $ K v $
in the projective space $ P ( E ) $.
The term semi-invariant of a set $ G \subset \mathop{\rm End}\nolimits \ V $
is sometimes applied to a polynomial function on $ \mathop{\rm End}\nolimits \ V $
which is a semi-invariant of the set of linear mappings $ \eta ( G ) $
of the space $ K [ \mathop{\rm End}\nolimits \ V ] $,
where $$
( \eta ( g ) f \ ) ( X ) = f ( X g ) ,
$$
$$
g \in G , f \in K [ \mathop{\rm End}\nolimits \ V ] , X \in \mathop{\rm End}\nolimits \ V .
$$
If $ G \subset \mathop{\rm GL}\nolimits ( V ) $
is a linear algebraic group and $ \mathfrak g $
is its Lie algebra, then $ G $
has semi-invariants $$
f _{1} \dots f _{n} \in K [ \mathop{\rm End}\nolimits \ V ]
$$
of the same weight such that $ G $
and $ \mathfrak g $
are the maximal subsets of $ \mathop{\rm GL}\nolimits (V) $
and $ \mathop{\rm End}\nolimits \ V $
for which $ f _{1} \dots f _{n} $
are semi-invariants (Chevalley's theorem).
References
[1] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[2] | J.E. Humphreys, "Linear algebraic groups" , Springer (1975) MR0396773 Zbl 0325.20039 |
[3] | C. Chevalley, "Théorie des groupes de Lie" , 2 , Hermann (1951) MR0051242 Zbl 0054.01303 |
Semi-invariant(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-invariant(2)&oldid=21933