Difference between revisions of "User:Rafael.greenblatt/sandbox/Pfaffian"
| (5 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | ''of a skew-symmetric matrix $X$''  | + | $\def\Pf{\mathrm{Pf}\;}$''of a skew-symmetric matrix $X$''  | 
| − | The polynomial   | + | The  polynomial   $\Pf X$ in the entries of $X$ whose square is $\det X$.    More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e.    $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an    alternating matrix) of order $2n$ over a commutative-associative ring    $A$ with a unit, then $\Pf X$ is the element of $A$ given by the    formula  | 
$$  | $$  | ||
| − | \  | + | \Pf X = \sum_s \varepsilon(s)x_{i_1j_1}\ldots x_{i_nj_n},  | 
$$  | $$  | ||
| − | where the   | + | where   the summation is over all possible partitions $s$ of the  set   $\{1,\ldots,2n\}$ into  non-intersecting pairs $\{i_\alpha,j_\alpha\}$,   where one may  suppose that $i_\alpha<j_\alpha$,  $\alpha=1,\ldots,n$,  and where $\varepsilon(s)$ is the sign of  the  permutation  | 
| − | + | $$  | |
| + | \left(  | ||
| + | \begin{matrix}  | ||
| + | 1 & 2 & \ldots & 2n-1 & 2n \\  | ||
| + | i_1 & j_1 & \ldots & i_n & j_n  | ||
| + | \end{matrix}  | ||
| + | \right).  | ||
| + | $$  | ||
A Pfaffian has the following properties:  | A Pfaffian has the following properties:  | ||
| − | + | # $\Pf (C^T X C) = (\det C) (\Pf X)$ for any matrix $C$ of order $2n$;  | |
| − | + | # $(\Pf X)^2= \det X$;  | |
| − | 2  | + | # if $E$ is a [[Free module|free $A$-module]] with basis $e_1,\ldots,e_{2n}$ and if $$  | 
| − | + | u = \sum_{i < j} x_{ij} e_i \wedge e_j \in \bigwedge^2 A,  | |
| − | + | $$ then $$  | |
| − | + | \bigwedge^n u =n! (\Pf X) e_1 \wedge \ldots \wedge e_{2n}.  | |
| − | + | $$  | |
| − | |||
| − | then  | ||
| − | |||
| − | |||
====References====  | ====References====  | ||
| − | <table><TR><TD   | + | <table><TR><TD    valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,      "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' ,    Addison-Wesley  (1975)  pp. Chapt.4;5;6  (Translated from    French)</TD></TR></table>  | 
Latest revision as of 10:09, 26 January 2012
$\def\Pf{\mathrm{Pf}\;}$of a skew-symmetric matrix $X$
The polynomial $\Pf X$ in the entries of $X$ whose square is $\det X$. More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e. $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an alternating matrix) of order $2n$ over a commutative-associative ring $A$ with a unit, then $\Pf X$ is the element of $A$ given by the formula
$$ \Pf X = \sum_s \varepsilon(s)x_{i_1j_1}\ldots x_{i_nj_n}, $$
where the summation is over all possible partitions $s$ of the set $\{1,\ldots,2n\}$ into non-intersecting pairs $\{i_\alpha,j_\alpha\}$, where one may suppose that $i_\alpha<j_\alpha$, $\alpha=1,\ldots,n$, and where $\varepsilon(s)$ is the sign of the permutation
$$ \left( \begin{matrix} 1 & 2 & \ldots & 2n-1 & 2n \\ i_1 & j_1 & \ldots & i_n & j_n \end{matrix} \right). $$
A Pfaffian has the following properties:
- $\Pf (C^T X C) = (\det C) (\Pf X)$ for any matrix $C$ of order $2n$;
 - $(\Pf X)^2= \det X$;
 - if $E$ is a free $A$-module with basis $e_1,\ldots,e_{2n}$ and if $$ u = \sum_{i < j} x_{ij} e_i \wedge e_j \in \bigwedge^2 A, $$ then $$ \bigwedge^n u =n! (\Pf X) e_1 \wedge \ldots \wedge e_{2n}. $$
 
References
| [1] | N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) | 
Rafael.greenblatt/sandbox/Pfaffian. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rafael.greenblatt/sandbox/Pfaffian&oldid=20486