Namespaces
Variants
Actions

Difference between revisions of "Energy inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(gather refs)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
An inequality that gives some estimate of the [[Energy integral|energy integral]].
+
An inequality that gives some estimate of the [[energy integral]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Mizohata,  "The theory of partial differential equations" , Cambridge Univ. Press  (1973)  (Translated from Japanese)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. Mizohata,  "The theory of partial differential equations" , Cambridge Univ. Press  (1973)  (Translated from Japanese) {{MR|0599580}} {{ZBL|0263.35001}} </TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German) {{MR|0195654}} {{ZBL|}} </TD></TR>
 
+
</table>
====Comments====
 
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German)</TD></TR></table>
 

Latest revision as of 07:56, 16 April 2023

An inequality that gives some estimate of the energy integral.

References

[1] S. Mizohata, "The theory of partial differential equations" , Cambridge Univ. Press (1973) (Translated from Japanese) MR0599580 Zbl 0263.35001
[a1] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) MR0195654
How to Cite This Entry:
Energy inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Energy_inequality&oldid=19277
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article