|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''radius of univalence'' | | ''radius of univalence'' |
| | | |
− | The radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956101.png" /> of the largest disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956102.png" /> in which all functions of the form | + | The radius $\rho(M)$ of the largest disc $|z|<\rho$ in which all functions of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956103.png" /></td> </tr></table>
| + | $$f(z)=z+a_2z^2+\dotsb+a_nz^n+\dotsb$$ |
| | | |
− | belonging to the family of functions that are regular in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956104.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956105.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956106.png" /> are univalent. It turns out that | + | belonging to the family of functions that are regular in the disc $|z|<1$ satisfying $|f(z)|\leq M$ for $|z|<1$ are univalent. It turns out that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956107.png" /></td> </tr></table>
| + | $$\rho(M)=M-\sqrt{M^2-1},\quad M\geq1,$$ |
| | | |
| and the function | | and the function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956108.png" /></td> </tr></table>
| + | $$Mz\frac{1-Mz}{M-z}$$ |
| | | |
− | is univalent in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u0956109.png" />, but not in any larger disc (with centre at the origin). For functions regular in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u09561010.png" /> and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u09561011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u09561012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u09561013.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u09561014.png" />, the radius of univalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u09561015.png" /> is defined similarly, and its value can be easily obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095610/u09561016.png" />. | + | is univalent in the disc $|z|<\rho(M)$, but not in any larger disc (with centre at the origin). For functions regular in the disc $|z|<R$ and such that $f(0)=0$, $f'(0)=c$, $c\neq0$, and $|f(z)|\leq M$, the radius of univalence $\rho^*(M)$ is defined similarly, and its value can be easily obtained from $\rho(M)$. |
| | | |
| | | |
Latest revision as of 13:50, 14 February 2020
radius of univalence
The radius $\rho(M)$ of the largest disc $|z|<\rho$ in which all functions of the form
$$f(z)=z+a_2z^2+\dotsb+a_nz^n+\dotsb$$
belonging to the family of functions that are regular in the disc $|z|<1$ satisfying $|f(z)|\leq M$ for $|z|<1$ are univalent. It turns out that
$$\rho(M)=M-\sqrt{M^2-1},\quad M\geq1,$$
and the function
$$Mz\frac{1-Mz}{M-z}$$
is univalent in the disc $|z|<\rho(M)$, but not in any larger disc (with centre at the origin). For functions regular in the disc $|z|<R$ and such that $f(0)=0$, $f'(0)=c$, $c\neq0$, and $|f(z)|\leq M$, the radius of univalence $\rho^*(M)$ is defined similarly, and its value can be easily obtained from $\rho(M)$.
Cf. also Univalency conditions; Univalent function.
References
[a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11 |
[a2] | A.W. Goodman, "Univalent functions" , 2 , Mariner (1983) |
[a3] | E. Landau, "Der Picard–Schottkysche Satz und die Blochse Konstante" Sitzungsber. Akad. Wiss. Berlin Phys. Math. Kl. (1925) pp. 467–474 |
How to Cite This Entry:
Univalency radius. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Univalency_radius&oldid=19238
This article was adapted from an original article by G.K. Antonyuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article