|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405502.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405503.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405504.png" />'' | + | {{TEX|done}} |
| + | ''of type $ \nu $ |
| + | in an $ n $ - |
| + | dimensional vector space $ \nu $ '' |
| | | |
− | A collection of linear subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405505.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405506.png" /> of corresponding dimensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405507.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405508.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055010.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055011.png" />). A flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055012.png" /> is called a complete flag or a full flag. Any two flags of the same type can be mapped to each other by some linear transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055013.png" />, that is, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055014.png" /> of all flags of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055016.png" /> is a homogeneous space of the general linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055017.png" />. The unimodular group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055018.png" /> also acts transitively on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055019.png" />. Here the stationary subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055021.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055022.png" /> (and also in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055023.png" />) is a parabolic subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055024.png" /> (respectively, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055025.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055026.png" /> is a complete flag in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055027.png" />, defined by subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055029.png" /> is a complete triangular subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055030.png" /> (respectively, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055031.png" />) relative to a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055033.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055035.png" />. In general, quotient spaces of linear algebraic groups by parabolic subgroups are sometimes called flag varieties. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055036.png" />, a flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055037.png" /> is simply an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055038.png" />-dimensional linear subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055040.png" /> is the [[Grassmann manifold|Grassmann manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055041.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055042.png" /> is the projective space associated with the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055043.png" />. Every flag variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055044.png" /> can be canonically equipped with the structure of a projective algebraic variety (see ). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055045.png" /> is a real or complex vector space, then all the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055046.png" /> are compact. Cellular decompositions and cohomology rings of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055047.png" /> are known (see , and also [[Bruhat decomposition|Bruhat decomposition]]). | + | |
| + | A collection of linear subspaces $ V $ |
| + | of $ V _{1} \dots V _{k} $ |
| + | of corresponding dimensions $ V $ , |
| + | such that $ n _{1} \dots n _{k} $ ( |
| + | here $ V _{1} \subset \dots \subset V _{k} $ , |
| + | $ \nu = (n _{1} \dots n _{k} ) $ ; |
| + | $ 1 \leq k \leq n - 1 ;\quad 0 < n _{1} < \dots < n _{k} < n $ ). |
| + | A flag of type $ \nu _{0} = (1 \dots n - 1 ) $ |
| + | is called a complete flag or a full flag. Any two flags of the same type can be mapped to each other by some linear transformation of $ V $ , |
| + | that is, the set $ F _ \nu (V) $ |
| + | of all flags of type $ \nu $ |
| + | in $ V $ |
| + | is a homogeneous space of the general linear group $ \mathop{\rm GL}\nolimits (V) $ . |
| + | The unimodular group $ \mathop{\rm SL}\nolimits (V) $ |
| + | also acts transitively on $ F _ \nu (V) $ . |
| + | Here the stationary subgroup $ H _{F} $ |
| + | of $ F $ |
| + | in $ \mathop{\rm GL}\nolimits (V) $ ( |
| + | and also in $ \mathop{\rm SL}\nolimits (V) $ ) |
| + | is a parabolic subgroup of $ \mathop{\rm GL}\nolimits (V) $ ( |
| + | respectively, of $ \mathop{\rm SL}\nolimits (V) $ ). |
| + | If $ F $ |
| + | is a complete flag in $ V $ , |
| + | defined by subspaces $ V _{1} \subset \dots \subset V _ {n - 1} $ , |
| + | then $ H _{F} $ |
| + | is a complete triangular subgroup of $ \mathop{\rm GL}\nolimits (V) $ ( |
| + | respectively, of $ \mathop{\rm SL}\nolimits (V) $ ) |
| + | relative to a basis $ e _{1} \dots e _{n} $ |
| + | of $ V $ |
| + | such that $ e _{i} \in V _{i} $ , |
| + | $ i = 1 \dots n $ . |
| + | In general, quotient spaces of linear algebraic groups by parabolic subgroups are sometimes called flag varieties. For $ k = 1 $ , |
| + | a flag of type $ (n _{1} ) $ |
| + | is simply an $ n _{1} $ - |
| + | dimensional linear subspace of $ V $ |
| + | and $ F _ {(n _{1} )} (V) $ |
| + | is the [[Grassmann manifold|Grassmann manifold]] $ G _ {n, n _{1}} = \mathop{\rm Gr}\nolimits _ {n _{1}} (V) $ . |
| + | In particular, $ F _{(1)} (V) $ |
| + | is the projective space associated with the vector space $ V $ . |
| + | Every flag variety $ F _ \nu (V) $ |
| + | can be canonically equipped with the structure of a projective algebraic variety (see ). If $ V $ |
| + | is a real or complex vector space, then all the varieties $ F _ \nu (V) $ |
| + | are compact. Cellular decompositions and cohomology rings of the $ F _ \nu (V) $ |
| + | are known (see , and also [[Bruhat decomposition|Bruhat decomposition]]). |
| | | |
| For references see [[Flag structure|Flag structure]]. | | For references see [[Flag structure|Flag structure]]. |
of type $ \nu $
in an $ n $ -
dimensional vector space $ \nu $
A collection of linear subspaces $ V $
of $ V _{1} \dots V _{k} $
of corresponding dimensions $ V $ ,
such that $ n _{1} \dots n _{k} $ (
here $ V _{1} \subset \dots \subset V _{k} $ ,
$ \nu = (n _{1} \dots n _{k} ) $ ;
$ 1 \leq k \leq n - 1 ;\quad 0 < n _{1} < \dots < n _{k} < n $ ).
A flag of type $ \nu _{0} = (1 \dots n - 1 ) $
is called a complete flag or a full flag. Any two flags of the same type can be mapped to each other by some linear transformation of $ V $ ,
that is, the set $ F _ \nu (V) $
of all flags of type $ \nu $
in $ V $
is a homogeneous space of the general linear group $ \mathop{\rm GL}\nolimits (V) $ .
The unimodular group $ \mathop{\rm SL}\nolimits (V) $
also acts transitively on $ F _ \nu (V) $ .
Here the stationary subgroup $ H _{F} $
of $ F $
in $ \mathop{\rm GL}\nolimits (V) $ (
and also in $ \mathop{\rm SL}\nolimits (V) $ )
is a parabolic subgroup of $ \mathop{\rm GL}\nolimits (V) $ (
respectively, of $ \mathop{\rm SL}\nolimits (V) $ ).
If $ F $
is a complete flag in $ V $ ,
defined by subspaces $ V _{1} \subset \dots \subset V _ {n - 1} $ ,
then $ H _{F} $
is a complete triangular subgroup of $ \mathop{\rm GL}\nolimits (V) $ (
respectively, of $ \mathop{\rm SL}\nolimits (V) $ )
relative to a basis $ e _{1} \dots e _{n} $
of $ V $
such that $ e _{i} \in V _{i} $ ,
$ i = 1 \dots n $ .
In general, quotient spaces of linear algebraic groups by parabolic subgroups are sometimes called flag varieties. For $ k = 1 $ ,
a flag of type $ (n _{1} ) $
is simply an $ n _{1} $ -
dimensional linear subspace of $ V $
and $ F _ {(n _{1} )} (V) $
is the Grassmann manifold $ G _ {n, n _{1}} = \mathop{\rm Gr}\nolimits _ {n _{1}} (V) $ .
In particular, $ F _{(1)} (V) $
is the projective space associated with the vector space $ V $ .
Every flag variety $ F _ \nu (V) $
can be canonically equipped with the structure of a projective algebraic variety (see ). If $ V $
is a real or complex vector space, then all the varieties $ F _ \nu (V) $
are compact. Cellular decompositions and cohomology rings of the $ F _ \nu (V) $
are known (see , and also Bruhat decomposition).
For references see Flag structure.