|
|
| Line 1: |
Line 1: |
| | + | {{TEX|done}} |
| | The value of the integral | | The value of the integral |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981401.png" /></td> </tr></table>
| + | $$\Omega(P',P)=\Omega(x',x)=\frac12(u_1-u_0)\int\limits_{u_0}^{u_1}g_{ij}U^iU^jdu,$$ |
| | | | |
| − | taken along a geodesic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981402.png" /> joining two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981403.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981404.png" /> in (geodesically-convex) [[Space-time|space-time]]. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981405.png" /> is given by a parametrization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981406.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981407.png" /> is a canonical parameter and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981408.png" />. The world function is equal, up to sign, to half the square measure of the geodesic joining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w0981409.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w09814010.png" />, and is a two-point invariant in the sense that its value does not change under coordinate transformations in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w09814011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w09814012.png" />. | + | taken along a geodesic $\Gamma$ joining two points $P'(x')$ and $P(x)$ in (geodesically-convex) [[Space-time|space-time]]. Here $\Gamma$ is given by a parametrization $x^i=\xi^i(u)$, where $u$ is a canonical parameter and $U^i=d\xi^i/du$. The world function is equal, up to sign, to half the square measure of the geodesic joining $P'$ and $P$, and is a two-point invariant in the sense that its value does not change under coordinate transformations in a neighbourhood of $P'$ and $P$. |
| | | | |
| | In flat space-time there is a system of coordinates such that | | In flat space-time there is a system of coordinates such that |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w09814013.png" /></td> </tr></table>
| + | $$\Omega(x',x)=\frac12g_{ij}^0(x^{i\prime}-x^i)(x^{j\prime}-x^j),$$ |
| | | | |
| | where | | where |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098140/w09814014.png" /></td> </tr></table>
| + | $$g_{ij}^0=\operatorname{diag}(1,1,1,-1).$$ |
| | | | |
| | ====References==== | | ====References==== |
| | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.L. Synge, "Relativity: the general theory" , North-Holland & Interscience (1960) pp. Chapt. II</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.L. Synge, "Relativity: the general theory" , North-Holland & Interscience (1960) pp. Chapt. II</TD></TR></table> |
Latest revision as of 10:30, 27 November 2018
The value of the integral
$$\Omega(P',P)=\Omega(x',x)=\frac12(u_1-u_0)\int\limits_{u_0}^{u_1}g_{ij}U^iU^jdu,$$
taken along a geodesic $\Gamma$ joining two points $P'(x')$ and $P(x)$ in (geodesically-convex) space-time. Here $\Gamma$ is given by a parametrization $x^i=\xi^i(u)$, where $u$ is a canonical parameter and $U^i=d\xi^i/du$. The world function is equal, up to sign, to half the square measure of the geodesic joining $P'$ and $P$, and is a two-point invariant in the sense that its value does not change under coordinate transformations in a neighbourhood of $P'$ and $P$.
In flat space-time there is a system of coordinates such that
$$\Omega(x',x)=\frac12g_{ij}^0(x^{i\prime}-x^i)(x^{j\prime}-x^j),$$
where
$$g_{ij}^0=\operatorname{diag}(1,1,1,-1).$$
References
| [1] | J.L. Synge, "Relativity: the general theory" , North-Holland & Interscience (1960) pp. Chapt. II |
How to Cite This Entry:
World function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=World_function&oldid=18986
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article