Namespaces
Variants
Actions

Difference between revisions of "Restricted quantifier"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A [[Quantifier|quantifier]] applied to predicates not with respect to the whole range of a given object variable, but with respect to a part of it defined by a [[Predicate|predicate]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816501.png" />. When used in this restricted sense, the [[Universal quantifier|universal quantifier]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816502.png" /> and the [[Existential quantifier|existential quantifier]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816503.png" /> are usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816504.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816505.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816506.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816507.png" />, respectively). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816508.png" /> is a predicate, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r0816509.png" /> means
+
{{TEX|done}}
 +
A [[Quantifier|quantifier]] applied to predicates not with respect to the whole range of a given object variable, but with respect to a part of it defined by a [[Predicate|predicate]] $R(x)$. When used in this restricted sense, the [[Universal quantifier|universal quantifier]] $(\forall x)$ and the [[Existential quantifier|existential quantifier]] $(\exists x)$ are usually denoted by $(\forall x)_R(x)$ and $(\exists x)_R(x)$ (or $\forall x\colon R(x)$ and $\exists x\colon R(x)$, respectively). If $P(x)$ is a predicate, then $(\forall x)_R(x)P(x)$ means
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165010.png" /></td> </tr></table>
+
$$\forall x(R(x)\supset P(x)),$$
  
that is, the predicate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165011.png" /> is true for all values of the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165012.png" /> satisfying the predicate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165013.png" />. The proposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165014.png" /> means
+
that is, the predicate $P(x)$ is true for all values of the variable $x$ satisfying the predicate $R(x)$. The proposition $(\exists x)_R(X)P(x)$ means
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165015.png" /></td> </tr></table>
+
$$\exists x(R(x)\&P(x)),$$
  
that is, the intersection of the truth domains of the predicates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165017.png" /> is non-empty.
+
that is, the intersection of the truth domains of the predicates $R(x)$ and $P(x)$ is non-empty.
  
Restricted quantifiers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165019.png" /> (more commonly called bounded quantifiers) play an important role in formal arithmetic (cf. [[Arithmetic, formal|Arithmetic, formal]]), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165020.png" /> is a term not containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081650/r08165021.png" />. When these quantifiers are applied to a [[Decidable predicate|decidable predicate]], the result is a decidable predicate.
+
Restricted quantifiers of the form $(\forall x)_{x<t}$ and $(\exists x)_{x<t}$ (more commonly called bounded quantifiers) play an important role in formal arithmetic (cf. [[Arithmetic, formal|Arithmetic, formal]]), where $t$ is a term not containing $x$. When these quantifiers are applied to a [[Decidable predicate|decidable predicate]], the result is a decidable predicate.

Latest revision as of 07:30, 23 August 2014

A quantifier applied to predicates not with respect to the whole range of a given object variable, but with respect to a part of it defined by a predicate $R(x)$. When used in this restricted sense, the universal quantifier $(\forall x)$ and the existential quantifier $(\exists x)$ are usually denoted by $(\forall x)_R(x)$ and $(\exists x)_R(x)$ (or $\forall x\colon R(x)$ and $\exists x\colon R(x)$, respectively). If $P(x)$ is a predicate, then $(\forall x)_R(x)P(x)$ means

$$\forall x(R(x)\supset P(x)),$$

that is, the predicate $P(x)$ is true for all values of the variable $x$ satisfying the predicate $R(x)$. The proposition $(\exists x)_R(X)P(x)$ means

$$\exists x(R(x)\&P(x)),$$

that is, the intersection of the truth domains of the predicates $R(x)$ and $P(x)$ is non-empty.

Restricted quantifiers of the form $(\forall x)_{x<t}$ and $(\exists x)_{x<t}$ (more commonly called bounded quantifiers) play an important role in formal arithmetic (cf. Arithmetic, formal), where $t$ is a term not containing $x$. When these quantifiers are applied to a decidable predicate, the result is a decidable predicate.

How to Cite This Entry:
Restricted quantifier. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Restricted_quantifier&oldid=18590
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article