Difference between revisions of "Jacobi matrix"
(Importing text file) |
m (fixing matrix align) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | |||
− | + | {{MSC|47B36}} | |
+ | {{TEX|done}} | ||
− | ====References==== | + | ===Linear algebra=== |
− | + | A Jacobi matrix is a square [[tridiagonal matrix]] $[a_{i,k}]$ with real entries such that $a_{i,k} = 0$ for $\left|i-k\right|>1$. If one writes $a_{i,i} = a_i$ ($i=1,\ldots,n$), $a_{i,i+1}=b_i$, and $a_{i+1,i}=c_i$ ($i=1,\ldots,n-1$), then a Jacobi matrix has the form | |
+ | \[ | ||
+ | \left[ | ||
+ | \begin{array}{cccccc} | ||
+ | a_1 & b_1 & 0 & \cdots & 0 & 0 \\ | ||
+ | c_1 & a_2 & b_2 & \cdots & 0 & 0 \\ | ||
+ | 0 & c_2 & a_3 & \cdots & 0 & 0 \\ | ||
+ | \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ | ||
+ | 0 & 0 & 0 & \cdots & a_{n-1} & b_{n-1} \\ | ||
+ | 0 & 0 & 0 & \cdots & c_{n-1} & a_n | ||
+ | |||
+ | \end{array} | ||
+ | \right] | ||
+ | \] | ||
+ | Any [[Minor|minor]] of a Jacobi matrix $J$ is the product of certain principal minors of $J$ and certain elements of $J$. A Jacobi matrix $J$ is completely non-negative (that is, all its minors are non-negative) if and only if all its principal minors and all elements $b_i$ and $c_i$ ($i=1,\ldots,n-1$) are non-negative. If $b_ic_i>0$ for $i=1,\ldots,n-1$, then the roots of the [[Characteristic polynomial|characteristic polynomial]] of $J$ are real and distinct. | ||
+ | |||
+ | ===Analysis=== | ||
+ | Let $U\subset \mathbb R^n$, $f: U\to \mathbb R^m$ and assume that $f$ is differentiable at the point $y\in U$. | ||
+ | The Jacobi matrix, or [[Jacobian]], of $f$ at $y$ is then the matrix | ||
+ | \begin{equation}\label{e:Jacobi_matrix} | ||
+ | Df|_y := \left( | ||
+ | \begin{array}{cccc} | ||
+ | \frac{\partial f^1}{\partial x_1} (y) & \frac{\partial f^1}{\partial x_2} (y) & \cdots & \frac{\partial f^1}{\partial x_n} (y)\\ | ||
+ | \frac{\partial f^2}{\partial x_1} (y) & \frac{\partial f^2}{\partial x_2} (y) & \cdots & \frac{\partial f^2}{\partial x_n} (y)\\ | ||
+ | \vdots & \vdots & \ddots &\vdots\\ | ||
+ | \frac{\partial f^m}{\partial x_1} (y) & \frac{\partial f^m}{\partial x_2} (y) & \cdots & \frac{\partial f^m}{\partial x_n} (y) | ||
+ | \end{array}\right)\, , | ||
+ | \end{equation} | ||
+ | where $(f^1, \ldots, f^m)$ are the coordinate functions of $f$ and $x_1,\ldots, x_n$ denote the standard system of coordinates in | ||
+ | $\mathbb R^n$. | ||
+ | |||
+ | |||
+ | ====References==== | ||
+ | {| | ||
+ | |- | ||
+ | |valign="top"|{{Ref|GaKr}}||valign="top"| F.R. Gantmakher, M.G. Krein, "Oscillation matrices and kernels and small vibrations of mechanical systems", Dept. Commerce USA. Joint Publ. Service (1961) (Translated from Russian) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ru}}|| W. Rudin, "Principles of mathematical analysis", Third edition, McGraw-Hill (1976) {{MR|038502}} {{ZBL|0346.2600}} | ||
+ | |- | ||
+ | |} |
Latest revision as of 01:37, 7 May 2022
2020 Mathematics Subject Classification: Primary: 47B36 [MSN][ZBL]
Linear algebra
A Jacobi matrix is a square tridiagonal matrix $[a_{i,k}]$ with real entries such that $a_{i,k} = 0$ for $\left|i-k\right|>1$. If one writes $a_{i,i} = a_i$ ($i=1,\ldots,n$), $a_{i,i+1}=b_i$, and $a_{i+1,i}=c_i$ ($i=1,\ldots,n-1$), then a Jacobi matrix has the form \[ \left[ \begin{array}{cccccc} a_1 & b_1 & 0 & \cdots & 0 & 0 \\ c_1 & a_2 & b_2 & \cdots & 0 & 0 \\ 0 & c_2 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & b_{n-1} \\ 0 & 0 & 0 & \cdots & c_{n-1} & a_n \end{array} \right] \] Any minor of a Jacobi matrix $J$ is the product of certain principal minors of $J$ and certain elements of $J$. A Jacobi matrix $J$ is completely non-negative (that is, all its minors are non-negative) if and only if all its principal minors and all elements $b_i$ and $c_i$ ($i=1,\ldots,n-1$) are non-negative. If $b_ic_i>0$ for $i=1,\ldots,n-1$, then the roots of the characteristic polynomial of $J$ are real and distinct.
Analysis
Let $U\subset \mathbb R^n$, $f: U\to \mathbb R^m$ and assume that $f$ is differentiable at the point $y\in U$. The Jacobi matrix, or Jacobian, of $f$ at $y$ is then the matrix \begin{equation}\label{e:Jacobi_matrix} Df|_y := \left( \begin{array}{cccc} \frac{\partial f^1}{\partial x_1} (y) & \frac{\partial f^1}{\partial x_2} (y) & \cdots & \frac{\partial f^1}{\partial x_n} (y)\\ \frac{\partial f^2}{\partial x_1} (y) & \frac{\partial f^2}{\partial x_2} (y) & \cdots & \frac{\partial f^2}{\partial x_n} (y)\\ \vdots & \vdots & \ddots &\vdots\\ \frac{\partial f^m}{\partial x_1} (y) & \frac{\partial f^m}{\partial x_2} (y) & \cdots & \frac{\partial f^m}{\partial x_n} (y) \end{array}\right)\, , \end{equation} where $(f^1, \ldots, f^m)$ are the coordinate functions of $f$ and $x_1,\ldots, x_n$ denote the standard system of coordinates in $\mathbb R^n$.
References
[GaKr] | F.R. Gantmakher, M.G. Krein, "Oscillation matrices and kernels and small vibrations of mechanical systems", Dept. Commerce USA. Joint Publ. Service (1961) (Translated from Russian) |
[Ru] | W. Rudin, "Principles of mathematical analysis", Third edition, McGraw-Hill (1976) MR038502 Zbl 0346.2600 |
Jacobi matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_matrix&oldid=17361