|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | ''of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769201.png" /> by an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769202.png" />'' | + | {{TEX|done}} |
| + | ''of a ring $R$ by an ideal $I$'' |
| | | |
− | The [[Quotient group|quotient group]] of the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769203.png" /> by the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769204.png" />, with multiplication | + | The [[Quotient group|quotient group]] of the additive group of $R$ by the subgroup $I$, with multiplication |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769205.png" /></td> </tr></table>
| + | $$(a+I)(b+I)=ab+I.$$ |
| | | |
− | The quotient turns out to be a ring and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769206.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769207.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q0769208.png" />, is a surjective ring homomorphism, called the natural homomorphism (see [[Algebraic system|Algebraic system]]). | + | The quotient turns out to be a ring and is denoted by $R/I$. The mapping $\pi\colon R\to R/I$, where $\pi(x)=x+I$, is a surjective ring homomorphism, called the natural homomorphism (see [[Algebraic system|Algebraic system]]). |
| | | |
− | The most important example of a quotient ring is the ring of residues modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692010.png" /> — the quotient ring of the ring of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692011.png" /> by the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692012.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692013.png" /> can be assumed to be the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692014.png" />, where the sum and the product are defined as the remainders on diving the usual sum and product by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692015.png" />. One can establish a one-to-one order-preserving correspondence between the ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692016.png" /> and the ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692017.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692018.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692019.png" /> is simple (cf. [[Simple ring|Simple ring]]) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692020.png" /> is a [[Maximal ideal|maximal ideal]]. | + | The most important example of a quotient ring is the ring of residues modulo $n$ — the quotient ring of the ring of integers $\mathbf Z$ by the ideal $\mathbf Zn$. The elements of $\mathbf Z/\mathbf Zn$ can be assumed to be the numbers $\{0,\ldots,n-1\}$, where the sum and the product are defined as the remainders on diving the usual sum and product by $n$. One can establish a one-to-one order-preserving correspondence between the ideals of $R/I$ and the ideals of $R$ containing $I$. In particular, $R/I$ is simple (cf. [[Simple ring|Simple ring]]) if and only if $I$ is a [[Maximal ideal|maximal ideal]]. |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | Another most important example is the quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692022.png" /> is the ring of polynomials over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692023.png" /> in one variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692025.png" /> is an [[Irreducible polynomial|irreducible polynomial]]. This quotient ring describes all field extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692026.png" /> by roots of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076920/q07692027.png" /> (cf. also [[Extension of a field|Extension of a field]]). | + | Another most important example is the quotient ring $F[x]/F[x]f(x)$, where $F[x]$ is the ring of polynomials over $F$ in one variable $x$ and $f(x)$ is an [[Irreducible polynomial|irreducible polynomial]]. This quotient ring describes all field extensions of $F$ by roots of the equation $f(x)=0$ (cf. also [[Extension of a field|Extension of a field]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Algebra" , '''1''' , Wiley (1982) pp. Sect. 10.1</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Algebra" , '''1''' , Wiley (1982) pp. Sect. 10.1</TD></TR></table> |
Latest revision as of 14:56, 30 December 2018
of a ring $R$ by an ideal $I$
The quotient group of the additive group of $R$ by the subgroup $I$, with multiplication
$$(a+I)(b+I)=ab+I.$$
The quotient turns out to be a ring and is denoted by $R/I$. The mapping $\pi\colon R\to R/I$, where $\pi(x)=x+I$, is a surjective ring homomorphism, called the natural homomorphism (see Algebraic system).
The most important example of a quotient ring is the ring of residues modulo $n$ — the quotient ring of the ring of integers $\mathbf Z$ by the ideal $\mathbf Zn$. The elements of $\mathbf Z/\mathbf Zn$ can be assumed to be the numbers $\{0,\ldots,n-1\}$, where the sum and the product are defined as the remainders on diving the usual sum and product by $n$. One can establish a one-to-one order-preserving correspondence between the ideals of $R/I$ and the ideals of $R$ containing $I$. In particular, $R/I$ is simple (cf. Simple ring) if and only if $I$ is a maximal ideal.
Another most important example is the quotient ring $F[x]/F[x]f(x)$, where $F[x]$ is the ring of polynomials over $F$ in one variable $x$ and $f(x)$ is an irreducible polynomial. This quotient ring describes all field extensions of $F$ by roots of the equation $f(x)=0$ (cf. also Extension of a field).
References
[a1] | P.M. Cohn, "Algebra" , 1 , Wiley (1982) pp. Sect. 10.1 |
How to Cite This Entry:
Quotient ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quotient_ring&oldid=16376
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article