Namespaces
Variants
Actions

Difference between revisions of "Special automorphism"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
''constructed from an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862601.png" /> of a [[Measure space|measure space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862602.png" /> and a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862603.png" /> (defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862604.png" /> and taking positive integral values)''
+
{{TEX|done}}
 +
''constructed from an automorphism $S$ of a [[Measure space|measure space]] $(X,\nu)$ and a function $f$ (defined on $X$ and taking positive integral values)''
  
An automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862605.png" /> of a certain new measure space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862606.png" /> constructed in the following way. The points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862607.png" /> are the pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862608.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s0862609.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626010.png" /> is an integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626011.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626012.png" /> is equipped with the obvious measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626013.png" />: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626015.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626016.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626018.png" />, then one usually normalizes this measure. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626019.png" /> be the transformation that increases the second coordinate of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626020.png" /> by one if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626021.png" /> (i.e. if the transformed point remains within <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626022.png" />), and otherwise put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626023.png" />. The transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626024.png" /> turns out to be an automorphism of the measure space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626025.png" />.
+
An automorphism $T$ of a certain new measure space $(M,\mu)$ constructed in the following way. The points of $M$ are the pairs $(x,n)$ where $x\in X$ and $n$ is an integer, $0\leq n<f(x)$, and $M$ is equipped with the obvious measure $\mu$: if $A\subset X$ and $f(x)>n$ for all $x\in A$, then $\mu(A\times\{n\})=\nu(A)$. If $\mu(M)=\int_Xfd\nu<\infty$, then one usually normalizes this measure. Let $T$ be the transformation that increases the second coordinate of the point $(x,n)$ by one if $n+1<f(x)$ (i.e. if the transformed point remains within $M$), and otherwise put $T(x,n)=(Sx,0)$. The transformation $T$ turns out to be an automorphism of the measure space $(M,\mu)$.
  
The above construction is often applied in [[Ergodic theory|ergodic theory]] when constructing various examples. On the other hand, the role of special automorphisms is clear from the following. By identifying each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626026.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626027.png" />, one may assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626028.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626029.png" /> is the time spent by a point that starts in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626030.png" /> and moves under the action of the cascade <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626031.png" /> to return once again to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626032.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626033.png" /> is the induced automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626034.png" />. Thus, special automorphisms can be used to recover the trajectories of a dynamical system in the whole phase space by observing only the passages of the moving point through the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626035.png" />.
+
The above construction is often applied in [[Ergodic theory|ergodic theory]] when constructing various examples. On the other hand, the role of special automorphisms is clear from the following. By identifying each point $x\in X$ with $(x,0)$, one may assume that $X\subset M$. Then $f(x)$ is the time spent by a point that starts in $X$ and moves under the action of the cascade $\{T^n\}$ to return once again to $X$, and $S$ is the induced automorphism $T_X$. Thus, special automorphisms can be used to recover the trajectories of a dynamical system in the whole phase space by observing only the passages of the moving point through the set $X$.
  
  
  
 
====Comments====
 
====Comments====
Instead of  "special automorphism constructed from an automorphism S"  one also speaks of a primitive of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626036.png" />. (In that case what was called above the  "induced automorphism"  is called a derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086260/s08626037.png" />. See [[#References|[a2]]].) The idea goes back to S. Kakutani; cf. [[#References|[a1]]].
+
Instead of  "special automorphism constructed from an automorphism S"  one also speaks of a primitive of $S$. (In that case what was called above the  "induced automorphism"  is called a derivative of $S$. See [[#References|[a2]]].) The idea goes back to S. Kakutani; cf. [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Kakutani,  "Induced measure preserving transformations"  ''Proc. Japan Acad.'' , '''19'''  (1943)  pp. 635–641</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Petersen,  "Ergodic theory" , Cambridge Univ. Press  (1983)  pp. 39</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.P. [I.P. Kornfel'd] Cornfel'd,  S.V. Fomin,  Ya.G. Sinai,  "Ergodic theory" , Springer  (1982)  pp. Chapt. 1, §5  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Kakutani,  "Induced measure preserving transformations"  ''Proc. Japan Acad.'' , '''19'''  (1943)  pp. 635–641</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Petersen,  "Ergodic theory" , Cambridge Univ. Press  (1983)  pp. 39</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.P. [I.P. Kornfel'd] Cornfel'd,  S.V. Fomin,  Ya.G. Sinai,  "Ergodic theory" , Springer  (1982)  pp. Chapt. 1, §5  (Translated from Russian)</TD></TR></table>

Latest revision as of 14:54, 19 August 2014

constructed from an automorphism $S$ of a measure space $(X,\nu)$ and a function $f$ (defined on $X$ and taking positive integral values)

An automorphism $T$ of a certain new measure space $(M,\mu)$ constructed in the following way. The points of $M$ are the pairs $(x,n)$ where $x\in X$ and $n$ is an integer, $0\leq n<f(x)$, and $M$ is equipped with the obvious measure $\mu$: if $A\subset X$ and $f(x)>n$ for all $x\in A$, then $\mu(A\times\{n\})=\nu(A)$. If $\mu(M)=\int_Xfd\nu<\infty$, then one usually normalizes this measure. Let $T$ be the transformation that increases the second coordinate of the point $(x,n)$ by one if $n+1<f(x)$ (i.e. if the transformed point remains within $M$), and otherwise put $T(x,n)=(Sx,0)$. The transformation $T$ turns out to be an automorphism of the measure space $(M,\mu)$.

The above construction is often applied in ergodic theory when constructing various examples. On the other hand, the role of special automorphisms is clear from the following. By identifying each point $x\in X$ with $(x,0)$, one may assume that $X\subset M$. Then $f(x)$ is the time spent by a point that starts in $X$ and moves under the action of the cascade $\{T^n\}$ to return once again to $X$, and $S$ is the induced automorphism $T_X$. Thus, special automorphisms can be used to recover the trajectories of a dynamical system in the whole phase space by observing only the passages of the moving point through the set $X$.


Comments

Instead of "special automorphism constructed from an automorphism S" one also speaks of a primitive of $S$. (In that case what was called above the "induced automorphism" is called a derivative of $S$. See [a2].) The idea goes back to S. Kakutani; cf. [a1].

References

[a1] S. Kakutani, "Induced measure preserving transformations" Proc. Japan Acad. , 19 (1943) pp. 635–641
[a2] K. Petersen, "Ergodic theory" , Cambridge Univ. Press (1983) pp. 39
[a3] I.P. [I.P. Kornfel'd] Cornfel'd, S.V. Fomin, Ya.G. Sinai, "Ergodic theory" , Springer (1982) pp. Chapt. 1, §5 (Translated from Russian)
How to Cite This Entry:
Special automorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Special_automorphism&oldid=15242
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article