|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''on conformal mapping of domains with variable boundaries'' | | ''on conformal mapping of domains with variable boundaries'' |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267801.png" /> be a sequence of nested simply-connected domains in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267802.png" />-plane, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267803.png" />, which converges to its kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267804.png" /> relative to some point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267805.png" />; the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267806.png" /> is assumed to be bounded by a Jordan curve. Then the sequence of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267807.png" /> which map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267808.png" /> conformally onto the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c0267809.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678011.png" />, is uniformly convergent in the closed domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678012.png" /> to the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678013.png" /> which maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678014.png" /> conformally onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678015.png" />, moreover <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026780/c02678017.png" />. | + | Let $\{D_n\}$ be a sequence of nested simply-connected domains in the complex $z$-plane, $\overline{D_{n+1}}\subset D_n$, which converges to its kernel $D_{z_0}$ relative to some point $z_0$; the set $D_{z_0}$ is assumed to be bounded by a Jordan curve. Then the sequence of functions $\{w=f_n(z)\}$ which map $D_n$ conformally onto the disc $\Delta=\{w:|w|<1\}$, $f_n(z_0)=0$, $f'_n(z_0)>0$, is uniformly convergent in the closed domain $\overline{D_{z_0}}$ to the function $w=f(z)$ which maps $D_{z_0}$ conformally onto $\Delta$, moreover $f(z_0)=0$, $f'(z_0)>0$. |
| | | |
− | This theorem, due to R. Courant , is an extension of the [[Carathéodory theorem|Carathéodory theorem]]. | + | This theorem, due to R. Courant [[#References|[1]]], is an extension of the [[Carathéodory theorem|Carathéodory theorem]]. |
| | | |
| ====References==== | | ====References==== |
Latest revision as of 21:14, 22 December 2018
on conformal mapping of domains with variable boundaries
Let $\{D_n\}$ be a sequence of nested simply-connected domains in the complex $z$-plane, $\overline{D_{n+1}}\subset D_n$, which converges to its kernel $D_{z_0}$ relative to some point $z_0$; the set $D_{z_0}$ is assumed to be bounded by a Jordan curve. Then the sequence of functions $\{w=f_n(z)\}$ which map $D_n$ conformally onto the disc $\Delta=\{w:|w|<1\}$, $f_n(z_0)=0$, $f'_n(z_0)>0$, is uniformly convergent in the closed domain $\overline{D_{z_0}}$ to the function $w=f(z)$ which maps $D_{z_0}$ conformally onto $\Delta$, moreover $f(z_0)=0$, $f'(z_0)>0$.
This theorem, due to R. Courant [1], is an extension of the Carathéodory theorem.
References
[1a] | R. Courant, Gott. Nachr. (1914) pp. 101–109 |
[1b] | R. Courant, Gott. Nachr. (1922) pp. 69–70 |
[2] | A.I. Markushevich, "Theory of functions of a complex variable" , 3 , Chelsea (1977) (Translated from Russian) |
Cf. Carathéodory theorem for the definition of "kernel of a sequence of domains" .
How to Cite This Entry:
Courant theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Courant_theorem&oldid=14544
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article