Difference between revisions of "Singular measures"
(Importing text file) |
m |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | {{MSC|28A15}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
+ | [[Category:Classical measure theory]] | ||
+ | {{TEX|done}} | ||
− | + | If $\mu$ and $\nu$ are two $\sigma$-finite measures on the same [[Algebra of sets|$\sigma$-algebra]] $\mathcal{B}$ of subsets of $X$, then $\mu$ and $\nu$ are said to be singular | |
− | + | (or also mutually singular, or orthogonal) if there are two sets $A,B\in\mathcal{B}$ such that $A\cap B=\emptyset$, $A\cup B = X$ and $\mu (B)=\nu (A) = 0$. The concept can be extended to [[Signed measure|signed measures]] or vector-valued measures: in this case it is required that $\mu (B\cap E) = \nu (A\cap E) = 0$ for every $E\in\mathcal{B}$ (cp. with Section 30 of {{Cite|Ha}}). The singularity of the two measures $\mu$ and $\nu$ is usually denoted by $\mu\perp\nu$. | |
− | + | For general, i.e. non $\sigma$-finite (nonnegative) measures, the concept can be generalized in the following way: $\mu$ and $\nu$ are singular if the only (nonnegative) measure $\alpha$ on $\mathcal{B}$ with the property | |
+ | \[ | ||
+ | \alpha (A)\leq \min \{\mu (A), \nu (A)\} \qquad \forall A\in\mathcal{B} | ||
+ | \] | ||
+ | is the trivial measure which assigns the value $0$ to every element of $\mathcal{B}$. By the [[Absolutely continuous measures|Radon-Nikodym decomposition]] this concept coincides with the previous one when we assume the $\sigma$-finiteness of $\mu$ and $\nu$. | ||
− | + | ===Comments=== | |
+ | When $X$ is the standard euclidean space and $\mathcal{B}$ the Borel $\sigma$-algebra, the name ''singular measures'' is often used for those $\sigma$-finite measures $\mu$ which are orthogonal to the Lebesgue measure. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|AFP}}|| L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. {{MR|1857292}}{{ZBL|0957.49001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Bo}}|| N. Bourbaki, "Elements of mathematics. Integration", Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}} {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}} {{ZBL|1095.28001}} {{ZBL|0156.06001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory", '''1''', Interscience (1958) {{MR|0117523}} {{ZBL|0635.47001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Bi}}|| P. Billingsley, "Convergence of probability measures", Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ha}}|| P.R. Halmos, "Measure theory", v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|HS}}|| E. Hewitt, K.R. Stromberg, "Real and abstract analysis", Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} | ||
+ | |-|valign="top"|{{Ref|Ma}}|| P. Mattila, "Geometry of sets and measures in euclidean spaces". Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. {{MR|1333890}} {{ZBL|0911.28005}} | ||
+ | |- | ||
+ | |} |
Latest revision as of 17:27, 18 August 2012
2020 Mathematics Subject Classification: Primary: 28A15 [MSN][ZBL]
If $\mu$ and $\nu$ are two $\sigma$-finite measures on the same $\sigma$-algebra $\mathcal{B}$ of subsets of $X$, then $\mu$ and $\nu$ are said to be singular (or also mutually singular, or orthogonal) if there are two sets $A,B\in\mathcal{B}$ such that $A\cap B=\emptyset$, $A\cup B = X$ and $\mu (B)=\nu (A) = 0$. The concept can be extended to signed measures or vector-valued measures: in this case it is required that $\mu (B\cap E) = \nu (A\cap E) = 0$ for every $E\in\mathcal{B}$ (cp. with Section 30 of [Ha]). The singularity of the two measures $\mu$ and $\nu$ is usually denoted by $\mu\perp\nu$.
For general, i.e. non $\sigma$-finite (nonnegative) measures, the concept can be generalized in the following way: $\mu$ and $\nu$ are singular if the only (nonnegative) measure $\alpha$ on $\mathcal{B}$ with the property \[ \alpha (A)\leq \min \{\mu (A), \nu (A)\} \qquad \forall A\in\mathcal{B} \] is the trivial measure which assigns the value $0$ to every element of $\mathcal{B}$. By the Radon-Nikodym decomposition this concept coincides with the previous one when we assume the $\sigma$-finiteness of $\mu$ and $\nu$.
Comments
When $X$ is the standard euclidean space and $\mathcal{B}$ the Borel $\sigma$-algebra, the name singular measures is often used for those $\sigma$-finite measures $\mu$ which are orthogonal to the Lebesgue measure.
References
[AFP] | L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001 |
[Bo] | N. Bourbaki, "Elements of mathematics. Integration", Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001 |
[DS] | N. Dunford, J.T. Schwartz, "Linear operators. General theory", 1, Interscience (1958) MR0117523 Zbl 0635.47001 |
[Bi] | P. Billingsley, "Convergence of probability measures", Wiley (1968) MR0233396 Zbl 0172.21201 |
[Ha] | P.R. Halmos, "Measure theory", v. Nostrand (1950) MR0033869 Zbl 0040.16802 |
[HS] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis", Springer (1965) MR0188387 Zbl 0137.03202 |
Singular measures. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Singular_measures&oldid=14182