|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r0812201.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r0812203.png" />, residue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r0812205.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r0812206.png" />'' | + | {{TEX|done}} |
| + | ''$a$ modulo $m$, residue of $a$ modulo $m$'' |
| | | |
− | Any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r0812207.png" /> which is congruent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r0812208.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r0812209.png" /> (cf. [[Congruence|Congruence]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122010.png" /> be the remainder of division of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122011.png" /> by some integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122013.png" />; then the residue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122014.png" /> of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122015.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122016.png" /> will have the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122018.png" /> is some integer. The residue corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122019.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122020.png" /> and is called the least non-negative residue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122022.png" />. The smallest (in absolute value) residue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122023.png" /> is called the absolutely smallest residue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122025.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122026.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122027.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122029.png" />; finally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122030.png" /> is even and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122031.png" />, either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122032.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122033.png" /> may be taken as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122034.png" />. | + | Any integer $b$ which is congruent to $a$ modulo $m$ (cf. [[Congruence|Congruence]]). Let $r$ be the remainder of division of $a$ by some integer $m>0$, $0\leq r\leq m-1$; then the residue $b$ of the number $a$ modulo $m$ will have the form $b=mq+r$, where $q$ is some integer. The residue corresponding to $q=0$ is equal to $r$ and is called the least non-negative residue of $a$. The smallest (in absolute value) residue $\rho$ is called the absolutely smallest residue of $a$. If $r<m/2$, then $\rho=r$; if $r>m/2$, then $\rho=r-m$; finally, if $m$ is even and $r=m/2$, either $m/2$ or $-m/2$ may be taken as $\rho$. |
| | | |
− | A system consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122035.png" /> integers each one of which is the residue of one and only one of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122036.png" /> is called a [[Complete system of residues|complete system of residues]] modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122037.png" />. The smallest non-negative residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122038.png" /> or the absolutely smallest residues are the complete systems of residues which are most frequently used. | + | A system consisting of $m$ integers each one of which is the residue of one and only one of the numbers $0,\ldots,m-1$ is called a [[Complete system of residues|complete system of residues]] modulo $m$. The smallest non-negative residues $0,\ldots,m-1$ or the absolutely smallest residues are the complete systems of residues which are most frequently used. |
| | | |
− | A power residue of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122041.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122043.png" />, is any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122044.png" />, coprime with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122045.png" />, for which the congruence | + | A power residue of degree $n$ modulo $m$, $n\geq2$, is any integer $a$, coprime with $m$, for which the congruence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122046.png" /></td> </tr></table>
| + | $$x^n\equiv a\pmod m$$ |
| | | |
− | is solvable. If this congruence is not solvable, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122047.png" /> is called a power non-residue of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122050.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122051.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122052.png" />, the residues or non-residues are called quadratic; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122053.png" />, they are called cubic; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081220/r08122054.png" />, they are called biquadratic (see also [[Power residue|Power residue]]). | + | is solvable. If this congruence is not solvable, $a$ is called a power non-residue of degree $n$ modulo $m$. In particular, if $n=2$, the residues or non-residues are called quadratic; if $n=3$, they are called cubic; if $n=4$, they are called biquadratic (see also [[Power residue|Power residue]]). |
| | | |
| ====References==== | | ====References==== |
Latest revision as of 13:55, 11 August 2014
$a$ modulo $m$, residue of $a$ modulo $m$
Any integer $b$ which is congruent to $a$ modulo $m$ (cf. Congruence). Let $r$ be the remainder of division of $a$ by some integer $m>0$, $0\leq r\leq m-1$; then the residue $b$ of the number $a$ modulo $m$ will have the form $b=mq+r$, where $q$ is some integer. The residue corresponding to $q=0$ is equal to $r$ and is called the least non-negative residue of $a$. The smallest (in absolute value) residue $\rho$ is called the absolutely smallest residue of $a$. If $r<m/2$, then $\rho=r$; if $r>m/2$, then $\rho=r-m$; finally, if $m$ is even and $r=m/2$, either $m/2$ or $-m/2$ may be taken as $\rho$.
A system consisting of $m$ integers each one of which is the residue of one and only one of the numbers $0,\ldots,m-1$ is called a complete system of residues modulo $m$. The smallest non-negative residues $0,\ldots,m-1$ or the absolutely smallest residues are the complete systems of residues which are most frequently used.
A power residue of degree $n$ modulo $m$, $n\geq2$, is any integer $a$, coprime with $m$, for which the congruence
$$x^n\equiv a\pmod m$$
is solvable. If this congruence is not solvable, $a$ is called a power non-residue of degree $n$ modulo $m$. In particular, if $n=2$, the residues or non-residues are called quadratic; if $n=3$, they are called cubic; if $n=4$, they are called biquadratic (see also Power residue).
References
[1] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
References
[a1] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapt. XIII |
How to Cite This Entry:
Remainder of an integer. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Remainder_of_an_integer&oldid=13893
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article