Namespaces
Variants
Actions

Difference between revisions of "Dini-Lipschitz criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
If a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325401.png" />-periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325402.png" /> satisfies the condition
+
''for the convergence of Fourier series''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325403.png" /></td> </tr></table>
+
{{MSC|42A20}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325404.png" /> is the modulus of continuity of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325405.png" />, then its Fourier series converges uniformly to it on the entire real axis. The criterion was demonstrated by U. Dini [[#References|[1]]], and also by R. Lipschitz for the special case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325406.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325407.png" />, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325408.png" /> [[#References|[2]]]. The Dini–Lipschitz criterion is a final (sharp) statement in the following sense. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d0325409.png" /> is an arbitrary modulus of continuity satisfying the condition
+
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d03254010.png" /></td> </tr></table>
+
[[Category:Harmonic analysis on Euclidean spaces]]
  
then there exists a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d03254011.png" />-periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d03254012.png" /> whose Fourier series diverges at some point, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d03254013.png" /> satisfies the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032540/d03254014.png" />.
+
A criterion proved independently by Dini and Lipschitz for the uniform convergence of [[Trigonometric series|Fourier series]], see {{Cite|Di}} and {{Cite|Li}}.
 +
 
 +
Consider a continuous function $f:{\mathbb R} \to {\mathbb R}$ which is $2\pi$-periodic and denote by $\omega (\delta, I)$ its modulus of continuity, namely
 +
\[
 +
\omega (\delta, I) := \sup\; \{|f(x)-f(y)| : x,y\in I \;\mbox{and}\; |x-y|\leq \delta\}\, .
 +
\]
 +
The Dini-Lipschitz criterion is then the following theorem (cp. with Theorems 10.3 and 10.5 of {{Cite|Zy}}):
 +
 
 +
'''Theorem 1'''
 +
If on some ''open'' interval $I$ we have
 +
\[
 +
\lim_{\delta\to 0}\; \omega (\delta, I) |\log \delta| = 0\,
 +
\]
 +
then the Fourier series of $f$ converges uniformly to $f$ on any ''closed'' interval $J\subset I$.
 +
 
 +
Note that, as an obvious corollary, if the interval $I$ has length larger than $2\pi$, then the Fourier series converges uniformly to $f$ on the entire real axis.
 +
 
 +
The Dini-Lipschitz criterion is sharp in the following sense. If $f: {\mathbb R}^+\to {\mathbb R}^+$ is any function such that
 +
\[
 +
\limsup_{\delta\to 0}\; f (\delta) |\log \delta| > 0\,
 +
\]
 +
then there is a continuous function $f$ such that $\omega (\delta, {\mathbb R}) \leq f(\delta)$ for any $\delta$ and the corresponding Fourier series ''diverges'' at some point.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"U. Dini,  "Sopra la serie di Fourier" , Pisa  (1872)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Lipschitz,  "De explicatione per series trigonometricas instituenda functionum unius variabilis arbitrariarum, etc."  ''J. Reine Angew. Math.'' , '''63''' :  2 (1864)  pp. 296–308</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Lebesgue,  "Sur la répresentation trigonométrique approchée des fonctions satisfiasants à une condition de Lipschitz"  ''Bull. Soc. Math. France'' , '''38'''  (1910)  pp. 184–210</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S.M. Nikol'skii,  "On the Dini–Lipschitz condition for convergence of Fourier series"  ''Doklady Akad. Nauk SSSR'' , '''73''' :  3  (1950) pp. 457–460 (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon (1964(Translated from Russian)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Ba}}|| N.K. Bary,  "A treatise on trigonometric series" , Pergamon, 1964.
 +
|-
 +
|valign="top"|{{Ref|Di}}|| U. Dini,  "Sopra la serie di Fourier" , Pisa  (1872).
 +
|-
 +
|valign="top"|{{Ref|Le}}|| H. Lebesgue,  "Sur la répresentation trigonométrique approchée des  fonctions satisfiasants à une condition de Lipschitz"  ''Bull. Soc. Math. France'' , '''38'''  (1910)  pp. 184-210
 +
|-
 +
|valign="top"|{{Ref|Li}}|| R. Lipschitz,  "De explicatione per series trigonometricas instituenda  functionum unius variabilis arbitrariarum, etc."  ''J. Reine Angew. Math.'' , '''63''' :  2 (1864)  pp. 296-308
 +
|-
 +
|valign="top"|{{Ref|Ni}}|| S.M. Nikol'skii,  "On the Dini–Lipschitz condition for convergence of Fourier series"  ''Doklady Akad. Nauk SSSR'' , '''73''' :  3  (1950)   pp. 457–460
 +
|-
 +
|valign="top"|{{Ref|Zy}}|| A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ.  Press (1988{{MR|0933759}}  {{ZBL|0628.42001}}
 +
|-
 +
|}

Latest revision as of 12:49, 6 October 2012

for the convergence of Fourier series

2020 Mathematics Subject Classification: Primary: 42A20 [MSN][ZBL]

A criterion proved independently by Dini and Lipschitz for the uniform convergence of Fourier series, see [Di] and [Li].

Consider a continuous function $f:{\mathbb R} \to {\mathbb R}$ which is $2\pi$-periodic and denote by $\omega (\delta, I)$ its modulus of continuity, namely \[ \omega (\delta, I) := \sup\; \{|f(x)-f(y)| : x,y\in I \;\mbox{and}\; |x-y|\leq \delta\}\, . \] The Dini-Lipschitz criterion is then the following theorem (cp. with Theorems 10.3 and 10.5 of [Zy]):

Theorem 1 If on some open interval $I$ we have \[ \lim_{\delta\to 0}\; \omega (\delta, I) |\log \delta| = 0\, \] then the Fourier series of $f$ converges uniformly to $f$ on any closed interval $J\subset I$.

Note that, as an obvious corollary, if the interval $I$ has length larger than $2\pi$, then the Fourier series converges uniformly to $f$ on the entire real axis.

The Dini-Lipschitz criterion is sharp in the following sense. If $f: {\mathbb R}^+\to {\mathbb R}^+$ is any function such that \[ \limsup_{\delta\to 0}\; f (\delta) |\log \delta| > 0\, \] then there is a continuous function $f$ such that $\omega (\delta, {\mathbb R}) \leq f(\delta)$ for any $\delta$ and the corresponding Fourier series diverges at some point.

References

[Ba] N.K. Bary, "A treatise on trigonometric series" , Pergamon, 1964.
[Di] U. Dini, "Sopra la serie di Fourier" , Pisa (1872).
[Le] H. Lebesgue, "Sur la répresentation trigonométrique approchée des fonctions satisfiasants à une condition de Lipschitz" Bull. Soc. Math. France , 38 (1910) pp. 184-210
[Li] R. Lipschitz, "De explicatione per series trigonometricas instituenda functionum unius variabilis arbitrariarum, etc." J. Reine Angew. Math. , 63 : 2 (1864) pp. 296-308
[Ni] S.M. Nikol'skii, "On the Dini–Lipschitz condition for convergence of Fourier series" Doklady Akad. Nauk SSSR , 73 : 3 (1950) pp. 457–460
[Zy] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) MR0933759 Zbl 0628.42001
How to Cite This Entry:
Dini-Lipschitz criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dini-Lipschitz_criterion&oldid=13476
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article