|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | ''to a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259301.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259302.png" /> in a linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259303.png" />''
| + | c0259301.png ~/encyclopedia/old_files/data/C025/C.0205930 |
| + | 96 0 96 |
| + | {{TEX|done}} |
| + | ''to a representation $ \phi $ |
| + | of a group $ G $ |
| + | in a linear space $ V $ '' |
| | | |
− | The representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259304.png" /> of the same group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259305.png" /> in the dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259306.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259307.png" /> defined by the rule
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259308.png" /></td> </tr></table>
| + | The representation $ \phi ^{*} $ |
| + | of the same group $ G $ |
| + | in the dual space $ V ^{*} $ |
| + | of $ V $ |
| + | defined by the rule$$ |
| + | \phi ^{*} (g) = |
| + | \phi (g ^{-1} ) ^{*} |
| + | $$ |
| + | for all $ g \in G $ , |
| + | where $ * $ |
| + | denotes taking adjoints. |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259309.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593010.png" /> denotes taking adjoints. | + | More generally, if $ W $ |
| + | is a linear space over the same field $ k $ |
| + | as $ V $ |
| + | and $ ( \ ,\ ) $ |
| + | is a non-degenerate [[Bilinear form|bilinear form]] (pairing) on $ V \times W $ |
| + | with values in $ k $ , |
| + | then a representation $ \psi $ |
| + | of $ G $ |
| + | in $ W $ |
| + | is called the representation contragredient to $ \phi $ |
| + | with respect to the form $ ( \ ,\ ) $ |
| + | if$$ |
| + | ( \phi (g) x,\ y) = |
| + | (x,\ \psi (g ^{-1} ) y) |
| + | $$ |
| + | for all $ g \in G $ , |
| + | $ x \in V $ , |
| + | $ y \in W $ . |
| | | |
− | More generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593011.png" /> is a linear space over the same field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593012.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593014.png" /> is a non-degenerate [[Bilinear form|bilinear form]] (pairing) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593015.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593016.png" />, then a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593018.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593019.png" /> is called the representation contragredient to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593020.png" /> with respect to the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593021.png" /> if
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593022.png" /></td> </tr></table>
| + | For example, if $ G $ |
| + | is the general linear group of a finite-dimensional space $ V $ , |
| + | then the natural representation of $ G $ |
| + | in the space of covariant tensors of fixed rank on $ V $ |
| + | is the representation contragredient to the natural representation of $ G $ |
| + | in the space of contravariant tensors of the same rank on $ V $ . |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593025.png" />.
| |
| | | |
− | For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593026.png" /> is the general linear group of a finite-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593027.png" />, then the natural representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593028.png" /> in the space of covariant tensors of fixed rank on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593029.png" /> is the representation contragredient to the natural representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593030.png" /> in the space of contravariant tensors of the same rank on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593031.png" />.
| + | Let $ V $ |
| + | be finite-dimensional over $ k $ , |
| + | let $ (e) $ |
| + | be a basis of it, and let $ (f \ ) $ |
| + | be the basis dual to $ (e) $ |
| + | in $ V ^{*} $ . |
| + | Then, for any $ g $ |
| + | in $ G $ , |
| + | the matrix of $ \phi ^{*} (g) $ |
| + | in the basis $ (f \ ) $ |
| + | is obtained from the matrix of the operator $ \phi (g) $ |
| + | in the basis $ (e) $ |
| + | by taking the transpose of the inverse. If $ \phi $ |
| + | is irreducible, then so is $ \phi ^{*} $ . |
| + | If $ G $ |
| + | is a Lie group with Lie algebra $ \mathfrak g $ , |
| + | and $ d \phi $ |
| + | and $ d \psi $ |
| + | are the representations of the algebra $ \mathfrak g $ |
| + | induced, respectively, by two representations $ \phi $ |
| + | and $ \psi $ |
| + | of $ G $ |
| + | in spaces $ V $ |
| + | and $ W $ |
| + | that are contragredient with respect to the pairing $ ( \ ,\ ) $ , |
| + | then$$ \tag{*} |
| + | (d \phi (X) (x),\ y) = |
| + | - (x,\ d \psi (X) y) |
| + | $$ |
| + | for all $ X \in g $ , |
| + | $ x \in V $ , |
| + | $ y \in W $ . |
| + | Representations of a Lie algebra $ \mathfrak g $ |
| + | satisfying the condition (*) are also called contragredient representations with respect to $ ( \ ,\ ) $ . |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593032.png" /> be finite-dimensional over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593033.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593034.png" /> be a basis of it, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593035.png" /> be the basis dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593036.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593037.png" />. Then, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593038.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593039.png" />, the matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593040.png" /> in the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593041.png" /> is obtained from the matrix of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593042.png" /> in the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593043.png" /> by taking the transpose of the inverse. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593044.png" /> is irreducible, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593045.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593046.png" /> is a Lie group with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593047.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593049.png" /> are the representations of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593050.png" /> induced, respectively, by two representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593052.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593053.png" /> in spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593055.png" /> that are contragredient with respect to the pairing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593056.png" />, then
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593057.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | Suppose further that $ G $ |
| + | is a complex, connected, simply-connected semi-simple Lie group and that $ \phi $ |
| + | is an irreducible finite-dimensional representation of it in a linear space $ V $ . |
| + | The weights of the representation $ \phi ^{*} $ |
| + | are opposite to those of $ \phi $ ( |
| + | see [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]), the lowest weight of $ \phi ^{*} $ |
| + | being opposite to the highest weight of $ \phi $ ( |
| + | see [[Cartan theorem|Cartan theorem]] on the highest (weight) vector). The representations $ \phi $ |
| + | and $ \phi ^{*} $ |
| + | are equivalent if and only if there is a non-zero bilinear form on $ V $ |
| + | that is invariant with respect to $ \phi (G) $ . |
| + | If such a form exists, then it is non-degenerate and either symmetric or skew-symmetric. The set of numerical marks of the highest weight of the representation $ \phi ^{*} $ |
| + | is obtained from the set of numerical marks of $ \phi $ |
| + | by applying the substitution induced by the following automorphism $ \nu $ |
| + | of the Dynkin diagram of simple roots $ \Delta $ |
| + | of $ G $ : |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593060.png" />. Representations of a Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593061.png" /> satisfying the condition (*) are also called contragredient representations with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593062.png" />.
| |
| | | |
− | Suppose further that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593063.png" /> is a complex, connected, simply-connected semi-simple Lie group and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593064.png" /> is an irreducible finite-dimensional representation of it in a linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593065.png" />. The weights of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593066.png" /> are opposite to those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593067.png" /> (see [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]), the lowest weight of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593068.png" /> being opposite to the highest weight of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593069.png" /> (see [[Cartan theorem|Cartan theorem]] on the highest (weight) vector). The representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593071.png" /> are equivalent if and only if there is a non-zero bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593072.png" /> that is invariant with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593073.png" />. If such a form exists, then it is non-degenerate and either symmetric or skew-symmetric. The set of numerical marks of the highest weight of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593074.png" /> is obtained from the set of numerical marks of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593075.png" /> by applying the substitution induced by the following automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593076.png" /> of the Dynkin diagram of simple roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593077.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593078.png" />:
| + | a) $ \nu $ |
| + | takes each connected component $ \Delta _{i} $ , |
| + | $ i = 1 \dots l $ , |
| + | of $ \Delta $ |
| + | into itself; |
| | | |
− | a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593079.png" /> takes each connected component <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593080.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593081.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593082.png" /> into itself;
| + | b) if $ \Delta _{i} $ |
− | | + | is a diagram of type $ A _{r} $ , |
− | b) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593083.png" /> is a diagram of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593085.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593086.png" />, then the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593087.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593088.png" /> is uniquely defined as the unique element of order 2 in the automorphism group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593089.png" />; in the remaining cases the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593090.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593091.png" /> is the identity. | + | $ D _ {2r + 1} $ |
| + | or $ E _{6} $ , |
| + | then the restriction of $ \nu $ |
| + | to $ \Delta _{i} $ |
| + | is uniquely defined as the unique element of order 2 in the automorphism group of $ \Delta _{i} $ ; |
| + | in the remaining cases the restriction of $ \nu $ |
| + | to $ \Delta _{i} $ |
| + | is the identity. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.B. Vinberg, A.L. Onishchik, "Seminar on algebraic groups and Lie groups 1967/68" , Springer (Forthcoming) (Translated from Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) {{MR|0793377}} {{ZBL|0484.22018}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian) {{MR|0412321}} {{ZBL|0342.22001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) {{MR|0473097}} {{MR|0473098}} {{ZBL|0228.22013}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.B. Vinberg, A.L. Onishchik, "Seminar on algebraic groups and Lie groups 1967/68" , Springer (Forthcoming) (Translated from Russian)</TD></TR></table> |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593092.png" /> is the highest weight of the highest weight representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593093.png" />, then the set of numerical marks of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593094.png" /> is simply the ordered set of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593095.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593096.png" />; cf. [[Cartan theorem|Cartan theorem]], especially when written as labels at the corresponding nodes of the Dynkin diagram. | + | If $ \Lambda \in \mathfrak g ^{*} $ |
| + | is the highest weight of the highest weight representation $ \phi $ , |
| + | then the set of numerical marks of $ \Lambda $ |
| + | is simply the ordered set of integers $ (k _{1} \dots k _{r} ) $ , |
| + | $ k _{i} = \Lambda (h _{i} ) $ ; |
| + | cf. [[Cartan theorem|Cartan theorem]], especially when written as labels at the corresponding nodes of the Dynkin diagram. |
c0259301.png ~/encyclopedia/old_files/data/C025/C.0205930
96 0 96
to a representation $ \phi $
of a group $ G $
in a linear space $ V $
The representation $ \phi ^{*} $
of the same group $ G $
in the dual space $ V ^{*} $
of $ V $
defined by the rule$$
\phi ^{*} (g) =
\phi (g ^{-1} ) ^{*}
$$
for all $ g \in G $ ,
where $ * $
denotes taking adjoints.
More generally, if $ W $
is a linear space over the same field $ k $
as $ V $
and $ ( \ ,\ ) $
is a non-degenerate bilinear form (pairing) on $ V \times W $
with values in $ k $ ,
then a representation $ \psi $
of $ G $
in $ W $
is called the representation contragredient to $ \phi $
with respect to the form $ ( \ ,\ ) $
if$$
( \phi (g) x,\ y) =
(x,\ \psi (g ^{-1} ) y)
$$
for all $ g \in G $ ,
$ x \in V $ ,
$ y \in W $ .
For example, if $ G $
is the general linear group of a finite-dimensional space $ V $ ,
then the natural representation of $ G $
in the space of covariant tensors of fixed rank on $ V $
is the representation contragredient to the natural representation of $ G $
in the space of contravariant tensors of the same rank on $ V $ .
Let $ V $
be finite-dimensional over $ k $ ,
let $ (e) $
be a basis of it, and let $ (f \ ) $
be the basis dual to $ (e) $
in $ V ^{*} $ .
Then, for any $ g $
in $ G $ ,
the matrix of $ \phi ^{*} (g) $
in the basis $ (f \ ) $
is obtained from the matrix of the operator $ \phi (g) $
in the basis $ (e) $
by taking the transpose of the inverse. If $ \phi $
is irreducible, then so is $ \phi ^{*} $ .
If $ G $
is a Lie group with Lie algebra $ \mathfrak g $ ,
and $ d \phi $
and $ d \psi $
are the representations of the algebra $ \mathfrak g $
induced, respectively, by two representations $ \phi $
and $ \psi $
of $ G $
in spaces $ V $
and $ W $
that are contragredient with respect to the pairing $ ( \ ,\ ) $ ,
then$$ \tag{*}
(d \phi (X) (x),\ y) =
- (x,\ d \psi (X) y)
$$
for all $ X \in g $ ,
$ x \in V $ ,
$ y \in W $ .
Representations of a Lie algebra $ \mathfrak g $
satisfying the condition (*) are also called contragredient representations with respect to $ ( \ ,\ ) $ .
Suppose further that $ G $
is a complex, connected, simply-connected semi-simple Lie group and that $ \phi $
is an irreducible finite-dimensional representation of it in a linear space $ V $ .
The weights of the representation $ \phi ^{*} $
are opposite to those of $ \phi $ (
see Weight of a representation of a Lie algebra), the lowest weight of $ \phi ^{*} $
being opposite to the highest weight of $ \phi $ (
see Cartan theorem on the highest (weight) vector). The representations $ \phi $
and $ \phi ^{*} $
are equivalent if and only if there is a non-zero bilinear form on $ V $
that is invariant with respect to $ \phi (G) $ .
If such a form exists, then it is non-degenerate and either symmetric or skew-symmetric. The set of numerical marks of the highest weight of the representation $ \phi ^{*} $
is obtained from the set of numerical marks of $ \phi $
by applying the substitution induced by the following automorphism $ \nu $
of the Dynkin diagram of simple roots $ \Delta $
of $ G $ :
a) $ \nu $
takes each connected component $ \Delta _{i} $ ,
$ i = 1 \dots l $ ,
of $ \Delta $
into itself;
b) if $ \Delta _{i} $
is a diagram of type $ A _{r} $ ,
$ D _ {2r + 1} $
or $ E _{6} $ ,
then the restriction of $ \nu $
to $ \Delta _{i} $
is uniquely defined as the unique element of order 2 in the automorphism group of $ \Delta _{i} $ ;
in the remaining cases the restriction of $ \nu $
to $ \Delta _{i} $
is the identity.
References
[1] | M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) MR0793377 Zbl 0484.22018 |
[2] | A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian) MR0412321 Zbl 0342.22001 |
[3] | D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) MR0473097 MR0473098 Zbl 0228.22013 |
[4] | E.B. Vinberg, A.L. Onishchik, "Seminar on algebraic groups and Lie groups 1967/68" , Springer (Forthcoming) (Translated from Russian) |
If $ \Lambda \in \mathfrak g ^{*} $
is the highest weight of the highest weight representation $ \phi $ ,
then the set of numerical marks of $ \Lambda $
is simply the ordered set of integers $ (k _{1} \dots k _{r} ) $ ,
$ k _{i} = \Lambda (h _{i} ) $ ;
cf. Cartan theorem, especially when written as labels at the corresponding nodes of the Dynkin diagram.