Namespaces
Variants
Actions

Difference between revisions of "Maximin criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
''maximin test''
 
''maximin test''
  
A statistical test for testing a compound hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630301.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630302.png" /> against the compound alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630303.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630304.png" />, whose minimal power (cf. [[Power of a statistical test|Power of a statistical test]]) is maximal in the class of all statistical tests intended for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630305.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630306.png" /> and having the same size <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630307.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630308.png" />. In statistically testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m0630309.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m06303010.png" /> a maximin [[Invariant test|invariant test]] exists if the problem itself is invariant relative to some group of transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m06303011.png" />, and there is a [[Uniformly most-powerful test|uniformly most-powerful test]] in the class of corresponding invariant tests (cf. [[Hunt–Stein theorem|Hunt–Stein theorem]]). A maximin test exists, in general, if the family of probability distributions determined by the null and competing hypotheses <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m06303012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m06303013.png" /> is absolutely continuous relative to some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063030/m06303014.png" />-finite measure.
+
A statistical test for testing a compound hypothesis $H_0$: $\theta\in\Theta_0\subset\Theta$ against the compound alternative $H_1$: $\theta\in\Theta_1=\Theta\setminus\Theta_0$, whose minimal power (cf. [[Power of a statistical test|Power of a statistical test]]) is maximal in the class of all statistical tests intended for testing $H_0$ against $H_1$ and having the same size $\alpha$, $0<\alpha<1$. In statistically testing $H_0$ against $H_1$ a maximin [[Invariant test|invariant test]] exists if the problem itself is invariant relative to some group of transformations $G$, and there is a [[Uniformly most-powerful test|uniformly most-powerful test]] in the class of corresponding invariant tests (cf. [[Hunt–Stein theorem|Hunt–Stein theorem]]). A maximin test exists, in general, if the family of probability distributions determined by the null and competing hypotheses $H_0$ and $H_1$ is absolutely continuous relative to some $\sigma$-finite measure.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Hájek,  Z. Sidák,  "Theory of rank tests" , Acad. Press  (1967)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Hájek,  Z. Sidák,  "Theory of rank tests" , Acad. Press  (1967)</TD></TR></table>

Latest revision as of 18:19, 14 August 2014

maximin test

A statistical test for testing a compound hypothesis $H_0$: $\theta\in\Theta_0\subset\Theta$ against the compound alternative $H_1$: $\theta\in\Theta_1=\Theta\setminus\Theta_0$, whose minimal power (cf. Power of a statistical test) is maximal in the class of all statistical tests intended for testing $H_0$ against $H_1$ and having the same size $\alpha$, $0<\alpha<1$. In statistically testing $H_0$ against $H_1$ a maximin invariant test exists if the problem itself is invariant relative to some group of transformations $G$, and there is a uniformly most-powerful test in the class of corresponding invariant tests (cf. Hunt–Stein theorem). A maximin test exists, in general, if the family of probability distributions determined by the null and competing hypotheses $H_0$ and $H_1$ is absolutely continuous relative to some $\sigma$-finite measure.

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1959)
[2] J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967)
How to Cite This Entry:
Maximin criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximin_criterion&oldid=13290
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article