|
|
(7 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| + | |
| ''Wick monomial, Wick power'' | | ''Wick monomial, Wick power'' |
| | | |
| The Wick products of random variables arise through an orthogonalization procedure. | | The Wick products of random variables arise through an orthogonalization procedure. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978701.png" /> be (real-valued) random variables on some probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978702.png" />. The Wick product | + | Let $f_1,\ldots,f_n$ be (real-valued) random variables on some probability space $(\Omega,\mathcal{B},\mu)$. The Wick product |
| + | $$ |
| + | :f_1^{k_1}\cdots f_n^{k_n}: |
| + | $$ |
| + | is defined recursively as a polynomial in $f_1,\ldots,f_n$ of total degree $k_1+\cdots+k_n$ satisfying |
| + | $$ |
| + | \left\langle { :f_1^{k_1}\cdots f_n^{k_n}: } \right\rangle = 0 |
| + | $$ |
| + | and for $k_i \ge 1$, |
| + | $$ |
| + | \frac{\partial}{\partial f_i} \left( { :f_1^{k_1}\cdots f_n^{k_n}: } \right) = k_i :f_1^{k_1}\cdots f_i^{k_i-1} \cdots f_n^{k_n}: |
| + | $$ |
| + | where $\langle {\cdot} \rangle$ denotes expectation. The $:\,:$ notation is traditional in physics. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978703.png" /></td> </tr></table>
| + | For example, |
| + | $$ |
| + | :f: = f - \langle f \rangle \ , |
| + | $$ |
| + | $$ |
| + | :f^2: = f^2 - 2\langle f \rangle f - \langle f^2 \rangle + 2\langle f \rangle^2 \ . |
| + | $$ |
| | | |
− | is defined recursively as a polynomial in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978704.png" /> of total degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978705.png" /> satisfying | + | There is a binomial theorem: |
| + | $$ |
| + | :(af+bg)^n: = \sum_{m=0}^n \binom{n}{m} a^m b^{n-m} :f^m: :g^{n-m}: |
| + | $$ |
| + | and a corresponding multinomial theorem. The Wick exponential is defined as |
| + | $$ |
| + | :\exp(a f): = \sum_{m=0}^\infty \frac{a^m}{m!} :f^m: |
| + | $$ |
| + | so that |
| + | $$ |
| + | :\exp(af): = \langle \exp(af) \rangle^{-1} \exp(af) \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978706.png" /></td> </tr></table>
| + | The Wick products, powers and exponentials depend both on the variables involved and on the underlying measure. |
| | | |
− | and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978707.png" />,
| + | Let $f,g$ be Gaussian random variables with mean zero. Then |
| + | $$ |
| + | :\exp(af): = \exp\left({ af - \frac12 a^2 \langle f^2 \rangle }\right) |
| + | $$ |
| + | $$ |
| + | :f^n: = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } f^{n-2m} ||f||^{2m} = ||f||^n h_n(||f||^{-1}f) |
| + | $$ |
| + | where the |
| + | $$ |
| + | h_n(x) = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } x^{n-2m} |
| + | $$ |
| + | are the [[Hermite polynomials]] with leading coefficient $1$ and $||f||^2 = \langle f^2 \rangle$. Further, |
| + | $$ |
| + | \langle :f:^m :g:^m \rangle = \delta_{mn} n! \langle fg \rangle^n \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978708.png" /></td> </tr></table>
| + | This follows from |
| + | $$ |
| + | :\exp(af):\,:\exp(bg): = \exp(af+bg) \exp\left( { \frac{-1}{2} (a^2 \langle f^2 \rangle + b^2 \langle g^2 \rangle) } \right) \ , |
| + | $$ |
| + | a formula that contains a great deal of the combinatorics of Wick monomials. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w0978709.png" /> denotes expectation. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787010.png" /> notation is traditional in physics.
| + | If there are two measures $\mu$ and $\nu$ with respect to which $f$ is Gaussian of mean zero, then |
| + | $$ |
| + | :\exp(a f) :_\mu = :\exp af :_\nu \exp\left( { \frac{a^2}{2}\langle f^2 \rangle_\mu - \langle f^2 \rangle_\nu } \right) \ . |
| + | $$ |
| | | |
− | For example,
| + | Let $f_1,\ldots,f_n$ be jointly Gaussian variables with mean zero (not necessarily distinct). Then there is an explicit formula for the Wick monomial $:f_1\cdots f_n:$, as follows: |
| + | $$ |
| + | :f_1\cdots f_n: = \sum_G \prod_{e \in G} -\left\langle { f_{e_1} f_{e_2} } \right\rangle \prod_{i \not\in [G]} f_i \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787011.png" /></td> </tr></table>
| + | Here, $G$ runs over all pairings of $\{1,\ldots,n\}$ (sometimes called graphs), i.e. all sets of disjoint unordered pairs of $\{1,\ldots,n\}$, $[G]$ is the union of the unordered pairs making up $G$, and if $e$ is an unordered pair, then $\{e_1,e_2\}$ is the set of vertices making up that pair. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787012.png" /></td> </tr></table>
| + | For instance, |
− | | + | $$ |
− | There is a binomial theorem:
| + | :fg^2: = fg^2 - 2\langle fg \rangle - \langle g^2 \rangle f \ , |
| + | $$ |
| + | $$ |
| + | :f^2g^2: = f^2g^2 - \langle f^2 \rangle g^2 - \langle g^2 \rangle f^2 - 4 \langle fg \rangle fg + 2\langle fg \rangle^2 + \langle f \rangle^2 \langle g \rangle^2 \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787013.png" /></td> </tr></table>
| + | Let $\{ I_\nu \}$, $\nu = 1,\ldots,n$, be a collection of disjoint finite sets. A line on $\{ I_\nu \}$ is by definition a pair of elements taken from different $I_\nu$. A graph on $\{ I_\nu \}$ is a set of disjoint lines on $\{ I_\nu \}$. If each $I_\nu$ is seen as a vertex with $|I_\nu|$ "legs" emanating from it, then $G$ can be visualized as a set of lines joining legs from different vertices. A graph such that all legs are joined is a (certain special kind of) fully contracted graph, vacuum graph, Feynman graph, or Feynman diagram. |
| | | |
− | and a corresponding multinomial theorem. The Wick exponential is defined as
| + | The case of "pairings" which occurred above corresponds to a graph on $\{ I_\nu \}$ where each vertex has precisely one leg. In terms of these Feynman diagrams a product of Wick monomials is expressed as a linear combination of Wick monomials as follows. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787014.png" /></td> </tr></table>
| + | Let $ I _ \nu $, |
| + | $ \nu = 1 \dots n $, |
| + | be a collection of disjoint finite sets, $ I = \cup _ \nu I _ \nu $, |
| + | and $ f _{i} $ |
| + | a collection of jointly Gaussian random variables indexed by $ I $. |
| + | Then |
| | | |
− | so that
| + | $$ \tag{a6} |
| + | \prod _ \nu : \prod _ {i \in I _ \nu} f _{i} :\ = \ |
| + | \sum _{G} \prod _ {e \in G} < f _{ {e _ 1}} f _{ {e _ 2}} > : \prod _ {i \notin [G]} f _{i} : , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| |
| | | |
− | The Wick products, powers and exponentials depend both on the variables involved and on the underlying measure.
| + | where $ G $ |
| + | runs over all graphs on $ \{ I _ \nu \} $ |
| + | and $ [G] $ |
| + | is the union of all the disjoint unordered pairs making up $ G $. |
| + | More general Feynman graphs, such as graphs with also self-interaction lines, occur when several different covariances are involved, cf. [[#References|[a4]]]. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787016.png" /> be Gaussian random variables with mean zero. Then
| + | For the expection of a product of Wick monomials one has |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | $$ \tag{a7} |
| + | \left \langle \prod _ \nu : \prod _ {i \in I _ \nu} f _{i} : \right \rangle \ = \ |
| + | \sum _ {G \in \Gamma _{0} ( \{ I _ \nu \} )} \ |
| + | \prod _ {e \in G} \langle f _{ {e _ 1}} f _{ {e _ 2}} \rangle |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787019.png" /></td> </tr></table>
| + | and, in particular, |
| | | |
− | where
| + | $$ \tag{a8} |
| + | \langle f _{1} \dots f _{n} \rangle \ = \ \left \{ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787020.png" /></td> </tr></table>
| + | \begin{array}{ll} |
| + | 0 &\textrm{ if } \ n \ \textrm{ is } \ \textrm{ odd } , \\ |
| + | \sum _ {G \in \Gamma _{0} (n)} \ |
| + | \prod _ {e \in G} \langle f _{ {e _ 1}} f _{ {e _ 2}} \rangle &\ \textrm{ if } \ |
| + | n=2k , \\ |
| + | \end{array} |
| | | |
− | is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787021.png" />-th Hermite polynomial with leading coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787023.png" /> (cf. [[Hermite polynomials|Hermite polynomials]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787024.png" />. Further,
| + | \right .$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787025.png" /></td> </tr></table>
| |
| | | |
− | This follows from
| + | where $ \Gamma _{0} (2k) $ |
| + | runs over all $ (2k)! 2 ^{-k} (k!) ^{-1} $ |
| + | ways of splitting up $ \{ 1 \dots 2k \} $ |
| + | into $ k $ |
| + | unordered pairs. All of the formulas (a1)–(a4), (a7), (a8), especially (a8), generally go by the name Wick's formula or Wick's theorem. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787026.png" /></td> </tr></table>
| + | In the setting of (Euclidean) quantum field theory, let $ {\mathcal S} ( \mathbf R ^{n} ) $ |
| + | be the Schwartz space of rapidly-decreasing smooth functions and let $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $ |
| + | be the space of real-valued tempered distributions. For $ f \in {\mathcal S} ( \mathbf R ^{n} ) $, |
| + | let $ \phi (f \ ) $ |
| + | be the linear function on $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $ |
| + | given by $ \phi (f \ )(u) = u(f \ ) $. |
| + | Then for any continuous positive scalar product $ C $ |
| + | on $ {\mathcal S} ( \mathbf R ^{n} ) \times {\mathcal S} ( \mathbf R ^{n} ) $, |
| + | $ (f,\ g) \mapsto \langle f,\ Cg\rangle $, |
| + | there is a unique countably-additive Gaussian measure $ d q _{C} $ |
| + | on $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787027.png" /></td> </tr></table>
| + | $$ |
| + | \int\limits e ^ {\ i \phi (f \ )} \ dq _{C} \ = \ |
| + | \mathop{\rm exp}\nolimits \left ( - |
| + | \frac{1}{2} |
| + | \langle f ,\ C f \ \rangle \right ) ,\ \ |
| + | f \in {\mathcal S} ( \mathbf R ^{n} ) . |
| + | $$ |
| | | |
− | a formula that contains a great deal of the combinatorics of Wick monomials.
| |
| | | |
− | If there are two measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787029.png" /> with respect to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787030.png" /> is Gaussian of mean zero, then
| + | Then $ \phi (f \ ) \in L _{p} ( {\mathcal S} ^ \prime ( \mathbf R ^{n} ) ,\ d q _{C} ) $ |
| + | for all $ p \in [1,\ \infty ) $ |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
| + | $$ |
| + | \int\limits \phi (f \ ) \ dq _{C} \ = \ 0 , |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787032.png" /> be jointly Gaussian variabless with mean zero (not necessarily distinct). Then there is an explicit formula for the Wick monomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787033.png" />, as follows:
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
| + | $$ |
| + | \int\limits \phi (f _{1} ) \phi (f _{2} ) \ d q _{C} \ = \ \langle f _{1} ,\ Cf _{2} \rangle . |
| + | $$ |
| | | |
− | Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787035.png" /> runs over all pairings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787036.png" /> (sometimes called graphs), i.e. all sets of disjoint unordered pairs of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787038.png" /> is the union of the unordered pairs making up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787039.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787040.png" /> is an unordered pair, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787041.png" /> is the set of vertices making up that pair.
| |
| | | |
− | For instance,
| + | So $ \langle \phi (f _{1} ) \phi (f _{2} ) \rangle = \langle f _{1} ,\ Cf _{2} \rangle $, |
| + | and some of the formulas of Wick monomials, etc., now take the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787042.png" /></td> </tr></table>
| + | $$ \tag{a3\prime} |
| + | : \phi (f \ ) ^{n} :\ = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787043.png" /></td> </tr></table>
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787044.png" /></td> </tr></table>
| + | $$ |
| + | = \ |
| + | \sum _{j} |
| + | \frac{n!}{(n-2j)! j! 2 ^ j} |
| + | (-1) |
| + | ^{j} \langle f,\ Cf \ \rangle ^{j} \phi (f \ ) ^{n-2j\ } = |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787046.png" />, be a collection of disjoint finite sets. A line on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787047.png" /> is by definition a pair of elements taken from different <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787048.png" />. A graph on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787049.png" /> is a set of disjoint lines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787050.png" />. If each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787051.png" /> is seen as a vertex with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787052.png" /> "legs" emanating from it, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787053.png" /> can be visualized as a set of lines joining legs from different vertices. A graph such that all legs are joined is a (certain special kind of) fully contracted graph, vacuum graph, Feynman graph, or Feynman diagram.
| |
| | | |
− | The case of "pairings" which occured above corresponds to a graph on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787054.png" /> where each vertex has precisely one leg. In terms of these Feynman diagrams a product of Wick monomials is expressed as a linear combination of Wick monomials as follows.
| + | $$ |
| + | = \ |
| + | \langle f,\ Cf \ \rangle ^{n/2} h _{n} \left ( |
| + | \frac{\phi (f \ )}{\langle f,\ Cf \ \rangle ^ 1/2} |
| + | \right ) , |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787056.png" />, be a collection of disjoint finite sets, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787057.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787058.png" /> a collection of jointly Gaussian random variables indexed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787059.png" />. Then
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
| + | $$ \tag{a5\prime} |
| + | : \prod _ {\nu =1} ^ n \phi (f _ \nu ) : \ = \ \sum |
| + | _{G} \prod _ {e \in G} < f _{ {e _ 1}} ,\ - Cf |
| + | _{ {e _ 2}} > \prod _ {i \notin [G]} \phi (f _{i} ) . |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787061.png" /> runs over all graphs on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787063.png" /> is the union of all the disjoint unordered pairs making up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787064.png" />. More general Feynman graphs, such as graphs with also self-interaction lines, occur when several different covariances are involved, cf. [[#References|[a4]]].
| |
| | | |
− | For the expection of a product of Wick monomials one has
| + | Wick monomials have much to do with the [[Fock space|Fock space]] via the Itô–Wick–Segal isomorphism. This rest on either of two narrowly related uniqueness theorems: the uniqueness of standard Gaussian functions or the uniqueness of Fock representations. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787065.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
| + | Let $ {\mathcal S} $ |
| + | be a pre-Hilbert space. A representation of the canonical commutation relations over $ {\mathcal S} $ |
| + | is a pair of linear mappings |
| | | |
− | and, in particular,
| + | $$ |
| + | f \ \mapsto \ a(f \ ) ,\ \ g \ \mapsto \ a ^{*} (g) |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787066.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a8)</td></tr></table>
| |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787067.png" /> runs over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787068.png" /> ways of splitting up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787069.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787070.png" /> unordered pairs. All of the formulas (a1)–(a4), (a7), (a8), especially (a8), generally go by the name Wick's formula or Wick's theorem.
| + | from $ {\mathcal S} $ |
| + | to operators $ a(f \ ) $, |
| + | $ a ^{*} (g) $ |
| + | defined on a dense domain $ D $ |
| + | in a complex Hilbert space $ H $ |
| + | such that |
| | | |
− | In the setting of (Euclidean) quantum field theory, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787071.png" /> be the Schwartz space of rapidly-decreasing smooth functions and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787072.png" /> be the space of real-valued tempered distributions. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787073.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787074.png" /> be the linear function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787075.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787076.png" />. Then for any continuous positive scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787077.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787079.png" />, there is a unique countably-additive Gaussian measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787080.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787081.png" /> such that
| + | $$ |
| + | a(f \ ) D \ \subset \ D ,\ \ a ^{*} (g) D \ \subset \ D , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787082.png" /></td> </tr></table>
| |
| | | |
− | Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787083.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787084.png" /> and
| + | $$ |
| + | \langle x _{1} ,\ a (f \ )x _{2} \rangle \ = \ \langle a ^{*} (f \ )x _{1} ,\ x _{2} \rangle , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787085.png" /></td> </tr></table>
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787086.png" /></td> </tr></table>
| + | $$ |
| + | [a(f \ ),\ a(g)] \ = \ [a ^{*} (f \ ),\ a ^{*} (g)] \ = \ 0, |
| + | $$ |
| | | |
− | So <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787087.png" />, and some of the formulas of Wick monomials, etc., now take the form
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787088.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3prm)</td></tr></table>
| + | $$ |
| + | [a(f \ ),\ a ^{*} (g)] x \ = \ \langle f,\ g\rangle x , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787089.png" /></td> </tr></table>
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787090.png" /></td> </tr></table>
| + | for all $ x,\ x _{1} ,\ x _{2} \in D $, |
| + | $ f ,\ g \in {\mathcal S} $. |
| + | The representation is called a Fock representation if there is moreover an $ \Omega \in D $, |
| + | called the vacuum vector, such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787091.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5prm)</td></tr></table>
| + | $$ |
| + | a(f \ ) \Omega \ = \ 0 ,\ \ f \in {\mathcal S} , |
| + | $$ |
| | | |
− | Wick monomials have much to do with the [[Fock space|Fock space]] via the Itô–Wick–Segal isomorphism. This rest on either of two narrowly related uniqueness theorems: the uniqueness of standard Gaussian functions or the uniqueness of Fock representations.
| |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787092.png" /> be a pre-Hilbert space. A representation of the canonical commutation relations over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787093.png" /> is a pair of linear mappings
| + | and such that $ D $ |
| + | is the linear space span of the vectors $ a ^{*} (g _{1} ) \dots a ^{*} (g _{k} ) \Omega $, |
| + | $ g _{i} \in {\mathcal S} $, |
| + | $ k = 0,\ 1,\dots $. |
| + | There is an existence theorem (cf. [[Fock space|Fock space]] and [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]]) and the uniqueness theorem: If $ (a _{i} ,\ a _{i} ^{*} ) $ |
| + | are two Fock representations over $ {\mathcal S} $ |
| + | with vacuum vectors $ \Omega _{i} $, |
| + | then they are unitarily equivalent and the unitary equivalence $ U $ |
| + | is uniquely determined by $ U \Omega _{1} = \Omega _{2} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787094.png" /></td> </tr></table>
| |
| | | |
− | from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787095.png" /> to operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787096.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787097.png" /> defined on a dense domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787098.png" /> in a complex Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787099.png" /> such that | + | A standard Gaussian function on a real Hilbert space $ V $( |
| + | called a Gaussian random process indexed by $ V $ |
| + | in [[#References|[a3]]]) is a mapping $ \phi $ |
| + | from $ V $ |
| + | to the random variables on a probability space $ (X ,\ {\mathcal B} ,\ \mu ) $ |
| + | such that (almost everywhere) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870100.png" /></td> </tr></table>
| + | $$ |
| + | \phi (v+w) \ = \ \phi (v)+ \phi (w) ,\ \ v,\ w \in V , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870101.png" /></td> </tr></table>
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870102.png" /></td> </tr></table>
| + | $$ |
| + | \phi ( \alpha v ) \ = \ \alpha \phi ( v) ,\ \ \alpha \in \mathbf R ,\ \ v \in V , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870103.png" /></td> </tr></table>
| |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870105.png" />. The representation is called a Fock representation if there is moreover an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870106.png" />, called the vacuum vector, such that
| + | such that the $ \sigma $- |
| + | algebra generated by the $ \phi (f \ ) $ |
| + | is $ {\mathcal B} $( |
| + | up to the sets of measure zero) and such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870107.png" /></td> </tr></table>
| + | $ \phi (v) $ |
| + | is a Gaussian random variable of mean zero, and |
| | | |
− | and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870108.png" /> is the linear space span of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870110.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870111.png" />. There is an existence theorem (cf. [[Fock space|Fock space]] and [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]]) and the uniqueness theorem: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870112.png" /> are two Fock representations over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870113.png" /> with vacuum vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870114.png" />, then they are unitarily equivalent and the unitary equivalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870115.png" /> is uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870116.png" />.
| + | $ \langle \phi (v) \phi (w)\rangle = \langle v,\ w\rangle $. |
| | | |
− | A standard Gaussian function on a real Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870117.png" /> (called a Gaussian random process indexed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870118.png" /> in [[#References|[a3]]]) is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870119.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870120.png" /> to the random variables on a probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870121.png" /> such that (almost everywhere)
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870122.png" /></td> </tr></table>
| + | For these objects there is an existence theorem, and also the uniqueness theorem that two standard Gaussian functions $ \phi $ |
| + | and $ \phi ^ \prime $ |
| + | on probability spaces $ (X,\ {\mathcal B} , \mu ) $, |
| + | $ (X ^ \prime ,\ {\mathcal B} ^ \prime , \mu ^ \prime ) $ |
| + | are equivalent in the sense that there is an isomorphism of the two probability spaces under which $ \phi (v) $ |
| + | and $ \phi ^ \prime (v) $ |
| + | correspond for all $ v \in V $( |
| + | cf. [[#References|[a1]]], §4, [[#References|[a3]]], Chap. 1). The uniqueness theorem is a special case of Kolmogorov's theorem that measure spaces are completely determined by consistent joint probability distributions. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870123.png" /></td> </tr></table>
| + | Identifying the symmetric Fock space $ F(V) $ |
| + | with the space $ L _{2} (X,\ {\mathcal B} ,\ \mu ) $ |
| + | realizing the standard Gaussian function on $ H $, |
| + | the Wick products of the $ \phi (v) $ |
| + | are obtained by taking the usual products and then applying the orthogonal projection of $ F(V) $ |
| + | onto its $ n $- |
| + | particle subspace. |
| | | |
− | such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870124.png" />-algebra generated by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870125.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870126.png" /> (up to the sets of measure zero) and such that
| + | In the case of one Gaussian variable $ x $ |
| + | with probability measure $ \pi ^ {- 1/2} e ^ {- x ^{2} /2} \ dx $, |
| + | the above works out as follows: |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870127.png" /> is a Gaussian random variable of mean zero, and
| + | $$ |
| + | : x ^{n} :\ = \ h _{n} (x). |
| + | $$ |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870128.png" />.
| |
| | | |
− | For these objects there is an existence theorem, and also the uniqueness theorem that two standard Gaussian functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870129.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870130.png" /> on probability spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870131.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870132.png" /> are equivalent in the sense that there is an isomorphism of the two probability spaces under which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870133.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870134.png" /> correspond for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870135.png" /> (cf. [[#References|[a1]]], §4, [[#References|[a3]]], Chap. 1). The uniqueness theorem is a special case of Kolmogorov's theorem that measure spaces are completely determined by consistent joint probability distributions.
| + | A Fock representation in $ L _{2} ( \mathbf R ,\ (2 \pi ) ^ {- 1/2} e ^ {- x ^{2} /2} \ dx ) $ |
| + | is |
| | | |
− | Identifying the symmetric Fock space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870136.png" /> with the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870137.png" /> realizing the standard Gaussian function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870138.png" />, the Wick products of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870139.png" /> are obtained by taking the usual products and then applying the orthogonal projection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870140.png" /> onto its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870141.png" />-particle subspace.
| + | $$ |
| + | \Omega \ = \ 1 ,\ \ |
| + | a \ = \ |
| + | \frac{d}{dx} |
| + | ,\ \ |
| + | a ^{*} \ = \ x - |
| + | \frac{d}{dx} |
| + | , |
| + | $$ |
| | | |
− | In the case of one Gaussian variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870142.png" /> with probability measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870143.png" />, the above works out as follows:
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870144.png" /></td> </tr></table>
| + | and, indeed, $ h _{n} (x) = (x- d / dx ) ^{n} (1) $, |
| + | which fits because the creation operator on $ F ( \mathbf R ) $ |
| + | is $ a ^{*} (e ^ {\otimes n} ) = e ^ {\otimes (n+1)} $. |
| + | In terms of the variable $ y = x / \sqrt 2 $, |
| | | |
− | A Fock representation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870145.png" /> is
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870146.png" /></td> </tr></table>
| + | $$ |
| + | \Omega \ = \ 1,\ \ |
| + | a \ = \ |
| + | \frac{1}{\sqrt 2} |
| + | |
| + | \frac{d}{dy} |
| + | ,\ \ |
| + | a ^{*} \ = \ \sqrt 2 y - |
| + | \frac{1}{\sqrt 2} |
| + | |
| + | \frac{d}{dy} |
| + | , |
| + | $$ |
| | | |
− | and, indeed, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870147.png" />, which fits because the creation operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870148.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870149.png" />. In terms of the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870150.png" />,
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870151.png" /></td> </tr></table>
| + | $$ |
| + | y \ = \ |
| + | \frac{1}{\sqrt 2} |
| + | (a + a ^{*} ), |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870152.png" /></td> </tr></table>
| |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870153.png" /></td> </tr></table>
| + | $$ |
| + | : y ^{n} :\ = \ ( \sqrt 2 ) ^{-n} h _{n} ( \sqrt 2 y ) \ = \ ( \sqrt 2 ) ^{-n} \sum _{k=0} ^ n |
| + | \binom{n}{k} a ^{*k} a ^{n-k} , |
| + | $$ |
| + | |
| | | |
− | where in the "binomial expansion of creation and annihilation operatorsbinomial expansion" of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870154.png" /> on the right-hand side the annihilation operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870155.png" /> all come before the creation operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870156.png" /> (Wick ordening). Suitably interpreted, the same formula holds in general, [[#References|[a3]]], p. 24. | + | where in the "binomial expansion of creation and annihilation operatorsbinomial expansion" of $ ( (a+a ^{*} ) / \sqrt 2 ) ^{n} $ |
| + | on the right-hand side the annihilation operators $ a $ |
| + | all come before the creation operators $ a ^{*} $( |
| + | Wick ordening). Suitably interpreted, the same formula holds in general, [[#References|[a3]]], p. 24. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.L. Dobrushin, R.A. Minlos, "Polynomials in linear random functions" ''Russian Math. Surveys'' , '''32''' (1977) pp. 71–127 ''Uspekhi Mat. Nauk'' , '''32''' (1977) pp. 67–122</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Dimock, J. Glimm, "Measures on Schwartz distribution space and applications to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870157.png" /> field theories" ''Adv. in Math.'' , '''12''' (1974) pp. 58–83</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Simon, "The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870158.png" /> Euclidean (quantum) field theory" , Princeton Univ. Press (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Glimm, A. Jaffe, "Quantum physics, a functional integral point of view" , Springer (1981)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R.L. Dobrushin, R.A. Minlos, "Polynomials in linear random functions" ''Russian Math. Surveys'' , '''32''' (1977) pp. 71–127 ''Uspekhi Mat. Nauk'' , '''32''' (1977) pp. 67–122</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Dimock, J. Glimm, "Measures on Schwartz distribution space and applications to $P(\phi)_2$ field theories" ''Adv. in Math.'' , '''12''' (1974) pp. 58–83</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Simon, "The $P(\phi)_2$ Euclidean (quantum) field theory" , Princeton Univ. Press (1974)</TD></TR> |
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Glimm, A. Jaffe, "Quantum physics, a functional integral point of view" , Springer (1981)</TD></TR> |
| + | </table> |
Wick monomial, Wick power
The Wick products of random variables arise through an orthogonalization procedure.
Let $f_1,\ldots,f_n$ be (real-valued) random variables on some probability space $(\Omega,\mathcal{B},\mu)$. The Wick product
$$
:f_1^{k_1}\cdots f_n^{k_n}:
$$
is defined recursively as a polynomial in $f_1,\ldots,f_n$ of total degree $k_1+\cdots+k_n$ satisfying
$$
\left\langle { :f_1^{k_1}\cdots f_n^{k_n}: } \right\rangle = 0
$$
and for $k_i \ge 1$,
$$
\frac{\partial}{\partial f_i} \left( { :f_1^{k_1}\cdots f_n^{k_n}: } \right) = k_i :f_1^{k_1}\cdots f_i^{k_i-1} \cdots f_n^{k_n}:
$$
where $\langle {\cdot} \rangle$ denotes expectation. The $:\,:$ notation is traditional in physics.
For example,
$$
:f: = f - \langle f \rangle \ ,
$$
$$
:f^2: = f^2 - 2\langle f \rangle f - \langle f^2 \rangle + 2\langle f \rangle^2 \ .
$$
There is a binomial theorem:
$$
:(af+bg)^n: = \sum_{m=0}^n \binom{n}{m} a^m b^{n-m} :f^m: :g^{n-m}:
$$
and a corresponding multinomial theorem. The Wick exponential is defined as
$$
:\exp(a f): = \sum_{m=0}^\infty \frac{a^m}{m!} :f^m:
$$
so that
$$
:\exp(af): = \langle \exp(af) \rangle^{-1} \exp(af) \ .
$$
The Wick products, powers and exponentials depend both on the variables involved and on the underlying measure.
Let $f,g$ be Gaussian random variables with mean zero. Then
$$
:\exp(af): = \exp\left({ af - \frac12 a^2 \langle f^2 \rangle }\right)
$$
$$
:f^n: = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } f^{n-2m} ||f||^{2m} = ||f||^n h_n(||f||^{-1}f)
$$
where the
$$
h_n(x) = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } x^{n-2m}
$$
are the Hermite polynomials with leading coefficient $1$ and $||f||^2 = \langle f^2 \rangle$. Further,
$$
\langle :f:^m :g:^m \rangle = \delta_{mn} n! \langle fg \rangle^n \ .
$$
This follows from
$$
:\exp(af):\,:\exp(bg): = \exp(af+bg) \exp\left( { \frac{-1}{2} (a^2 \langle f^2 \rangle + b^2 \langle g^2 \rangle) } \right) \ ,
$$
a formula that contains a great deal of the combinatorics of Wick monomials.
If there are two measures $\mu$ and $\nu$ with respect to which $f$ is Gaussian of mean zero, then
$$
:\exp(a f) :_\mu = :\exp af :_\nu \exp\left( { \frac{a^2}{2}\langle f^2 \rangle_\mu - \langle f^2 \rangle_\nu } \right) \ .
$$
Let $f_1,\ldots,f_n$ be jointly Gaussian variables with mean zero (not necessarily distinct). Then there is an explicit formula for the Wick monomial $:f_1\cdots f_n:$, as follows:
$$
:f_1\cdots f_n: = \sum_G \prod_{e \in G} -\left\langle { f_{e_1} f_{e_2} } \right\rangle \prod_{i \not\in [G]} f_i \ .
$$
Here, $G$ runs over all pairings of $\{1,\ldots,n\}$ (sometimes called graphs), i.e. all sets of disjoint unordered pairs of $\{1,\ldots,n\}$, $[G]$ is the union of the unordered pairs making up $G$, and if $e$ is an unordered pair, then $\{e_1,e_2\}$ is the set of vertices making up that pair.
For instance,
$$
:fg^2: = fg^2 - 2\langle fg \rangle - \langle g^2 \rangle f \ ,
$$
$$
:f^2g^2: = f^2g^2 - \langle f^2 \rangle g^2 - \langle g^2 \rangle f^2 - 4 \langle fg \rangle fg + 2\langle fg \rangle^2 + \langle f \rangle^2 \langle g \rangle^2 \ .
$$
Let $\{ I_\nu \}$, $\nu = 1,\ldots,n$, be a collection of disjoint finite sets. A line on $\{ I_\nu \}$ is by definition a pair of elements taken from different $I_\nu$. A graph on $\{ I_\nu \}$ is a set of disjoint lines on $\{ I_\nu \}$. If each $I_\nu$ is seen as a vertex with $|I_\nu|$ "legs" emanating from it, then $G$ can be visualized as a set of lines joining legs from different vertices. A graph such that all legs are joined is a (certain special kind of) fully contracted graph, vacuum graph, Feynman graph, or Feynman diagram.
The case of "pairings" which occurred above corresponds to a graph on $\{ I_\nu \}$ where each vertex has precisely one leg. In terms of these Feynman diagrams a product of Wick monomials is expressed as a linear combination of Wick monomials as follows.
Let $ I _ \nu $,
$ \nu = 1 \dots n $,
be a collection of disjoint finite sets, $ I = \cup _ \nu I _ \nu $,
and $ f _{i} $
a collection of jointly Gaussian random variables indexed by $ I $.
Then
$$ \tag{a6}
\prod _ \nu : \prod _ {i \in I _ \nu} f _{i} :\ = \
\sum _{G} \prod _ {e \in G} < f _{ {e _ 1}} f _{ {e _ 2}} > : \prod _ {i \notin [G]} f _{i} : ,
$$
where $ G $
runs over all graphs on $ \{ I _ \nu \} $
and $ [G] $
is the union of all the disjoint unordered pairs making up $ G $.
More general Feynman graphs, such as graphs with also self-interaction lines, occur when several different covariances are involved, cf. [a4].
For the expection of a product of Wick monomials one has
$$ \tag{a7}
\left \langle \prod _ \nu : \prod _ {i \in I _ \nu} f _{i} : \right \rangle \ = \
\sum _ {G \in \Gamma _{0} ( \{ I _ \nu \} )} \
\prod _ {e \in G} \langle f _{ {e _ 1}} f _{ {e _ 2}} \rangle
$$
and, in particular,
$$ \tag{a8}
\langle f _{1} \dots f _{n} \rangle \ = \ \left \{
\begin{array}{ll}
0 &\textrm{ if } \ n \ \textrm{ is } \ \textrm{ odd } , \\
\sum _ {G \in \Gamma _{0} (n)} \
\prod _ {e \in G} \langle f _{ {e _ 1}} f _{ {e _ 2}} \rangle &\ \textrm{ if } \
n=2k , \\
\end{array}
\right .$$
where $ \Gamma _{0} (2k) $
runs over all $ (2k)! 2 ^{-k} (k!) ^{-1} $
ways of splitting up $ \{ 1 \dots 2k \} $
into $ k $
unordered pairs. All of the formulas (a1)–(a4), (a7), (a8), especially (a8), generally go by the name Wick's formula or Wick's theorem.
In the setting of (Euclidean) quantum field theory, let $ {\mathcal S} ( \mathbf R ^{n} ) $
be the Schwartz space of rapidly-decreasing smooth functions and let $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $
be the space of real-valued tempered distributions. For $ f \in {\mathcal S} ( \mathbf R ^{n} ) $,
let $ \phi (f \ ) $
be the linear function on $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $
given by $ \phi (f \ )(u) = u(f \ ) $.
Then for any continuous positive scalar product $ C $
on $ {\mathcal S} ( \mathbf R ^{n} ) \times {\mathcal S} ( \mathbf R ^{n} ) $,
$ (f,\ g) \mapsto \langle f,\ Cg\rangle $,
there is a unique countably-additive Gaussian measure $ d q _{C} $
on $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $
such that
$$
\int\limits e ^ {\ i \phi (f \ )} \ dq _{C} \ = \
\mathop{\rm exp}\nolimits \left ( -
\frac{1}{2}
\langle f ,\ C f \ \rangle \right ) ,\ \
f \in {\mathcal S} ( \mathbf R ^{n} ) .
$$
Then $ \phi (f \ ) \in L _{p} ( {\mathcal S} ^ \prime ( \mathbf R ^{n} ) ,\ d q _{C} ) $
for all $ p \in [1,\ \infty ) $
and
$$
\int\limits \phi (f \ ) \ dq _{C} \ = \ 0 ,
$$
$$
\int\limits \phi (f _{1} ) \phi (f _{2} ) \ d q _{C} \ = \ \langle f _{1} ,\ Cf _{2} \rangle .
$$
So $ \langle \phi (f _{1} ) \phi (f _{2} ) \rangle = \langle f _{1} ,\ Cf _{2} \rangle $,
and some of the formulas of Wick monomials, etc., now take the form
$$ \tag{a3\prime}
: \phi (f \ ) ^{n} :\ =
$$
$$
= \
\sum _{j}
\frac{n!}{(n-2j)! j! 2 ^ j}
(-1)
^{j} \langle f,\ Cf \ \rangle ^{j} \phi (f \ ) ^{n-2j\ } =
$$
$$
= \
\langle f,\ Cf \ \rangle ^{n/2} h _{n} \left (
\frac{\phi (f \ )}{\langle f,\ Cf \ \rangle ^ 1/2}
\right ) ,
$$
$$ \tag{a5\prime}
: \prod _ {\nu =1} ^ n \phi (f _ \nu ) : \ = \ \sum
_{G} \prod _ {e \in G} < f _{ {e _ 1}} ,\ - Cf
_{ {e _ 2}} > \prod _ {i \notin [G]} \phi (f _{i} ) .
$$
Wick monomials have much to do with the Fock space via the Itô–Wick–Segal isomorphism. This rest on either of two narrowly related uniqueness theorems: the uniqueness of standard Gaussian functions or the uniqueness of Fock representations.
Let $ {\mathcal S} $
be a pre-Hilbert space. A representation of the canonical commutation relations over $ {\mathcal S} $
is a pair of linear mappings
$$
f \ \mapsto \ a(f \ ) ,\ \ g \ \mapsto \ a ^{*} (g)
$$
from $ {\mathcal S} $
to operators $ a(f \ ) $,
$ a ^{*} (g) $
defined on a dense domain $ D $
in a complex Hilbert space $ H $
such that
$$
a(f \ ) D \ \subset \ D ,\ \ a ^{*} (g) D \ \subset \ D ,
$$
$$
\langle x _{1} ,\ a (f \ )x _{2} \rangle \ = \ \langle a ^{*} (f \ )x _{1} ,\ x _{2} \rangle ,
$$
$$
[a(f \ ),\ a(g)] \ = \ [a ^{*} (f \ ),\ a ^{*} (g)] \ = \ 0,
$$
$$
[a(f \ ),\ a ^{*} (g)] x \ = \ \langle f,\ g\rangle x ,
$$
for all $ x,\ x _{1} ,\ x _{2} \in D $,
$ f ,\ g \in {\mathcal S} $.
The representation is called a Fock representation if there is moreover an $ \Omega \in D $,
called the vacuum vector, such that
$$
a(f \ ) \Omega \ = \ 0 ,\ \ f \in {\mathcal S} ,
$$
and such that $ D $
is the linear space span of the vectors $ a ^{*} (g _{1} ) \dots a ^{*} (g _{k} ) \Omega $,
$ g _{i} \in {\mathcal S} $,
$ k = 0,\ 1,\dots $.
There is an existence theorem (cf. Fock space and Commutation and anti-commutation relationships, representation of) and the uniqueness theorem: If $ (a _{i} ,\ a _{i} ^{*} ) $
are two Fock representations over $ {\mathcal S} $
with vacuum vectors $ \Omega _{i} $,
then they are unitarily equivalent and the unitary equivalence $ U $
is uniquely determined by $ U \Omega _{1} = \Omega _{2} $.
A standard Gaussian function on a real Hilbert space $ V $(
called a Gaussian random process indexed by $ V $
in [a3]) is a mapping $ \phi $
from $ V $
to the random variables on a probability space $ (X ,\ {\mathcal B} ,\ \mu ) $
such that (almost everywhere)
$$
\phi (v+w) \ = \ \phi (v)+ \phi (w) ,\ \ v,\ w \in V ,
$$
$$
\phi ( \alpha v ) \ = \ \alpha \phi ( v) ,\ \ \alpha \in \mathbf R ,\ \ v \in V ,
$$
such that the $ \sigma $-
algebra generated by the $ \phi (f \ ) $
is $ {\mathcal B} $(
up to the sets of measure zero) and such that
$ \phi (v) $
is a Gaussian random variable of mean zero, and
$ \langle \phi (v) \phi (w)\rangle = \langle v,\ w\rangle $.
For these objects there is an existence theorem, and also the uniqueness theorem that two standard Gaussian functions $ \phi $
and $ \phi ^ \prime $
on probability spaces $ (X,\ {\mathcal B} , \mu ) $,
$ (X ^ \prime ,\ {\mathcal B} ^ \prime , \mu ^ \prime ) $
are equivalent in the sense that there is an isomorphism of the two probability spaces under which $ \phi (v) $
and $ \phi ^ \prime (v) $
correspond for all $ v \in V $(
cf. [a1], §4, [a3], Chap. 1). The uniqueness theorem is a special case of Kolmogorov's theorem that measure spaces are completely determined by consistent joint probability distributions.
Identifying the symmetric Fock space $ F(V) $
with the space $ L _{2} (X,\ {\mathcal B} ,\ \mu ) $
realizing the standard Gaussian function on $ H $,
the Wick products of the $ \phi (v) $
are obtained by taking the usual products and then applying the orthogonal projection of $ F(V) $
onto its $ n $-
particle subspace.
In the case of one Gaussian variable $ x $
with probability measure $ \pi ^ {- 1/2} e ^ {- x ^{2} /2} \ dx $,
the above works out as follows:
$$
: x ^{n} :\ = \ h _{n} (x).
$$
A Fock representation in $ L _{2} ( \mathbf R ,\ (2 \pi ) ^ {- 1/2} e ^ {- x ^{2} /2} \ dx ) $
is
$$
\Omega \ = \ 1 ,\ \
a \ = \
\frac{d}{dx}
,\ \
a ^{*} \ = \ x -
\frac{d}{dx}
,
$$
and, indeed, $ h _{n} (x) = (x- d / dx ) ^{n} (1) $,
which fits because the creation operator on $ F ( \mathbf R ) $
is $ a ^{*} (e ^ {\otimes n} ) = e ^ {\otimes (n+1)} $.
In terms of the variable $ y = x / \sqrt 2 $,
$$
\Omega \ = \ 1,\ \
a \ = \
\frac{1}{\sqrt 2}
\frac{d}{dy}
,\ \
a ^{*} \ = \ \sqrt 2 y -
\frac{1}{\sqrt 2}
\frac{d}{dy}
,
$$
$$
y \ = \
\frac{1}{\sqrt 2}
(a + a ^{*} ),
$$
and
$$
: y ^{n} :\ = \ ( \sqrt 2 ) ^{-n} h _{n} ( \sqrt 2 y ) \ = \ ( \sqrt 2 ) ^{-n} \sum _{k=0} ^ n
\binom{n}{k} a ^{*k} a ^{n-k} ,
$$
where in the "binomial expansion of creation and annihilation operatorsbinomial expansion" of $ ( (a+a ^{*} ) / \sqrt 2 ) ^{n} $
on the right-hand side the annihilation operators $ a $
all come before the creation operators $ a ^{*} $(
Wick ordening). Suitably interpreted, the same formula holds in general, [a3], p. 24.
References
[a1] | R.L. Dobrushin, R.A. Minlos, "Polynomials in linear random functions" Russian Math. Surveys , 32 (1977) pp. 71–127 Uspekhi Mat. Nauk , 32 (1977) pp. 67–122 |
[a2] | J. Dimock, J. Glimm, "Measures on Schwartz distribution space and applications to $P(\phi)_2$ field theories" Adv. in Math. , 12 (1974) pp. 58–83 |
[a3] | B. Simon, "The $P(\phi)_2$ Euclidean (quantum) field theory" , Princeton Univ. Press (1974) |
[a4] | J. Glimm, A. Jaffe, "Quantum physics, a functional integral point of view" , Springer (1981) |