Difference between revisions of "Carnap rule"
(Importing text file) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | ''rule of infinite induction, | + | {{TEX|done}} |
+ | ''rule of infinite induction, $\omega$-rule'' | ||
− | A [[Derivation rule|derivation rule]] stating that if for an arithmetic formula | + | A [[Derivation rule|derivation rule]] stating that if for an arithmetic formula $\phi(x)$ the propositions $\phi(0),\phi(1),\ldots,$ have been proved, then the proposition $\forall x\phi(x)$ can be regarded as being proved. This rule was first brought into consideration by R. Carnap [[#References|[1]]]. Carnap's rule uses an infinite set of premises and is therefore inadmissible within the structure of the formal theories of D. Hilbert. The concept of a derivation in a system with the Carnap rule is undecidable. In mathematical logic one uses, for the study of formal arithmetic, the constructive Carnap rule: If there is an algorithm which for a natural number $n$ provides a derivation of the formula $\phi(n)$, then the proposition $\forall x\phi(x)$ can be regarded as being proved (the restricted $\omega$-rule, the rule of constructive infinite induction). Classical arithmetic calculus, which by Gödel's theorem is incomplete, becomes complete on adding the constructive Carnap rule (see [[#References|[2]]], [[#References|[3]]]). |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Carnap, "The logical syntax of language" , Kegan Paul, Trench & Truber (1937) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.V. Kuznetsov, ''Uspekhi Mat. Nauk'' , '''12''' : 4 (1957) pp. 218–219</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.R. Shoenfield, "On a restricted | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Carnap, "The logical syntax of language" , Kegan Paul, Trench & Truber (1937) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.V. Kuznetsov, ''Uspekhi Mat. Nauk'' , '''12''' : 4 (1957) pp. 218–219</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.R. Shoenfield, "On a restricted $\omega$-rule" ''Bull. Acad. Polon. Sci. Cl. III'' , '''7''' (1959) pp. 405–407</TD></TR></table> |
Latest revision as of 11:24, 3 August 2018
rule of infinite induction, $\omega$-rule
A derivation rule stating that if for an arithmetic formula $\phi(x)$ the propositions $\phi(0),\phi(1),\ldots,$ have been proved, then the proposition $\forall x\phi(x)$ can be regarded as being proved. This rule was first brought into consideration by R. Carnap [1]. Carnap's rule uses an infinite set of premises and is therefore inadmissible within the structure of the formal theories of D. Hilbert. The concept of a derivation in a system with the Carnap rule is undecidable. In mathematical logic one uses, for the study of formal arithmetic, the constructive Carnap rule: If there is an algorithm which for a natural number $n$ provides a derivation of the formula $\phi(n)$, then the proposition $\forall x\phi(x)$ can be regarded as being proved (the restricted $\omega$-rule, the rule of constructive infinite induction). Classical arithmetic calculus, which by Gödel's theorem is incomplete, becomes complete on adding the constructive Carnap rule (see [2], [3]).
References
[1] | R. Carnap, "The logical syntax of language" , Kegan Paul, Trench & Truber (1937) (Translated from German) |
[2] | A.V. Kuznetsov, Uspekhi Mat. Nauk , 12 : 4 (1957) pp. 218–219 |
[3] | J.R. Shoenfield, "On a restricted $\omega$-rule" Bull. Acad. Polon. Sci. Cl. III , 7 (1959) pp. 405–407 |
Carnap rule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carnap_rule&oldid=12356