Namespaces
Variants
Actions

Difference between revisions of "Cartan subgroup"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex done)
m (removed spaces before punctuation)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
c0205601.png ~/encyclopedia/old_files/data/C020/C.0200560
 
61 0 61
 
 
{{TEX|done}}
 
{{TEX|done}}
 
''of a group $  G $ ''
 
''of a group $  G $ ''
Line 7: Line 5:
 
A maximal nilpotent subgroup $  C $  
 
A maximal nilpotent subgroup $  C $  
 
of $  G $  
 
of $  G $  
each normal subgroup of finite index of which has finite index in its normalizer in $  G $ .  
+
each normal subgroup of finite index of which has finite index in its normalizer in $  G $.  
 
If $  G $  
 
If $  G $  
 
is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of $  G $  
 
is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of $  G $  
can also be defined as a closed connected subgroup whose Lie algebra is a [[Cartan subalgebra|Cartan subalgebra]] of the Lie algebra of $  G $ .  
+
can also be defined as a closed connected subgroup whose Lie algebra is a [[Cartan subalgebra|Cartan subalgebra]] of the Lie algebra of $  G $.  
 
An example of a Cartan subgroup is the subgroup $  D $  
 
An example of a Cartan subgroup is the subgroup $  D $  
 
of all diagonal matrices in the group $  \mathop{\rm GL}\nolimits _{n} (k) $  
 
of all diagonal matrices in the group $  \mathop{\rm GL}\nolimits _{n} (k) $  
 
of all non-singular matrices.
 
of all non-singular matrices.
  
In a connected linear algebraic group $  G $ ,  
+
In a connected linear algebraic group $  G $,  
a Cartan subgroup can also be defined as the centralizer of a maximal torus of $  G $ ,  
+
a Cartan subgroup can also be defined as the centralizer of a maximal torus of $  G $,  
 
or as a connected closed nilpotent subgroup $  C $  
 
or as a connected closed nilpotent subgroup $  C $  
which coincides with the connected component of the identity (the identity component) of its normalizer in $  G $ .  
+
which coincides with the connected component of the identity (the identity component) of its normalizer in $  G $.  
 
The sets $  C _{s} $  
 
The sets $  C _{s} $  
 
and $  C _{u} $  
 
and $  C _{u} $  
of all semi-simple and unipotent elements of $  C $ (
+
of all semi-simple and unipotent elements of $  C $ (see [[Jordan decomposition|Jordan decomposition]]) are closed subgroups in $  C $,  
see [[Jordan decomposition|Jordan decomposition]]) are closed subgroups in $  C $ ,  
+
and $  C = C _{s} \times C _{u} $.  
and $  C = C _{s} \times C _{u} $ .  
 
 
In addition, $  C _{s} $  
 
In addition, $  C _{s} $  
 
is the unique maximal torus of $  G $  
 
is the unique maximal torus of $  G $  
lying in $  C $ .  
+
lying in $  C $.  
 
The dimension of a Cartan subgroup of $  G $  
 
The dimension of a Cartan subgroup of $  G $  
is called the rank of $  G $ .  
+
is called the rank of $  G $.  
 
The union of all Cartan subgroups of $  G $  
 
The union of all Cartan subgroups of $  G $  
 
contains an open subset of $  G $  
 
contains an open subset of $  G $  
with respect to the Zariski topology (but is not, in general, the whole of $  G $ ).  
+
with respect to the Zariski topology (but is not, in general, the whole of $  G $).  
 
Every semi-simple element of $  G $  
 
Every semi-simple element of $  G $  
 
lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If $  \phi : \  G \rightarrow G ^ \prime  $  
 
lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If $  \phi : \  G \rightarrow G ^ \prime  $  
 
is a surjective morphism of linear algebraic groups, then the Cartan subgroups of $  G ^ \prime  $  
 
is a surjective morphism of linear algebraic groups, then the Cartan subgroups of $  G ^ \prime  $  
 
are images with respect to $  \phi $  
 
are images with respect to $  \phi $  
of Cartan subgroups of $  G $ .  
+
of Cartan subgroups of $  G $.  
 
Any two Cartan subgroups of $  G $  
 
Any two Cartan subgroups of $  G $  
 
are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group $  G $  
 
are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group $  G $  
is a maximal torus in $  G $ .
+
is a maximal torus in $  G $.
  
  
 
Let the group $  G $  
 
Let the group $  G $  
be defined over a field $  k $ .  
+
be defined over a field $  k $.  
 
Then there exists in $  G $  
 
Then there exists in $  G $  
a Cartan subgroup which is also defined over $  k $ ;  
+
a Cartan subgroup which is also defined over $  k $;  
 
in fact, $  G $  
 
in fact, $  G $  
is generated by its Cartan subgroups defined over $  k $ .  
+
is generated by its Cartan subgroups defined over $  k $.  
 
Two Cartan subgroups of $  G $  
 
Two Cartan subgroups of $  G $  
 
defined over $  k $  
 
defined over $  k $  
need not be conjugate over $  k $ (
+
need not be conjugate over $  k $ (but in the case when $  G $  
but in the case when $  G $  
 
 
is a solvable group, they are conjugate). The variety of Cartan subgroups of $  G $  
 
is a solvable group, they are conjugate). The variety of Cartan subgroups of $  G $  
is rational over $  k $ .
+
is rational over $  k $.
  
  
 
Let $  G $  
 
Let $  G $  
be a connected real Lie group with Lie algebra $  \mathfrak g $ .  
+
be a connected real Lie group with Lie algebra $  \mathfrak g $.  
 
Then the Cartan subgroups of $  G $  
 
Then the Cartan subgroups of $  G $  
are closed in $  G $ (
+
are closed in $  G $ (but not necessarily connected) and their Lie algebras are Cartan subalgebras of $  \mathfrak g $.  
but not necessarily connected) and their Lie algebras are Cartan subalgebras of $  \mathfrak g $ .  
 
 
If $  G $  
 
If $  G $  
 
is an analytic subgroup in $  \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $  
 
is an analytic subgroup in $  \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $  
 
and $  \overline{G}  $  
 
and $  \overline{G}  $  
 
is the smallest algebraic subgroup of $  \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $  
 
is the smallest algebraic subgroup of $  \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $  
containing $  G $ ,  
+
containing $  G $,  
 
then the Cartan subgroups of $  G $  
 
then the Cartan subgroups of $  G $  
 
are intersections of $  G $  
 
are intersections of $  G $  
with the Cartan subgroups of $  \overline{G}  $ .  
+
with the Cartan subgroups of $  \overline{G}  $.  
 
In the case when $  G $  
 
In the case when $  G $  
 
is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of $  G $  
 
is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of $  G $  
Line 74: Line 69:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  C. Chevalley,  "Theory of Lie groups" , '''1''' , Princeton Univ. Press  (1946)  {{MR|0082628}} {{MR|0015396}} {{ZBL|0063.00842}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  C. Chevalley,  "Théorie des groupes de Lie" , '''2–3''' , Hermann  (1951–1955)  {{MR|0068552}} {{MR|0051242}} {{MR|0019623}} {{ZBL|0186.33104}} {{ZBL|0054.01303}} {{ZBL|0063.00843}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Borel,  "Linear algebraic groups" , Benjamin  (1969)  {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Borel,  J. Tits,  "Groupes réductifs"  ''Publ. Math. IHES'' , '''27'''  (1965)  pp. 55–150  {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M. Demazure,  A. Grothendieck,  "Schémas en groupes I-III" , ''Lect. notes in math.'' , '''151–153''' , Springer  (1970)    {{MR|}} {{ZBL|}} </TD></TR></table>
+
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  C. Chevalley,  "Theory of Lie groups", '''1''', Princeton Univ. Press  (1946)  {{MR|0082628}} {{MR|0015396}} {{ZBL|0063.00842}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  C. Chevalley,  "Théorie des groupes de Lie", '''2–3''', Hermann  (1951–1955)  {{MR|0068552}} {{MR|0051242}} {{MR|0019623}} {{ZBL|0186.33104}} {{ZBL|0054.01303}} {{ZBL|0063.00843}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Borel,  "Linear algebraic groups", Benjamin  (1969)  {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Borel,  J. Tits,  "Groupes réductifs"  ''Publ. Math. IHES'', '''27'''  (1965)  pp. 55–150  {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M. Demazure,  A. Grothendieck,  "Schémas en groupes I-III", ''Lect. notes in math.'', '''151–153''', Springer  (1970)    {{MR|}} {{ZBL|}} </TD></TR></table>
  
  

Latest revision as of 16:04, 15 February 2025

of a group $ G $


A maximal nilpotent subgroup $ C $ of $ G $ each normal subgroup of finite index of which has finite index in its normalizer in $ G $. If $ G $ is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of $ G $ can also be defined as a closed connected subgroup whose Lie algebra is a Cartan subalgebra of the Lie algebra of $ G $. An example of a Cartan subgroup is the subgroup $ D $ of all diagonal matrices in the group $ \mathop{\rm GL}\nolimits _{n} (k) $ of all non-singular matrices.

In a connected linear algebraic group $ G $, a Cartan subgroup can also be defined as the centralizer of a maximal torus of $ G $, or as a connected closed nilpotent subgroup $ C $ which coincides with the connected component of the identity (the identity component) of its normalizer in $ G $. The sets $ C _{s} $ and $ C _{u} $ of all semi-simple and unipotent elements of $ C $ (see Jordan decomposition) are closed subgroups in $ C $, and $ C = C _{s} \times C _{u} $. In addition, $ C _{s} $ is the unique maximal torus of $ G $ lying in $ C $. The dimension of a Cartan subgroup of $ G $ is called the rank of $ G $. The union of all Cartan subgroups of $ G $ contains an open subset of $ G $ with respect to the Zariski topology (but is not, in general, the whole of $ G $). Every semi-simple element of $ G $ lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If $ \phi : \ G \rightarrow G ^ \prime $ is a surjective morphism of linear algebraic groups, then the Cartan subgroups of $ G ^ \prime $ are images with respect to $ \phi $ of Cartan subgroups of $ G $. Any two Cartan subgroups of $ G $ are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group $ G $ is a maximal torus in $ G $.


Let the group $ G $ be defined over a field $ k $. Then there exists in $ G $ a Cartan subgroup which is also defined over $ k $; in fact, $ G $ is generated by its Cartan subgroups defined over $ k $. Two Cartan subgroups of $ G $ defined over $ k $ need not be conjugate over $ k $ (but in the case when $ G $ is a solvable group, they are conjugate). The variety of Cartan subgroups of $ G $ is rational over $ k $.


Let $ G $ be a connected real Lie group with Lie algebra $ \mathfrak g $. Then the Cartan subgroups of $ G $ are closed in $ G $ (but not necessarily connected) and their Lie algebras are Cartan subalgebras of $ \mathfrak g $. If $ G $ is an analytic subgroup in $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $ and $ \overline{G} $ is the smallest algebraic subgroup of $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $ containing $ G $, then the Cartan subgroups of $ G $ are intersections of $ G $ with the Cartan subgroups of $ \overline{G} $. In the case when $ G $ is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of $ G $ lies in some Cartan subgroup.

References

[1a] C. Chevalley, "Theory of Lie groups", 1, Princeton Univ. Press (1946) MR0082628 MR0015396 Zbl 0063.00842
[1b] C. Chevalley, "Théorie des groupes de Lie", 2–3, Hermann (1951–1955) MR0068552 MR0051242 MR0019623 Zbl 0186.33104 Zbl 0054.01303 Zbl 0063.00843
[2] A. Borel, "Linear algebraic groups", Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[3] A. Borel, J. Tits, "Groupes réductifs" Publ. Math. IHES, 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402
[4] M. Demazure, A. Grothendieck, "Schémas en groupes I-III", Lect. notes in math., 151–153, Springer (1970)


Comments

References

[a1] A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups" Tohoku Math. J. (2) , 20 (1968) pp. 443–497 MR0244259 Zbl 0211.53302
How to Cite This Entry:
Cartan subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cartan_subgroup&oldid=44272
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article