Namespaces
Variants
Actions

Difference between revisions of "Horocycle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(details)
Line 8: Line 8:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.F. Kagan,  "Foundations of geometry" , '''1–2''' , Moscow-Leningrad  (1949–1956)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.P. Norden,  "Elementare Einführung in die Lobatschewskische Geometrie" , Deutsch. Verlag Wissenschaft.  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.V. Efimov,  "Höhere Geometrie" , Deutsch. Verlag Wissenschaft.  (1960)  (Translated from Russian)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  V.F. Kagan,  "Foundations of geometry" , '''1–2''' , Moscow-Leningrad  (1949–1956)  (In Russian)</TD></TR>
 
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  A.P. Norden,  "Elementare Einführung in die Lobatschewskische Geometrie" , Deutsch. Verlag Wissenschaft.  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.V. Efimov,  "Höhere Geometrie" , Deutsch. Verlag Wissenschaft.  (1960)  (Translated from Russian)</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1961)</TD></TR>
====Comments====
+
</table>
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1961)</TD></TR></table>
 

Revision as of 17:55, 10 April 2023

oricycle, limiting line

The orthogonal trajectory of parallel lines in the Lobachevskii plane in a certain direction. A horocycle can be considered as a circle with centre at infinity. Horocycles generated by one pencil of parallel lines are congruent, concentric (i.e. cut out congruent segments on the lines of the pencil), non-closed, and concave to the side of parallelism of the lines of the pencil. The curvature of a horocycle is constant. In Poincaré's model, a horocycle is a circle touching the absolute from within.

A straight line and a horocycle either do not have common points, touch each other, intersect at two points at the same angle, or intersect at one point at a right angle.

Two, and only two, horocycles pass through two points of the Lobachevskii plane.

References

[1] V.F. Kagan, "Foundations of geometry" , 1–2 , Moscow-Leningrad (1949–1956) (In Russian)
[2] A.P. Norden, "Elementare Einführung in die Lobatschewskische Geometrie" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian)
[3] N.V. Efimov, "Höhere Geometrie" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian)
[a1] H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961)
How to Cite This Entry:
Horocycle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Horocycle&oldid=14909
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article