Difference between revisions of "D'Alembert operator"
(Importing text file) |
m (link) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | ''wave operator, | + | ''wave operator, d’Alembertian'' |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | The second-order differential operator that in Cartesian coordinates assumes the following form: | ||
+ | $$ | ||
+ | \Box u \stackrel{\text{df}}{=} \Delta u - \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, | ||
+ | $$ | ||
+ | where $ \Delta $ is the Laplace operator and $ c $ is a constant. Its form in spherical coordinates is: | ||
+ | $$ | ||
+ | \Box u = | ||
+ | \frac{1}{r^{2}} \frac{\partial}{\partial r} \left[ r^{2} \frac{\partial u}{\partial r} \right] + | ||
+ | \frac{1}{r^{2} \sin(\theta)} \frac{\partial}{\partial \theta} \left[ \sin(\theta) \frac{\partial u}{\partial \theta} \right] + | ||
+ | \frac{1}{r^{2} {\sin^{2}}(\theta)} \frac{\partial^{2} u}{\partial \phi^{2}} - | ||
+ | \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}; | ||
+ | $$ | ||
in cylindrical coordinates: | in cylindrical coordinates: | ||
− | + | $$ | |
− | + | \Box u = | |
− | + | \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[ \rho \frac{\partial u}{\partial \rho} \right] + | |
+ | \frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}} + | ||
+ | \frac{\partial^{2} u}{\partial z^{2}} - | ||
+ | \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}; | ||
+ | $$ | ||
in general curvilinear coordinates: | in general curvilinear coordinates: | ||
+ | $$ | ||
+ | \Box u = \frac{1}{\sqrt{- g}} \frac{\partial}{\partial x^{\nu}} \left[ \sqrt{- g} g^{\mu \nu} \frac{\partial u}{\partial x^{\mu}} \right], | ||
+ | $$ | ||
+ | where $ g $ is the determinant of the matrix $ [g^{\mu \nu}] $ formed from the coefficients of the metric tensor $ g^{\mu \nu} $. | ||
− | + | Named after [[DAlembert|J. d’Alembert]] (1747), who considered its simplest form when solving the one-dimensional wave equation. | |
− | + | ====Comments==== | |
− | + | In the last equation above, the Einstein [[summation convention]] applies to the right-hand side (i.e., there is a summation involved over all indices $ \mu,\nu $). | |
+ | ====References==== | ||
− | + | <table> | |
− | + | <TR><TD valign="top">[a1]</TD><TD valign="top"> | |
− | + | R. Courant, D. Hilbert, “Methods of mathematical physics. Partial differential equations”, '''2''', Interscience (1965). (Translated from German)</TD></TR> | |
− | + | <TR><TD valign="top">[a2]</TD><TD valign="top"> | |
− | + | F. John, “Partial differential equations”, Springer (1968).</TD></TR> | |
− | + | </table> |
Latest revision as of 11:23, 22 March 2023
wave operator, d’Alembertian
The second-order differential operator that in Cartesian coordinates assumes the following form: $$ \Box u \stackrel{\text{df}}{=} \Delta u - \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, $$ where $ \Delta $ is the Laplace operator and $ c $ is a constant. Its form in spherical coordinates is: $$ \Box u = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left[ r^{2} \frac{\partial u}{\partial r} \right] + \frac{1}{r^{2} \sin(\theta)} \frac{\partial}{\partial \theta} \left[ \sin(\theta) \frac{\partial u}{\partial \theta} \right] + \frac{1}{r^{2} {\sin^{2}}(\theta)} \frac{\partial^{2} u}{\partial \phi^{2}} - \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}; $$ in cylindrical coordinates: $$ \Box u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[ \rho \frac{\partial u}{\partial \rho} \right] + \frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}} + \frac{\partial^{2} u}{\partial z^{2}} - \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}; $$ in general curvilinear coordinates: $$ \Box u = \frac{1}{\sqrt{- g}} \frac{\partial}{\partial x^{\nu}} \left[ \sqrt{- g} g^{\mu \nu} \frac{\partial u}{\partial x^{\mu}} \right], $$ where $ g $ is the determinant of the matrix $ [g^{\mu \nu}] $ formed from the coefficients of the metric tensor $ g^{\mu \nu} $.
Named after J. d’Alembert (1747), who considered its simplest form when solving the one-dimensional wave equation.
Comments
In the last equation above, the Einstein summation convention applies to the right-hand side (i.e., there is a summation involved over all indices $ \mu,\nu $).
References
[a1] | R. Courant, D. Hilbert, “Methods of mathematical physics. Partial differential equations”, 2, Interscience (1965). (Translated from German) |
[a2] | F. John, “Partial differential equations”, Springer (1968). |
D'Alembert operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=D%27Alembert_operator&oldid=11498