|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| + | |
| ''solvmanifold, solvable manifold'' | | ''solvmanifold, solvable manifold'' |
| | | |
− | A homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861001.png" /> of a connected solvable Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861002.png" /> (cf. [[Lie group, solvable|Lie group, solvable]]). It can be identified with the coset space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861003.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861004.png" /> is the stabilizer subgroup of some point of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861005.png" />. | + | A homogeneous space $ M $ |
− | | + | of a connected solvable Lie group $ G $ (cf. [[Lie group, solvable|Lie group, solvable]]). It can be identified with the coset space $ G / H $, |
− | Examples: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861006.png" />, the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861007.png" />, the Iwasawa manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861008.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s0861009.png" /> is the group of all upper-triangular matrices with 1's on the main diagonal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610011.png" /> is the subgroup of all integer points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610012.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610013.png" /> (the Klein bottle), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610014.png" /> (the Möbius band).
| + | where $ H $ |
| + | is the stabilizer subgroup of some point of the manifold $ M $. |
| | | |
− | The first solvmanifolds studied were those in the narrower class of nil manifolds (cf. [[Nil manifold|Nil manifold]]), that is, homogeneous spaces of nilpotent Lie groups (such as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610017.png" />, but not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610019.png" />). The following results are due to A.I. Mal'tsev (see [[#References|[5]]]). 1) Every nil manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610020.png" /> is diffeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610022.png" /> is a compact nil manifold. 2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610023.png" /> is compact and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610024.png" /> acts effectively on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610025.png" />, then the stabilizer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610026.png" /> is a [[Discrete subgroup|discrete subgroup]]. 3) A nilpotent Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610027.png" /> (cf. [[Lie group, nilpotent|Lie group, nilpotent]]) acts transitively and locally effectively on some compact manifold if and only if its Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610028.png" /> has a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610029.png" />-form. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610030.png" /> is simply connected, then it is isomorphic to a unipotent algebraic group defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610032.png" /> is an arithmetic subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610033.png" />. 4) The [[Fundamental group|fundamental group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610034.png" /> of a compact nil manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610035.png" /> (which is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610036.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610037.png" /> is simply connected and its action on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610038.png" /> is locally effective) determines it up to a diffeomorphism. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610039.png" /> that can arise here are just the finitely-generated nilpotent torsion-free groups.
| |
| | | |
− | These results admit partial generalizations to arbitrary solvmanifolds. Thus, for any solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610040.png" /> there is a solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610041.png" /> which is a finitely-sheeted covering of it and is diffeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610043.png" /> is some compact solvmanifold. An arbitrary solvmanifold cannot always be decomposed into a direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610044.png" />, but it is diffeomorphic (see [[#References|[1]]], [[#References|[4]]]) to the space of a vector bundle over some compact solvmanifold (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610045.png" /> the corresponding bundle is a non-trivial line bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610046.png" />). The fundamental group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610047.png" /> of an arbitrary solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610048.png" /> is polycyclic (cf. [[Polycyclic group|Polycyclic group]]), and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610049.png" /> is compact, it determines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610050.png" /> uniquely up to a diffeomorphism. A group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610051.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610052.png" /> for some compact solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610053.png" /> if and only if it is contained in an exact sequence of the form
| + | Examples: $ \mathbf R ^{n} $, |
| + | the torus $ T ^{n} $, |
| + | the Iwasawa manifold $ N / I $ (where $ N $ |
| + | is the group of all upper-triangular matrices with 1's on the main diagonal in $ \mathop{\rm GL}\nolimits ( 3 ,\ \mathbf R ) $ |
| + | and $ I $ |
| + | is the subgroup of all integer points in $ N $), |
| + | $ K ^{2} $ (the Klein bottle), and $ \mathop{\rm Mb}\nolimits $ (the Möbius band). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610054.png" /></td> </tr></table>
| + | The first solvmanifolds studied were those in the narrower class of nil manifolds (cf. [[Nil manifold|Nil manifold]]), that is, homogeneous spaces of nilpotent Lie groups (such as $ \mathbf R ^{n} $, |
| + | $ T ^{n} $, |
| + | $ N / I $, |
| + | but not $ K ^{2} $ |
| + | and $ \mathop{\rm Mb}\nolimits $). |
| + | The following results are due to A.I. Mal'tsev (see [[#References|[5]]]). 1) Every nil manifold $ M = G / H $ |
| + | is diffeomorphic to $ M ^{*} \times \mathbf R ^{n} $, |
| + | where $ M ^{*} $ |
| + | is a compact nil manifold. 2) If $ M $ |
| + | is compact and $ G $ |
| + | acts effectively on $ M $, |
| + | then the stabilizer $ H $ |
| + | is a [[Discrete subgroup|discrete subgroup]]. 3) A nilpotent Lie group $ G $ (cf. [[Lie group, nilpotent|Lie group, nilpotent]]) acts transitively and locally effectively on some compact manifold if and only if its Lie algebra $ \mathfrak G $ |
| + | has a $ \mathbf Q $-form. If, in addition, $ G $ |
| + | is simply connected, then it is isomorphic to a unipotent algebraic group defined over $ \mathbf Q $ |
| + | and $ H $ |
| + | is an arithmetic subgroup of $ G $. |
| + | 4) The [[Fundamental group|fundamental group]] $ \pi _{1} (M) $ |
| + | of a compact nil manifold $ M $ (which is isomorphic to $ H $ |
| + | when $ G $ |
| + | is simply connected and its action on $ M $ |
| + | is locally effective) determines it up to a diffeomorphism. The groups $ \pi _{1} (M) $ |
| + | that can arise here are just the finitely-generated nilpotent torsion-free groups. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610055.png" /> is a finitely-generated nilpotent torsion-free group. Every polycyclic group has a subgroup of finite index that is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610056.png" /> for some compact solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610057.png" />. If a solvable Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610058.png" /> acts transitively and locally effectively on a compact solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610060.png" /> is fibred over a torus with fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610061.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610062.png" /> is the nil radical of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610063.png" />. A solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610064.png" /> is compact if and only if there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610065.png" />-invariant measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610066.png" /> with respect to which the volume of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610067.png" /> is finite. | + | These results admit partial generalizations to arbitrary solvmanifolds. Thus, for any solvmanifold $ M $ |
| + | there is a solvmanifold $ M ^ \prime $ |
| + | which is a finitely-sheeted covering of it and is diffeomorphic to $ M ^{*} \times \mathbf R ^{n} $, |
| + | where $ M ^{*} $ |
| + | is some compact solvmanifold. An arbitrary solvmanifold cannot always be decomposed into a direct product $ M ^{*} \times \mathbf R ^{n} $, |
| + | but it is diffeomorphic (see [[#References|[1]]], [[#References|[4]]]) to the space of a vector bundle over some compact solvmanifold (for $ \mathop{\rm Mb}\nolimits $ |
| + | the corresponding bundle is a non-trivial line bundle over $ S ^{1} $). |
| + | The fundamental group $ \pi _{1} (M) $ |
| + | of an arbitrary solvmanifold $ M $ |
| + | is polycyclic (cf. [[Polycyclic group|Polycyclic group]]), and if $ M $ |
| + | is compact, it determines $ M $ |
| + | uniquely up to a diffeomorphism. A group $ \pi $ |
| + | is isomorphic to $ \pi _{1} (M) $ |
| + | for some compact solvmanifold $ M $ |
| + | if and only if it is contained in an exact sequence of the form $$ |
| + | \{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow \mathbf Z ^{s} \rightarrow \{ e \} , |
| + | $$ |
| + | where $ \Delta $ |
| + | is a finitely-generated nilpotent torsion-free group. Every polycyclic group has a subgroup of finite index that is isomorphic to $ \pi _{1} (M) $ |
| + | for some compact solvmanifold $ M $. |
| + | If a solvable Lie group $ G $ |
| + | acts transitively and locally effectively on a compact solvmanifold $ M = G / H $, |
| + | then $ M $ |
| + | is fibred over a torus with fibre $ N / (H \cap N ) $, |
| + | where $ N $ |
| + | is the nil radical of $ G $. |
| + | A solvmanifold $ M = G / H $ |
| + | is compact if and only if there is a $ G $-invariant measure on $ M $ |
| + | with respect to which the volume of $ M $ |
| + | is finite. |
| | | |
− | Every solvmanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610068.png" /> is aspherical (that is, the homotopy group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610069.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610070.png" />). Among all compact homogeneous spaces, compact solvmanifolds are characterized by asphericity and the solvability of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610071.png" /> (see [[#References|[3]]]). | + | Every solvmanifold $ M $ |
| + | is aspherical (that is, the homotopy group $ \pi _{i} (M) = 0 $ |
| + | for $ i \geq 2 $). |
| + | Among all compact homogeneous spaces, compact solvmanifolds are characterized by asphericity and the solvability of $ \pi _{1} (M) $ (see [[#References|[3]]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Auslander, "An exposition of the structure of solvmanifolds I, II" ''Bull. Amer. Math. Soc.'' , '''79''' : 2 (1973) pp. 227–261; 262–285</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Auslander, R. Szczarba, "Vector bundles over tori and noncompact solvmanifolds" ''Amer. J. Math.'' , '''97''' : 1 (1975) pp. 260–281</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.V. Gorbatsevich, "On Lie groups, transitive on Solv manifolds" ''Math. USSR.-Izv.'' , '''11''' (1977) pp. 271–291 ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''41''' (1977) pp. 285–307</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G. Mostow, "Some applications of representative functions to solvmanifolds" ''Amer. J. Math.'' , '''93''' : 1 (1971) pp. 11–32</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Raghunatan, "Discrete subgroups of Lie groups" , Springer (1972)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Auslander, "An exposition of the structure of solvmanifolds I, II" ''Bull. Amer. Math. Soc.'' , '''79''' : 2 (1973) pp. 227–261; 262–285 {{MR|486308}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Auslander, R. Szczarba, "Vector bundles over tori and noncompact solvmanifolds" ''Amer. J. Math.'' , '''97''' : 1 (1975) pp. 260–281 {{MR|0383443}} {{ZBL|0303.22006}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.V. Gorbatsevich, "On Lie groups, transitive on Solv manifolds" ''Math. USSR.-Izv.'' , '''11''' (1977) pp. 271–291 ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''41''' (1977) pp. 285–307 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G. Mostow, "Some applications of representative functions to solvmanifolds" ''Amer. J. Math.'' , '''93''' : 1 (1971) pp. 11–32 {{MR|0283819}} {{ZBL|0228.22015}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Raghunatan, "Discrete subgroups of Lie groups" , Springer (1972) {{MR|}} {{ZBL|}} </TD></TR></table> |
solvmanifold, solvable manifold
A homogeneous space $ M $
of a connected solvable Lie group $ G $ (cf. Lie group, solvable). It can be identified with the coset space $ G / H $,
where $ H $
is the stabilizer subgroup of some point of the manifold $ M $.
Examples: $ \mathbf R ^{n} $,
the torus $ T ^{n} $,
the Iwasawa manifold $ N / I $ (where $ N $
is the group of all upper-triangular matrices with 1's on the main diagonal in $ \mathop{\rm GL}\nolimits ( 3 ,\ \mathbf R ) $
and $ I $
is the subgroup of all integer points in $ N $),
$ K ^{2} $ (the Klein bottle), and $ \mathop{\rm Mb}\nolimits $ (the Möbius band).
The first solvmanifolds studied were those in the narrower class of nil manifolds (cf. Nil manifold), that is, homogeneous spaces of nilpotent Lie groups (such as $ \mathbf R ^{n} $,
$ T ^{n} $,
$ N / I $,
but not $ K ^{2} $
and $ \mathop{\rm Mb}\nolimits $).
The following results are due to A.I. Mal'tsev (see [5]). 1) Every nil manifold $ M = G / H $
is diffeomorphic to $ M ^{*} \times \mathbf R ^{n} $,
where $ M ^{*} $
is a compact nil manifold. 2) If $ M $
is compact and $ G $
acts effectively on $ M $,
then the stabilizer $ H $
is a discrete subgroup. 3) A nilpotent Lie group $ G $ (cf. Lie group, nilpotent) acts transitively and locally effectively on some compact manifold if and only if its Lie algebra $ \mathfrak G $
has a $ \mathbf Q $-form. If, in addition, $ G $
is simply connected, then it is isomorphic to a unipotent algebraic group defined over $ \mathbf Q $
and $ H $
is an arithmetic subgroup of $ G $.
4) The fundamental group $ \pi _{1} (M) $
of a compact nil manifold $ M $ (which is isomorphic to $ H $
when $ G $
is simply connected and its action on $ M $
is locally effective) determines it up to a diffeomorphism. The groups $ \pi _{1} (M) $
that can arise here are just the finitely-generated nilpotent torsion-free groups.
These results admit partial generalizations to arbitrary solvmanifolds. Thus, for any solvmanifold $ M $
there is a solvmanifold $ M ^ \prime $
which is a finitely-sheeted covering of it and is diffeomorphic to $ M ^{*} \times \mathbf R ^{n} $,
where $ M ^{*} $
is some compact solvmanifold. An arbitrary solvmanifold cannot always be decomposed into a direct product $ M ^{*} \times \mathbf R ^{n} $,
but it is diffeomorphic (see [1], [4]) to the space of a vector bundle over some compact solvmanifold (for $ \mathop{\rm Mb}\nolimits $
the corresponding bundle is a non-trivial line bundle over $ S ^{1} $).
The fundamental group $ \pi _{1} (M) $
of an arbitrary solvmanifold $ M $
is polycyclic (cf. Polycyclic group), and if $ M $
is compact, it determines $ M $
uniquely up to a diffeomorphism. A group $ \pi $
is isomorphic to $ \pi _{1} (M) $
for some compact solvmanifold $ M $
if and only if it is contained in an exact sequence of the form $$
\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow \mathbf Z ^{s} \rightarrow \{ e \} ,
$$
where $ \Delta $
is a finitely-generated nilpotent torsion-free group. Every polycyclic group has a subgroup of finite index that is isomorphic to $ \pi _{1} (M) $
for some compact solvmanifold $ M $.
If a solvable Lie group $ G $
acts transitively and locally effectively on a compact solvmanifold $ M = G / H $,
then $ M $
is fibred over a torus with fibre $ N / (H \cap N ) $,
where $ N $
is the nil radical of $ G $.
A solvmanifold $ M = G / H $
is compact if and only if there is a $ G $-invariant measure on $ M $
with respect to which the volume of $ M $
is finite.
Every solvmanifold $ M $
is aspherical (that is, the homotopy group $ \pi _{i} (M) = 0 $
for $ i \geq 2 $).
Among all compact homogeneous spaces, compact solvmanifolds are characterized by asphericity and the solvability of $ \pi _{1} (M) $ (see [3]).
References
[1] | L. Auslander, "An exposition of the structure of solvmanifolds I, II" Bull. Amer. Math. Soc. , 79 : 2 (1973) pp. 227–261; 262–285 MR486308 |
[2] | L. Auslander, R. Szczarba, "Vector bundles over tori and noncompact solvmanifolds" Amer. J. Math. , 97 : 1 (1975) pp. 260–281 MR0383443 Zbl 0303.22006 |
[3] | V.V. Gorbatsevich, "On Lie groups, transitive on Solv manifolds" Math. USSR.-Izv. , 11 (1977) pp. 271–291 Izv. Akad. Nauk. SSSR Ser. Mat. , 41 (1977) pp. 285–307 |
[4] | G. Mostow, "Some applications of representative functions to solvmanifolds" Amer. J. Math. , 93 : 1 (1971) pp. 11–32 MR0283819 Zbl 0228.22015 |
[5] | M. Raghunatan, "Discrete subgroups of Lie groups" , Springer (1972) |