|
|
Line 1: |
Line 1: |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805101.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805102.png" />-dimensional simply-connected space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805103.png" /> of constant curvature (i.e. of a Euclidean or affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805104.png" />, a sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805105.png" /> or a hyperbolic (Lobachevskii) space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805106.png" />) the set of fixed points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805107.png" /> of which is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805108.png" />-dimensional hyperplane. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805109.png" /> is called the mirror of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051010.png" />; in other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051011.png" /> is a reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051012.png" />. Every reflection is uniquely defined by its mirror. The order (period) of a reflection in the group of all motions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051013.png" /> is equal to 2, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051014.png" />.
| + | {{MSC|12}} |
| + | {{TEX|done}} |
| | | |
− | The Euclidean or affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051015.png" /> can be identified with the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051016.png" /> of its parallel translations. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051017.png" /> is then a linear orthogonal transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051018.png" /> with matrix | + | The ''resultant of two polynomials $f(x)$ and $g(x)$'' |
| + | is the element of the field $Q$ defined by the formula: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051019.png" /></td> </tr></table>
| + | $$\def\a{ {\alpha}}\def\b{ {\beta}}R(f,g) = a_0^s b_0^n \prod_{i=1}^n\prod_{j=1}^s(\a_i-\b_j),\label{1}$$ |
| + | where $Q$ is the splitting field of the polynomial $fg$ (cf. |
| + | [[Splitting field of a polynomial|Splitting field of a polynomial]]), and $\a_i,\b_j$ are the roots (cf. |
| + | [[Root|Root]]) of the polynomials |
| | | |
− | in a certain orthonormal basis, and conversely, every orthogonal transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051020.png" /> with this matrix in a certain orthonormal basis is a reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051021.png" />. More generally, a linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051022.png" /> of an arbitrary vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051023.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051024.png" />, of characteristic other than 2, is called a linear reflection if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051025.png" /> and if the rank of the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051026.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051027.png" />. In this case, the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051028.png" /> of fixed vectors relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051029.png" /> has codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051030.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051031.png" />, the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051032.png" /> of eigenvectors with eigenvalue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051033.png" /> has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051035.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051036.png" /> is a linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051037.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051038.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051039.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051040.png" /> is an element such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051042.png" /> is defined by the formula
| + | $$f(x) = a_0x^n+a_1x^{n-1}+\cdots+a_n$$ |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051043.png" /></td> </tr></table>
| + | $$g(x) = b_0x^s+b_1x^{s-1}+\cdots+b_s,$$ |
| + | respectively. If $a_0b_0 \ne 0$, then the polynomials have a common root if and only if the resultant equals zero. The following equality holds: |
| | | |
− | The description of a reflection in an arbitrary simply-connected space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051044.png" /> of constant curvature can be reduced to the description of linear reflections in the following way. Every such space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051045.png" /> can be imbedded as a hypersurface in a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051046.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051047.png" /> in such a way that the motions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051048.png" /> can be extended to linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051049.png" />. Moreover, in a suitable coordinate system in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051050.png" /> the equations of the hypersurface can be written in the following way:
| + | $$R(g,f) = (-1)^{ns}R(f,g).$$ |
| + | The resultant can be written in either of the following ways: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051051.png" /></td> </tr></table>
| + | $$R(f,g) = a_0^s\prod_{i=1}^n g(\a_i),\label{2}$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051052.png" /></td> </tr></table>
| + | $$R(f,g) = (-1)^{ns}b_0^n\prod_{j=1}^s f(\b_j),\label{3}$$ |
| + | The expressions (1)–(3) are inconvenient for computing the resultant, since they contain the roots of the polynomials. Using the coefficients of the polynomials, the resultant can be expressed in the form of the |
| + | [[Determinant|determinant]] of the following block matrix $\begin{pmatrix}A\\B\end{pmatrix}$ with $A$ of order $s\times (n+s)$ and $B$ of order $n\times(n+s)$: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051053.png" /></td> </tr></table>
| + | $$A= \begin{pmatrix} |
| + | a_0 & a_1 & \cdots & a_n & & \\ |
| + | & a_0 & a_1 & \cdots & a_n & \\ |
| + | & &\cdots&\cdots& &\\ |
| + | & & a_0 & a_1 & \cdots & a_n |
| + | \end{pmatrix}, |
| + | \quad |
| + | B=\begin{pmatrix} |
| + | b_0 & b_1 & \cdots & b_s & & \\ |
| + | & b_0 & b_1 & \cdots & b_s & \\ |
| + | & &\cdots&\cdots& &\\ |
| + | & & b_0 & b_1 & \cdots & b_s |
| + | \end{pmatrix}. |
| + | \label{4}$$ |
| + | The rows of $A$ contain the coefficients of the polynomial $f(x)$, the rows of $B$ contain the coefficients of the polynomial $g(x)$, and in the free spaces there are zeros. In the last row of $A$ $a_0$ is in the $s$-th column, in the last row of $B$ $b_0$ is in the $n$-th column. |
| | | |
− | Every hypersurface in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051054.png" />, given this imbedding, is the intersection with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051055.png" /> of a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051056.png" />-dimensional subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051057.png" />, and every reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051058.png" /> is induced by a linear reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051059.png" />.
| + | The resultant of two polynomials $f(x)$ and $g(x)$ with numerical coefficients can be represented in the form of a determinant of order $n$ (or $s$). For this one has to find the remainders from the division of $x^kg(x)$ by $f(x)$, $k=0,\cdots,n-1$. Let these be |
| | | |
− | If, in the definition of a linear reflection, the requirement that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051060.png" /> is dropped, then the more general concept of a pseudo-reflection is obtained. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051061.png" /> is the field of complex numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051062.png" /> is a pseudo-reflection of finite order (not necessarily equal to 2), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051063.png" /> is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection.
| + | $$a_{k0}+ a_{k1}x+\cdots+a_{kn-1}x^{n-1}.$$ |
| + | Then |
| | | |
− | See also [[Reflection group|Reflection group]].
| + | $$R(f,g) = a_0^s \det\begin{pmatrix} |
| + | a_{00} & a_{01} & \cdots & a_{0n-1}\\ |
| + | a_{10} & a_{11} & \cdots & a_{1n-1}\\ |
| + | \vdots & \cdots & \cdots & \vdots \\ |
| + | a_{n-10} & a_{n-11} & \cdots & a_{n-1n-1}\\ |
| + | \end{pmatrix}.$$ |
| + | The |
| + | [[Discriminant|discriminant]] $D(f)$ of the polynomial |
| | | |
− | ====References==== | + | $$f(x) = a_0x^n + a_1 x^{n-1} + \cdots + a_n, \quad a_0 \ne 0$$ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , ''Eléments de mathématiques'' , Hermann (1968) pp. Chapts. 4–6</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.B. Vinberg, "Discrete linear groups generated by reflections" ''Math. USSR Izv.'' , '''35''' : 5 (1971) pp. 1083–1119 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''35''' : 5 (1971) pp. 1072–1112</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Gottschling, "Reflections in bounded symmetric domains" ''Comm. Pure Appl. Math.'' , '''22''' (1969) pp. 693–714</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table>
| + | can be expressed by the resultant of the polynomial $f(x)$ and its derivative $f'(x)$ in the following way: |
| + | |
| + | $$D(f) = (-1)^{n(n-1)/2} a_0^{-1} R(f,f').$$ |
| + | ==Application to solving a system of equations.== |
| + | Let there be given a system of two algebraic equations with coefficients from a field $P$: |
| + | |
| + | $$f(x,y) = 0,\ g(x,y) = 0.\label{5}$$ |
| + | The polynomials $f$ and $g$ are written as polynomials in $x$: |
| | | |
| + | $$f(x,y) = a_0(y) x^k+ a_1(y)x^{k-1}+\cdots+a_k(y),$$ |
| | | |
| + | $$g(x,y) = b_0(y) x^l+ b_1(y)x^{l-1}+\cdots+b_l(y),$$ |
| + | and according to formula (4) the resultant of these polynomials (as polynomials in $x$) is calculated. This yields a polynomial that depends only on $y$: |
| | | |
− | ====Comments==== | + | $$R(f,g) = F(y).$$ |
− | The spelling reflexion also occurs in the literature.
| + | One says that the polynomial $F(y)$ is obtained by eliminating $x$ from the polynomials $f(x,y)$ and $g(x,y)$. If $\def\a{ {\alpha}}\def\b{ {\beta}} x=\a$ and $y=\b$ is a solution of the system (5), then $F(\b) = 0$, and, conversely, if $F(\b) = 0$, then either the polynomials $f(x,\b)$ or $g(x,\b)$ have a common root (which must be looked for among the roots of their greatest common divisor), or $a_0(\b) = b_0(\b) = 0$. Solving system (5) is thereby reduced to the computation of the roots of the polynomial $F(y)$ and of the common roots of the polynomials $f(x,\b)$ and $g(x,\b)$ in one indeterminate. |
| | | |
− | A basic fact is that the reflections generate the [[Orthogonal group|orthogonal group]]; see [[#References|[a2]]], Sects. 8.12.12, 13.7.12.
| + | By analogy, systems of equations with any number of unknowns can be solved; however, this problem leads to extremely cumbersome calculations (see also |
| + | [[Elimination theory|Elimination theory]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Berger, "Geometry" , '''1–2''' , Springer (1987) (Translated from French)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Greenberg, "Euclidean and non-euclidean geometry" , Freeman (1980)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B. Artmann, "Lineare Algebra" , Birkhäuser (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|HoPe}}||valign="top"| W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry", '''1–3''', Cambridge Univ. Press (1947–1954) {{MR|1288307}} {{MR|1288306}} {{MR|1288305}} {{MR|0061846}} {{MR|0048065}} {{MR|0028055}} {{ZBL|0796.14002}} {{ZBL|0796.14003}} {{ZBL|0796.14001}} {{ZBL|0157.27502}} {{ZBL|0157.27501}} {{ZBL|0055.38705}} {{ZBL|0048.14502}} |
| + | |- |
| + | |valign="top"|{{Ref|Ku}}||valign="top"| A.G. Kurosh, "Higher algebra", MIR (1972) (Translated from Russian) {{MR|0945393}} {{MR|0926059}} {{MR|0778202}} {{MR|0759341}} {{MR|0628003}} {{MR|0384363}} {{ZBL|0237.13001}} |
| + | |- |
| + | |valign="top"|{{Ref|La}}||valign="top"| S. Lang, "Algebra", Addison-Wesley (1984) {{MR|0783636}} {{ZBL|0712.00001}} |
| + | |- |
| + | |valign="top"|{{Ref|Ok}}||valign="top"| L.Ya. Okunev, "Higher algebra", Moscow-Leningrad (1979) (In Russian) {{MR|}} {{ZBL|0154.26401}} |
| + | |- |
| + | |valign="top"|{{Ref|Wa}}||valign="top"| B.L. van der Waerden, "Algebra", '''1–2''', Springer (1967–1971) (Translated from German) {{MR|1541390}} {{ZBL|1032.00002}} {{ZBL|1032.00001}} {{ZBL|0903.01009}} {{ZBL|0781.12003}} {{ZBL|0781.12002}} {{ZBL|0724.12002}} {{ZBL|0724.12001}} {{ZBL|0569.01001}} {{ZBL|0534.01001}} {{ZBL|0997.00502}} {{ZBL|0997.00501}} {{ZBL|0316.22001}} {{ZBL|0297.01014}} {{ZBL|0221.12001}} {{ZBL|0192.33002}} {{ZBL|0137.25403}} {{ZBL|0136.24505}} {{ZBL|0087.25903}} {{ZBL|0192.33001}} {{ZBL|0067.00502}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 12-XX [MSN][ZBL]
The resultant of two polynomials $f(x)$ and $g(x)$
is the element of the field $Q$ defined by the formula:
$$\def\a{ {\alpha}}\def\b{ {\beta}}R(f,g) = a_0^s b_0^n \prod_{i=1}^n\prod_{j=1}^s(\a_i-\b_j),\label{1}$$
where $Q$ is the splitting field of the polynomial $fg$ (cf.
Splitting field of a polynomial), and $\a_i,\b_j$ are the roots (cf.
Root) of the polynomials
$$f(x) = a_0x^n+a_1x^{n-1}+\cdots+a_n$$
and
$$g(x) = b_0x^s+b_1x^{s-1}+\cdots+b_s,$$
respectively. If $a_0b_0 \ne 0$, then the polynomials have a common root if and only if the resultant equals zero. The following equality holds:
$$R(g,f) = (-1)^{ns}R(f,g).$$
The resultant can be written in either of the following ways:
$$R(f,g) = a_0^s\prod_{i=1}^n g(\a_i),\label{2}$$
$$R(f,g) = (-1)^{ns}b_0^n\prod_{j=1}^s f(\b_j),\label{3}$$
The expressions (1)–(3) are inconvenient for computing the resultant, since they contain the roots of the polynomials. Using the coefficients of the polynomials, the resultant can be expressed in the form of the
determinant of the following block matrix $\begin{pmatrix}A\\B\end{pmatrix}$ with $A$ of order $s\times (n+s)$ and $B$ of order $n\times(n+s)$:
$$A= \begin{pmatrix}
a_0 & a_1 & \cdots & a_n & & \\
& a_0 & a_1 & \cdots & a_n & \\
& &\cdots&\cdots& &\\
& & a_0 & a_1 & \cdots & a_n
\end{pmatrix},
\quad
B=\begin{pmatrix}
b_0 & b_1 & \cdots & b_s & & \\
& b_0 & b_1 & \cdots & b_s & \\
& &\cdots&\cdots& &\\
& & b_0 & b_1 & \cdots & b_s
\end{pmatrix}.
\label{4}$$
The rows of $A$ contain the coefficients of the polynomial $f(x)$, the rows of $B$ contain the coefficients of the polynomial $g(x)$, and in the free spaces there are zeros. In the last row of $A$ $a_0$ is in the $s$-th column, in the last row of $B$ $b_0$ is in the $n$-th column.
The resultant of two polynomials $f(x)$ and $g(x)$ with numerical coefficients can be represented in the form of a determinant of order $n$ (or $s$). For this one has to find the remainders from the division of $x^kg(x)$ by $f(x)$, $k=0,\cdots,n-1$. Let these be
$$a_{k0}+ a_{k1}x+\cdots+a_{kn-1}x^{n-1}.$$
Then
$$R(f,g) = a_0^s \det\begin{pmatrix}
a_{00} & a_{01} & \cdots & a_{0n-1}\\
a_{10} & a_{11} & \cdots & a_{1n-1}\\
\vdots & \cdots & \cdots & \vdots \\
a_{n-10} & a_{n-11} & \cdots & a_{n-1n-1}\\
\end{pmatrix}.$$
The
discriminant $D(f)$ of the polynomial
$$f(x) = a_0x^n + a_1 x^{n-1} + \cdots + a_n, \quad a_0 \ne 0$$
can be expressed by the resultant of the polynomial $f(x)$ and its derivative $f'(x)$ in the following way:
$$D(f) = (-1)^{n(n-1)/2} a_0^{-1} R(f,f').$$
Application to solving a system of equations.
Let there be given a system of two algebraic equations with coefficients from a field $P$:
$$f(x,y) = 0,\ g(x,y) = 0.\label{5}$$
The polynomials $f$ and $g$ are written as polynomials in $x$:
$$f(x,y) = a_0(y) x^k+ a_1(y)x^{k-1}+\cdots+a_k(y),$$
$$g(x,y) = b_0(y) x^l+ b_1(y)x^{l-1}+\cdots+b_l(y),$$
and according to formula (4) the resultant of these polynomials (as polynomials in $x$) is calculated. This yields a polynomial that depends only on $y$:
$$R(f,g) = F(y).$$
One says that the polynomial $F(y)$ is obtained by eliminating $x$ from the polynomials $f(x,y)$ and $g(x,y)$. If $\def\a{ {\alpha}}\def\b{ {\beta}} x=\a$ and $y=\b$ is a solution of the system (5), then $F(\b) = 0$, and, conversely, if $F(\b) = 0$, then either the polynomials $f(x,\b)$ or $g(x,\b)$ have a common root (which must be looked for among the roots of their greatest common divisor), or $a_0(\b) = b_0(\b) = 0$. Solving system (5) is thereby reduced to the computation of the roots of the polynomial $F(y)$ and of the common roots of the polynomials $f(x,\b)$ and $g(x,\b)$ in one indeterminate.
By analogy, systems of equations with any number of unknowns can be solved; however, this problem leads to extremely cumbersome calculations (see also
Elimination theory).
References
[HoPe] |
W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry", 1–3, Cambridge Univ. Press (1947–1954) MR1288307 MR1288306 MR1288305 MR0061846 MR0048065 MR0028055 Zbl 0796.14002 Zbl 0796.14003 Zbl 0796.14001 Zbl 0157.27502 Zbl 0157.27501 Zbl 0055.38705 Zbl 0048.14502
|
[Ku] |
A.G. Kurosh, "Higher algebra", MIR (1972) (Translated from Russian) MR0945393 MR0926059 MR0778202 MR0759341 MR0628003 MR0384363 Zbl 0237.13001
|
[La] |
S. Lang, "Algebra", Addison-Wesley (1984) MR0783636 Zbl 0712.00001
|
[Ok] |
L.Ya. Okunev, "Higher algebra", Moscow-Leningrad (1979) (In Russian) Zbl 0154.26401
|
[Wa] |
B.L. van der Waerden, "Algebra", 1–2, Springer (1967–1971) (Translated from German) MR1541390 Zbl 1032.00002 Zbl 1032.00001 Zbl 0903.01009 Zbl 0781.12003 Zbl 0781.12002 Zbl 0724.12002 Zbl 0724.12001 Zbl 0569.01001 Zbl 0534.01001 Zbl 0997.00502 Zbl 0997.00501 Zbl 0316.22001 Zbl 0297.01014 Zbl 0221.12001 Zbl 0192.33002 Zbl 0137.25403 Zbl 0136.24505 Zbl 0087.25903 Zbl 0192.33001 Zbl 0067.00502
|