Difference between revisions of "Jacobi matrix"
(Added the analysis section) |
m (fixing matrix align) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
===Linear algebra=== | ===Linear algebra=== | ||
− | A Jacobi matrix is a square matrix with real entries such that a_{i,k} = 0 for \left|i-k\right|>1. If one writes a_{i,i} = a_i (i=1,\ldots,n), a_{i,i+1}=b_i, and a_{i+1,i}=c_i (i=1,\ldots,n-1), then a Jacobi matrix has the form | + | A Jacobi matrix is a square [[tridiagonal matrix]] [a_{i,k}] with real entries such that a_{i,k} = 0 for \left|i-k\right|>1. If one writes a_{i,i} = a_i (i=1,\ldots,n), a_{i,i+1}=b_i, and a_{i+1,i}=c_i (i=1,\ldots,n-1), then a Jacobi matrix has the form |
\[ | \[ | ||
\left[ | \left[ | ||
Line 26: | Line 26: | ||
\begin{equation}\label{e:Jacobi_matrix} | \begin{equation}\label{e:Jacobi_matrix} | ||
Df|_y := \left( | Df|_y := \left( | ||
− | \begin{array}{ | + | \begin{array}{cccc} |
− | \frac{\partial f^1}{\partial x_1} (y) & \frac{\partial f^1}{\partial x_2} (y)&\ | + | \frac{\partial f^1}{\partial x_1} (y) & \frac{\partial f^1}{\partial x_2} (y) & \cdots & \frac{\partial f^1}{\partial x_n} (y)\\ |
− | \frac{\partial f^2}{\partial x_1} (y) & \frac{\partial f^2}{\partial x_2} (y)&\ | + | \frac{\partial f^2}{\partial x_1} (y) & \frac{\partial f^2}{\partial x_2} (y) & \cdots & \frac{\partial f^2}{\partial x_n} (y)\\ |
− | \\ | + | \vdots & \vdots & \ddots &\vdots\\ |
− | \vdots & \vdots & &\vdots | + | \frac{\partial f^m}{\partial x_1} (y) & \frac{\partial f^m}{\partial x_2} (y) & \cdots & \frac{\partial f^m}{\partial x_n} (y) |
− | \\ | ||
− | \frac{\partial f^m}{\partial x_1} (y) & \frac{\partial f^m}{\partial x_2} (y)&\ | ||
\end{array}\right)\, , | \end{array}\right)\, , | ||
\end{equation} | \end{equation} |
Latest revision as of 01:37, 7 May 2022
2020 Mathematics Subject Classification: Primary: 47B36 [MSN][ZBL]
Linear algebra
A Jacobi matrix is a square tridiagonal matrix [a_{i,k}] with real entries such that a_{i,k} = 0 for \left|i-k\right|>1. If one writes a_{i,i} = a_i (i=1,\ldots,n), a_{i,i+1}=b_i, and a_{i+1,i}=c_i (i=1,\ldots,n-1), then a Jacobi matrix has the form \left[ \begin{array}{cccccc} a_1 & b_1 & 0 & \cdots & 0 & 0 \\ c_1 & a_2 & b_2 & \cdots & 0 & 0 \\ 0 & c_2 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & b_{n-1} \\ 0 & 0 & 0 & \cdots & c_{n-1} & a_n \end{array} \right] Any minor of a Jacobi matrix J is the product of certain principal minors of J and certain elements of J. A Jacobi matrix J is completely non-negative (that is, all its minors are non-negative) if and only if all its principal minors and all elements b_i and c_i (i=1,\ldots,n-1) are non-negative. If b_ic_i>0 for i=1,\ldots,n-1, then the roots of the characteristic polynomial of J are real and distinct.
Analysis
Let U\subset \mathbb R^n, f: U\to \mathbb R^m and assume that f is differentiable at the point y\in U. The Jacobi matrix, or Jacobian, of f at y is then the matrix \begin{equation}\label{e:Jacobi_matrix} Df|_y := \left( \begin{array}{cccc} \frac{\partial f^1}{\partial x_1} (y) & \frac{\partial f^1}{\partial x_2} (y) & \cdots & \frac{\partial f^1}{\partial x_n} (y)\\ \frac{\partial f^2}{\partial x_1} (y) & \frac{\partial f^2}{\partial x_2} (y) & \cdots & \frac{\partial f^2}{\partial x_n} (y)\\ \vdots & \vdots & \ddots &\vdots\\ \frac{\partial f^m}{\partial x_1} (y) & \frac{\partial f^m}{\partial x_2} (y) & \cdots & \frac{\partial f^m}{\partial x_n} (y) \end{array}\right)\, , \end{equation} where (f^1, \ldots, f^m) are the coordinate functions of f and x_1,\ldots, x_n denote the standard system of coordinates in \mathbb R^n.
References
[GaKr] | F.R. Gantmakher, M.G. Krein, "Oscillation matrices and kernels and small vibrations of mechanical systems", Dept. Commerce USA. Joint Publ. Service (1961) (Translated from Russian) |
[Ru] | W. Rudin, "Principles of mathematical analysis", Third edition, McGraw-Hill (1976) MR038502 Zbl 0346.2600 |
Jacobi matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_matrix&oldid=29168