|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ''on a ringed space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230201.png" />''
| + | {{MSC|14}} |
| + | {{TEX|done}} |
| | | |
− | A sheaf of modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230202.png" /> over a sheaf of rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230203.png" /> with the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230204.png" /> is a sheaf of finite type, that is, it is locally generated over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230205.png" /> by a finite number of sections; and 2) the kernel of any homomorphism of sheaves of modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230206.png" /> over an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230207.png" /> is a sheaf of finite type. If in an exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230208.png" /> of sheaves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c0230209.png" />-modules two of the three sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302010.png" /> are coherent, then the third is coherent as well. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302011.png" /> is a homomorphism of coherent sheaves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302012.png" />-modules, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302015.png" /> are also coherent sheaves. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302017.png" /> are coherent, then so are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302019.png" /> [[#References|[4]]].
| + | ''on a ringed space $(X,\def\cO{ {\mathcal O}}\cO)$'' |
| | | |
− | A structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302020.png" /> is called a coherent sheaf of rings if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302021.png" /> is coherent as a sheaf of modules over itself, which reduces to condition 2). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302022.png" /> is a coherent sheaf of rings, then a sheaf of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302023.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302024.png" /> is coherent if and only if every point of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302025.png" /> has a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302026.png" /> over which there is an exact sequence of sheaves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302027.png" />-modules: | + | A sheaf of modules $\def\cF{ {\mathcal F}}\cF$ over a sheaf of rings |
| + | $\cO$ with the following properties: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302028.png" /></td> </tr></table>
| + | 1) $\cF$ is a sheaf of finite |
| + | type, that is, it is locally generated over $\cO$ by a finite number |
| + | of sections; and |
| | | |
− | [[#References|[4]]]. Furthermore, under this condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302029.png" /> is coherent for any coherent sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302031.png" /> and for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302032.png" /> (see [[#References|[2]]]).
| + | 2) the kernel of any homomorphism of sheaves of |
| + | modules $\cO^p\mid_U\to \cF\mid_U$ over an open set $U\subset X$ is a sheaf of finite |
| + | type. |
| | | |
− | The fundamental classes of ringed spaces with a coherent structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302033.png" /> are: analytic spaces over algebraically closed fields [[#References|[1]]], Noetherian schemes and, in particular, algebraic varieties [[#References|[4]]]. A classical special case is the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302034.png" /> of germs of holomorphic functions in a domain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023020/c02302035.png" />; the statement that it is coherent is known as the Oka coherence theorem [[#References|[3]]], [[#References|[5]]]. The structure sheaf of a real-analytic space is not coherent, in general.
| + | If in an exact sequence $0\to \cF_1\to\cF_2\to\cF_3\to 0$ of sheaves of $\cO$-modules two of the three sheaves $\cF_i$ are coherent, then the third is coherent as well. If $\def\phi{\varphi}\phi:\cF\to\def\cS{ {\mathcal S}}\cS$ is a homomorphism of coherent sheaves of $\cO$-modules, then ${\rm Ker}\;\phi$, ${\rm Coker}\;\phi$, ${\rm Im}\;\phi$ are also coherent sheaves. If $\cF$ and $\cS$ are coherent, then so are $\cF\otimes_\cO \cS$ and ${\rm Hom}_\cO(\cF,\cS)$ |
| + | {{Cite|Se}}. |
| | | |
− | See also [[Coherent analytic sheaf|Coherent analytic sheaf]]; [[Coherent algebraic sheaf|Coherent algebraic sheaf]]. | + | A structure sheaf $\cO$ is called a coherent sheaf of rings if $\cO$ is coherent as a sheaf of modules over itself, which reduces to condition 2). If $\cO$ is a coherent sheaf of rings, then a sheaf of $\cO$-modules $\cF$ is coherent if and only if every point of the space $X$ has a neighbourhood $U$ over which there is an exact sequence of sheaves of $\cO$-modules: |
| + | |
| + | $$\cO^p\mid_U\to\cO^q\mid_U\to\cF\mid_U\to 0,$$ |
| + | {{Cite|Se}}. Furthermore, under this condition ${\rm Ext}_\cO^p(\cF,\cS)$ is coherent for any coherent sheaves $\cF$, $\cS$ and for all $p$ (see |
| + | {{Cite|BaSt}}). |
| + | |
| + | The fundamental classes of ringed spaces with a coherent structure sheaf $\cO$ are: analytic spaces over algebraically closed fields |
| + | {{Cite|Ab}}, Noetherian schemes and, in particular, algebraic varieties |
| + | {{Cite|Se}}. A classical special case is the sheaf $\cO$ of germs of holomorphic functions in a domain of $\mathbf C^n$; the statement that it is coherent is known as the Oka coherence theorem |
| + | {{Cite|GuRo}}, |
| + | {{Cite|Fu}}. The structure sheaf of a real-analytic space is not coherent, in general. |
| + | |
| + | See also |
| + | [[Coherent analytic sheaf|Coherent analytic sheaf]]; |
| + | [[Coherent algebraic sheaf|Coherent algebraic sheaf]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Abhyankar, "Local analytic geometry" , Acad. Press (1964) {{MR|0175897}} {{ZBL|0205.50401}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces" , Wiley (1976) (Translated from Rumanian) {{MR|0463470}} {{ZBL|0334.32001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) {{MR|0180696}} {{ZBL|0141.08601}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Faisceaux algébriques cohérents" ''Ann. of Math.'' , '''61''' (1955) pp. 197–278 {{MR|0068874}} {{ZBL|0067.16201}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> B.A. Fuks, "Special chapters in the theory of analytic functions of several complex variables" , Amer. Math. Soc. (1965) (Translated from Russian) {{MR|0188477}} {{ZBL|0146.30802}} </TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ab}}||valign="top"| S.S. Abhyankar, "Local analytic geometry", Acad. Press (1964) {{MR|0175897}} {{ZBL|0205.50401}} |
| + | |- |
| + | |valign="top"|{{Ref|BaSt}}||valign="top"| C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces", Wiley (1976) (Translated from Rumanian) {{MR|0463470}} {{ZBL|0334.32001}} |
| + | |- |
| + | |valign="top"|{{Ref|Fu}}||valign="top"| B.A. Fuks, "Special chapters in the theory of analytic functions of several complex variables", Amer. Math. Soc. (1965) (Translated from Russian) {{MR|0188477}} {{ZBL|0146.30802}} |
| + | |- |
| + | |valign="top"|{{Ref|GuRo}}||valign="top"| R.C. Gunning, H. Rossi, "Analytic functions of several complex variables", Prentice-Hall (1965) {{MR|0180696}} {{ZBL|0141.08601}} |
| + | |- |
| + | |valign="top"|{{Ref|Se}}||valign="top"| J.-P. Serre, "Faisceaux algébriques cohérents" ''Ann. of Math.'', '''61''' (1955) pp. 197–278 {{MR|0068874}} {{ZBL|0067.16201}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 14-XX [MSN][ZBL]
on a ringed space $(X,\def\cO{ {\mathcal O}}\cO)$
A sheaf of modules $\def\cF{ {\mathcal F}}\cF$ over a sheaf of rings
$\cO$ with the following properties:
1) $\cF$ is a sheaf of finite
type, that is, it is locally generated over $\cO$ by a finite number
of sections; and
2) the kernel of any homomorphism of sheaves of
modules $\cO^p\mid_U\to \cF\mid_U$ over an open set $U\subset X$ is a sheaf of finite
type.
If in an exact sequence $0\to \cF_1\to\cF_2\to\cF_3\to 0$ of sheaves of $\cO$-modules two of the three sheaves $\cF_i$ are coherent, then the third is coherent as well. If $\def\phi{\varphi}\phi:\cF\to\def\cS{ {\mathcal S}}\cS$ is a homomorphism of coherent sheaves of $\cO$-modules, then ${\rm Ker}\;\phi$, ${\rm Coker}\;\phi$, ${\rm Im}\;\phi$ are also coherent sheaves. If $\cF$ and $\cS$ are coherent, then so are $\cF\otimes_\cO \cS$ and ${\rm Hom}_\cO(\cF,\cS)$
[Se].
A structure sheaf $\cO$ is called a coherent sheaf of rings if $\cO$ is coherent as a sheaf of modules over itself, which reduces to condition 2). If $\cO$ is a coherent sheaf of rings, then a sheaf of $\cO$-modules $\cF$ is coherent if and only if every point of the space $X$ has a neighbourhood $U$ over which there is an exact sequence of sheaves of $\cO$-modules:
$$\cO^p\mid_U\to\cO^q\mid_U\to\cF\mid_U\to 0,$$
[Se]. Furthermore, under this condition ${\rm Ext}_\cO^p(\cF,\cS)$ is coherent for any coherent sheaves $\cF$, $\cS$ and for all $p$ (see
[BaSt]).
The fundamental classes of ringed spaces with a coherent structure sheaf $\cO$ are: analytic spaces over algebraically closed fields
[Ab], Noetherian schemes and, in particular, algebraic varieties
[Se]. A classical special case is the sheaf $\cO$ of germs of holomorphic functions in a domain of $\mathbf C^n$; the statement that it is coherent is known as the Oka coherence theorem
[GuRo],
[Fu]. The structure sheaf of a real-analytic space is not coherent, in general.
See also
Coherent analytic sheaf;
Coherent algebraic sheaf.
References
[Ab] |
S.S. Abhyankar, "Local analytic geometry", Acad. Press (1964) MR0175897 Zbl 0205.50401
|
[BaSt] |
C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces", Wiley (1976) (Translated from Rumanian) MR0463470 Zbl 0334.32001
|
[Fu] |
B.A. Fuks, "Special chapters in the theory of analytic functions of several complex variables", Amer. Math. Soc. (1965) (Translated from Russian) MR0188477 Zbl 0146.30802
|
[GuRo] |
R.C. Gunning, H. Rossi, "Analytic functions of several complex variables", Prentice-Hall (1965) MR0180696 Zbl 0141.08601
|
[Se] |
J.-P. Serre, "Faisceaux algébriques cohérents" Ann. of Math., 61 (1955) pp. 197–278 MR0068874 Zbl 0067.16201
|