Difference between revisions of "Coherent sheaf"
(Importing text file) |
m (fixing typos) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | {{MSC|14}} | |
+ | {{TEX|done}} | ||
− | + | ''on a ringed space $(X,\def\cO{ {\mathcal O}}\cO)$'' | |
− | A | + | A sheaf of modules $\def\cF{ {\mathcal F}}\cF$ over a sheaf of rings |
+ | $\cO$ with the following properties: | ||
− | + | 1) $\cF$ is a sheaf of finite | |
+ | type, that is, it is locally generated over $\cO$ by a finite number | ||
+ | of sections; and | ||
− | + | 2) the kernel of any homomorphism of sheaves of | |
+ | modules $\cO^p\mid_U\to \cF\mid_U$ over an open set $U\subset X$ is a sheaf of finite | ||
+ | type. | ||
− | + | If in an exact sequence $0\to \cF_1\to\cF_2\to\cF_3\to 0$ of sheaves of $\cO$-modules two of the three sheaves $\cF_i$ are coherent, then the third is coherent as well. If $\def\phi{\varphi}\phi:\cF\to\def\cS{ {\mathcal S}}\cS$ is a homomorphism of coherent sheaves of $\cO$-modules, then ${\rm Ker}\;\phi$, ${\rm Coker}\;\phi$, ${\rm Im}\;\phi$ are also coherent sheaves. If $\cF$ and $\cS$ are coherent, then so are $\cF\otimes_\cO \cS$ and ${\rm Hom}_\cO(\cF,\cS)$ | |
+ | {{Cite|Se}}. | ||
− | See also [[Coherent analytic sheaf|Coherent analytic sheaf]]; [[Coherent algebraic sheaf|Coherent algebraic sheaf]]. | + | A structure sheaf $\cO$ is called a coherent sheaf of rings if $\cO$ is coherent as a sheaf of modules over itself, which reduces to condition 2). If $\cO$ is a coherent sheaf of rings, then a sheaf of $\cO$-modules $\cF$ is coherent if and only if every point of the space $X$ has a neighbourhood $U$ over which there is an exact sequence of sheaves of $\cO$-modules: |
+ | |||
+ | $$\cO^p\mid_U\to\cO^q\mid_U\to\cF\mid_U\to 0,$$ | ||
+ | {{Cite|Se}}. Furthermore, under this condition ${\rm Ext}_\cO^p(\cF,\cS)$ is coherent for any coherent sheaves $\cF$, $\cS$ and for all $p$ (see | ||
+ | {{Cite|BaSt}}). | ||
+ | |||
+ | The fundamental classes of ringed spaces with a coherent structure sheaf $\cO$ are: analytic spaces over algebraically closed fields | ||
+ | {{Cite|Ab}}, Noetherian schemes and, in particular, algebraic varieties | ||
+ | {{Cite|Se}}. A classical special case is the sheaf $\cO$ of germs of holomorphic functions in a domain of $\mathbf C^n$; the statement that it is coherent is known as the Oka coherence theorem | ||
+ | {{Cite|GuRo}}, | ||
+ | {{Cite|Fu}}. The structure sheaf of a real-analytic space is not coherent, in general. | ||
+ | |||
+ | See also | ||
+ | [[Coherent analytic sheaf|Coherent analytic sheaf]]; | ||
+ | [[Coherent algebraic sheaf|Coherent algebraic sheaf]]. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Ab}}||valign="top"| S.S. Abhyankar, "Local analytic geometry", Acad. Press (1964) {{MR|0175897}} {{ZBL|0205.50401}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|BaSt}}||valign="top"| C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces", Wiley (1976) (Translated from Rumanian) {{MR|0463470}} {{ZBL|0334.32001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Fu}}||valign="top"| B.A. Fuks, "Special chapters in the theory of analytic functions of several complex variables", Amer. Math. Soc. (1965) (Translated from Russian) {{MR|0188477}} {{ZBL|0146.30802}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|GuRo}}||valign="top"| R.C. Gunning, H. Rossi, "Analytic functions of several complex variables", Prentice-Hall (1965) {{MR|0180696}} {{ZBL|0141.08601}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Se}}||valign="top"| J.-P. Serre, "Faisceaux algébriques cohérents" ''Ann. of Math.'', '''61''' (1955) pp. 197–278 {{MR|0068874}} {{ZBL|0067.16201}} | ||
+ | |- | ||
+ | |} |
Latest revision as of 13:34, 6 January 2022
2020 Mathematics Subject Classification: Primary: 14-XX [MSN][ZBL]
on a ringed space $(X,\def\cO{ {\mathcal O}}\cO)$
A sheaf of modules $\def\cF{ {\mathcal F}}\cF$ over a sheaf of rings $\cO$ with the following properties:
1) $\cF$ is a sheaf of finite type, that is, it is locally generated over $\cO$ by a finite number of sections; and
2) the kernel of any homomorphism of sheaves of modules $\cO^p\mid_U\to \cF\mid_U$ over an open set $U\subset X$ is a sheaf of finite type.
If in an exact sequence $0\to \cF_1\to\cF_2\to\cF_3\to 0$ of sheaves of $\cO$-modules two of the three sheaves $\cF_i$ are coherent, then the third is coherent as well. If $\def\phi{\varphi}\phi:\cF\to\def\cS{ {\mathcal S}}\cS$ is a homomorphism of coherent sheaves of $\cO$-modules, then ${\rm Ker}\;\phi$, ${\rm Coker}\;\phi$, ${\rm Im}\;\phi$ are also coherent sheaves. If $\cF$ and $\cS$ are coherent, then so are $\cF\otimes_\cO \cS$ and ${\rm Hom}_\cO(\cF,\cS)$ [Se].
A structure sheaf $\cO$ is called a coherent sheaf of rings if $\cO$ is coherent as a sheaf of modules over itself, which reduces to condition 2). If $\cO$ is a coherent sheaf of rings, then a sheaf of $\cO$-modules $\cF$ is coherent if and only if every point of the space $X$ has a neighbourhood $U$ over which there is an exact sequence of sheaves of $\cO$-modules:
$$\cO^p\mid_U\to\cO^q\mid_U\to\cF\mid_U\to 0,$$ [Se]. Furthermore, under this condition ${\rm Ext}_\cO^p(\cF,\cS)$ is coherent for any coherent sheaves $\cF$, $\cS$ and for all $p$ (see [BaSt]).
The fundamental classes of ringed spaces with a coherent structure sheaf $\cO$ are: analytic spaces over algebraically closed fields [Ab], Noetherian schemes and, in particular, algebraic varieties [Se]. A classical special case is the sheaf $\cO$ of germs of holomorphic functions in a domain of $\mathbf C^n$; the statement that it is coherent is known as the Oka coherence theorem [GuRo], [Fu]. The structure sheaf of a real-analytic space is not coherent, in general.
See also Coherent analytic sheaf; Coherent algebraic sheaf.
References
[Ab] | S.S. Abhyankar, "Local analytic geometry", Acad. Press (1964) MR0175897 Zbl 0205.50401 |
[BaSt] | C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces", Wiley (1976) (Translated from Rumanian) MR0463470 Zbl 0334.32001 |
[Fu] | B.A. Fuks, "Special chapters in the theory of analytic functions of several complex variables", Amer. Math. Soc. (1965) (Translated from Russian) MR0188477 Zbl 0146.30802 |
[GuRo] | R.C. Gunning, H. Rossi, "Analytic functions of several complex variables", Prentice-Hall (1965) MR0180696 Zbl 0141.08601 |
[Se] | J.-P. Serre, "Faisceaux algébriques cohérents" Ann. of Math., 61 (1955) pp. 197–278 MR0068874 Zbl 0067.16201 |
Coherent sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Coherent_sheaf&oldid=16458