Difference between revisions of "Heat content asymptotics"
(Importing text file) |
m (Automatically changed introduction) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 47 formulas, 41 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|part}} | |
+ | Let $M$ be a compact [[Riemannian manifold|Riemannian manifold]] with boundary $\partial M$. Assume given a decomposition of the boundary as the disjoint union of two closed sets $C _ { N }$ and $C _ { D }$. Impose [[Neumann boundary conditions|Neumann boundary conditions]] on $C _ { N }$ and [[Dirichlet boundary conditions|Dirichlet boundary conditions]] on $C _ { D }$. Let $u _ { \Phi }$ be the temperature distribution of the manifold corresponding to an initial temperature $\Phi$; $u _ { \Phi } ( x ; t )$ is the solution to the equations: | ||
− | + | \begin{equation*} ( \partial _ { t } + \Delta ) u = 0, \end{equation*} | |
− | + | \begin{equation*} u ( x ; 0 ) = \Phi ( x ) , u _ { ; m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0, \end{equation*} | |
− | + | \begin{equation*} u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0. \end{equation*} | |
− | + | Here, $u_{:m}$ denotes differentiation with respect to the inward unit normal. Let $\rho$ be a smooth function giving the specific heat. The total heat energy content of $M$ is given by | |
− | + | \begin{equation*} \beta ( \phi , \rho ) ( t ) = \int _ { M } u _ { \Phi } \rho. \end{equation*} | |
− | + | As $t \downarrow 0$, there is an [[Asymptotic expansion|asymptotic expansion]] | |
− | + | \begin{equation*} \beta ( \phi , \rho ) ( t ) \sim \sum _ { n \geq 0 } \beta _ { n } ( \phi , \rho ) t ^ { n / 2 }. \end{equation*} | |
− | + | The coefficients $\beta _ { n } ( \phi , \rho )$ are the heat content asymptotics and are locally computable. | |
− | + | These coefficients were first studied with $C _ { N }$ empty and with $\phi = \rho = 1$. Planar regions with smooth boundaries were studied in [[#References|[a5]]], [[#References|[a6]]], the upper hemisphere was studied in [[#References|[a4]]], [[#References|[a3]]], and polygonal domains in the plane were studied in [[#References|[a7]]]. See [[#References|[a11]]], [[#References|[a12]]] for recursive formulas on a general Riemannian manifold. | |
− | + | More generally, let $L$ be the [[Second fundamental form|second fundamental form]] and let $R$ be the Riemann [[Curvature tensor|curvature tensor]]. Let indices $a$, $b$, $c$ range from $1$ to $m - 1$ and index an orthonormal frame for the tangent bundle of the boundary. Let ":" (respectively, ";" ) denote covariant differentiation with respect to the [[Levi-Civita connection|Levi-Civita connection]] of $\partial M$ (respectively, of $M$) summed over repeated indices. The first few coefficients have the form: | |
− | + | $\beta _ { 0 } ( \phi , \rho ) = \int _ { M } \phi \rho$; | |
− | + | $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$; | |
− | <table class="eq" style="width:100%;"> <tr><td | + | <table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005033.png"/></td> </tr></table> |
− | + | \begin{equation*} + \int _ { C _ { N } } \phi _ { ; m } \rho \,d y; \end{equation*} | |
− | <table class="eq" style="width:100%;"> <tr><td | + | <table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005035.png"/></td> </tr></table> |
− | + | <table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005036.png"/></td> </tr></table> | |
− | + | \begin{equation*} + \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y. \end{equation*} | |
− | One can replace the [[Laplace operator|Laplace operator]] | + | The coefficient $\beta _ { 4 }$ is known. |
+ | |||
+ | The coefficients $\beta_5$ and $\beta_6$ have been determined if $C _ { D }$ is empty. | ||
+ | |||
+ | One can replace the [[Laplace operator|Laplace operator]] $\Delta$ by an arbitrary operator of Laplace type as the evolution operator [[#References|[a1]]], [[#References|[a2]]], [[#References|[a10]]], [[#References|[a9]]]. One can study non-minimal operators as the evolution operator, inhomogeneous boundary conditions, and time-dependent evolution operators of Laplace type. A survey of the field is given in [[#References|[a8]]]. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> M. van den Berg, S. Desjardins, P. Gilkey, "Functoriality and heat content asymptotics for operators of Laplace type" ''Topol. Methods Nonlinear Anal.'' , '''2''' (1993) pp. 147–162</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> M. van den Berg, P. Gilkey, "Heat content asymptotics of a Riemannian manifold with boundary" ''J. Funct. Anal.'' , '''120''' (1994) pp. 48–71</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M. van den Berg, P. Gilkey, "Heat invariants for odd dimensional hemispheres" ''Proc. R. Soc. Edinburgh'' , '''126A''' (1996) pp. 187–193</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> M. van den Berg, "Heat equation on a hemisphere" ''Proc. R. Soc. Edinburgh'' , '''118A''' (1991) pp. 5–12</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> M. van den Berg, E.M. Davies, "Heat flow out of regions in ${\bf R} ^ { n }$" ''Math. Z.'' , '''202''' (1989) pp. 463–482</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> M. van den Berg, J.-F. Le Gall, "Mean curvature and the heat equation" ''Math. Z.'' , '''215''' (1994) pp. 437–464</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> M. van den Berg, S. Srisatkunarajah, "Heat flow and Brownian motion for a region in $\mathbf{R} ^ { 2 }$ with a polygonal boundary" ''Probab. Th. Rel. Fields'' , '''86''' (1990) pp. 41–52</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> P. Gilkey, "Heat content asymptotics" Booss (ed.) Wajciechowski (ed.) , ''Geometric Aspects of Partial Differential Equations'' , ''Contemp. Math.'' , '''242''' , Amer. Math. Soc. (1999) pp. 125–134</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> D.M. McAvity, "Surface energy from heat content asymptotics" ''J. Phys. A: Math. Gen.'' , '''26''' (1993) pp. 823–830</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> D.M. McAvity, "Heat kernel asymptotics for mixed boundary conditions" ''Class. Quant. Grav'' , '''9''' (1992) pp. 1983–1998</td></tr><tr><td valign="top">[a11]</td> <td valign="top"> A. Savo, "Uniform estimates and the whole asymptotic series of the heat content on manifolds" ''Geom. Dedicata'' , '''73''' (1998) pp. 181–214</td></tr><tr><td valign="top">[a12]</td> <td valign="top"> A. Savo, "Heat content and mean curvature" ''J. Rend. Mat. Appl. VII Ser.'' , '''18''' (1998) pp. 197–219</td></tr></table> |
Latest revision as of 17:46, 1 July 2020
Let $M$ be a compact Riemannian manifold with boundary $\partial M$. Assume given a decomposition of the boundary as the disjoint union of two closed sets $C _ { N }$ and $C _ { D }$. Impose Neumann boundary conditions on $C _ { N }$ and Dirichlet boundary conditions on $C _ { D }$. Let $u _ { \Phi }$ be the temperature distribution of the manifold corresponding to an initial temperature $\Phi$; $u _ { \Phi } ( x ; t )$ is the solution to the equations:
\begin{equation*} ( \partial _ { t } + \Delta ) u = 0, \end{equation*}
\begin{equation*} u ( x ; 0 ) = \Phi ( x ) , u _ { ; m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0, \end{equation*}
\begin{equation*} u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0. \end{equation*}
Here, $u_{:m}$ denotes differentiation with respect to the inward unit normal. Let $\rho$ be a smooth function giving the specific heat. The total heat energy content of $M$ is given by
\begin{equation*} \beta ( \phi , \rho ) ( t ) = \int _ { M } u _ { \Phi } \rho. \end{equation*}
As $t \downarrow 0$, there is an asymptotic expansion
\begin{equation*} \beta ( \phi , \rho ) ( t ) \sim \sum _ { n \geq 0 } \beta _ { n } ( \phi , \rho ) t ^ { n / 2 }. \end{equation*}
The coefficients $\beta _ { n } ( \phi , \rho )$ are the heat content asymptotics and are locally computable.
These coefficients were first studied with $C _ { N }$ empty and with $\phi = \rho = 1$. Planar regions with smooth boundaries were studied in [a5], [a6], the upper hemisphere was studied in [a4], [a3], and polygonal domains in the plane were studied in [a7]. See [a11], [a12] for recursive formulas on a general Riemannian manifold.
More generally, let $L$ be the second fundamental form and let $R$ be the Riemann curvature tensor. Let indices $a$, $b$, $c$ range from $1$ to $m - 1$ and index an orthonormal frame for the tangent bundle of the boundary. Let ":" (respectively, ";" ) denote covariant differentiation with respect to the Levi-Civita connection of $\partial M$ (respectively, of $M$) summed over repeated indices. The first few coefficients have the form:
$\beta _ { 0 } ( \phi , \rho ) = \int _ { M } \phi \rho$;
$\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$;
\begin{equation*} + \int _ { C _ { N } } \phi _ { ; m } \rho \,d y; \end{equation*}
\begin{equation*} + \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y. \end{equation*}
The coefficient $\beta _ { 4 }$ is known.
The coefficients $\beta_5$ and $\beta_6$ have been determined if $C _ { D }$ is empty.
One can replace the Laplace operator $\Delta$ by an arbitrary operator of Laplace type as the evolution operator [a1], [a2], [a10], [a9]. One can study non-minimal operators as the evolution operator, inhomogeneous boundary conditions, and time-dependent evolution operators of Laplace type. A survey of the field is given in [a8].
References
[a1] | M. van den Berg, S. Desjardins, P. Gilkey, "Functoriality and heat content asymptotics for operators of Laplace type" Topol. Methods Nonlinear Anal. , 2 (1993) pp. 147–162 |
[a2] | M. van den Berg, P. Gilkey, "Heat content asymptotics of a Riemannian manifold with boundary" J. Funct. Anal. , 120 (1994) pp. 48–71 |
[a3] | M. van den Berg, P. Gilkey, "Heat invariants for odd dimensional hemispheres" Proc. R. Soc. Edinburgh , 126A (1996) pp. 187–193 |
[a4] | M. van den Berg, "Heat equation on a hemisphere" Proc. R. Soc. Edinburgh , 118A (1991) pp. 5–12 |
[a5] | M. van den Berg, E.M. Davies, "Heat flow out of regions in ${\bf R} ^ { n }$" Math. Z. , 202 (1989) pp. 463–482 |
[a6] | M. van den Berg, J.-F. Le Gall, "Mean curvature and the heat equation" Math. Z. , 215 (1994) pp. 437–464 |
[a7] | M. van den Berg, S. Srisatkunarajah, "Heat flow and Brownian motion for a region in $\mathbf{R} ^ { 2 }$ with a polygonal boundary" Probab. Th. Rel. Fields , 86 (1990) pp. 41–52 |
[a8] | P. Gilkey, "Heat content asymptotics" Booss (ed.) Wajciechowski (ed.) , Geometric Aspects of Partial Differential Equations , Contemp. Math. , 242 , Amer. Math. Soc. (1999) pp. 125–134 |
[a9] | D.M. McAvity, "Surface energy from heat content asymptotics" J. Phys. A: Math. Gen. , 26 (1993) pp. 823–830 |
[a10] | D.M. McAvity, "Heat kernel asymptotics for mixed boundary conditions" Class. Quant. Grav , 9 (1992) pp. 1983–1998 |
[a11] | A. Savo, "Uniform estimates and the whole asymptotic series of the heat content on manifolds" Geom. Dedicata , 73 (1998) pp. 181–214 |
[a12] | A. Savo, "Heat content and mean curvature" J. Rend. Mat. Appl. VII Ser. , 18 (1998) pp. 197–219 |
Heat content asymptotics. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Heat_content_asymptotics&oldid=12931