Difference between revisions of "Cayley-Hamilton theorem"
Ulf Rehmann (talk | contribs) m (moved Cayley–Hamilton theorem to Cayley-Hamilton theorem: ascii title) |
m (AUTOMATIC EDIT (latexlist): Replaced 122 formulas out of 122 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 122 formulas, 122 were replaced by TEX code.--> | |
− | be the | + | {{TEX|semi-auto}}{{TEX|done}} |
+ | Let $C ^ { n \times m}$ be the set of complex $( n \times m )$-matrices and $A \in C ^ { n \times n }$. Let | ||
− | + | \begin{equation*} \varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 ) \end{equation*} | |
− | where | + | be the characteristic polynomial of $A$, where $ { I } _ { n }$ is the $( n \times n )$ identity matrix. The Cayley–Hamilton theorem says [[#References|[a2]]], [[#References|[a9]]] that every square matrix satisfies its own [[Characteristic equation|characteristic equation]], i.e. |
− | + | \begin{equation*} \varphi ( A ) = \sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } = 0, \end{equation*} | |
− | + | where $0$ is the zero-matrix. | |
− | + | The classical Cayley–Hamilton theorem can be extended to rectangle matrices. A matrix $A \in C ^ { m \times n }$ for $n > m$ may be written as $A = [ A _ { 1 } , A _ { 2 } ]$, $A _ { 1 } \in C ^ { m \times m }$, $A _ { 2 } \in C ^ { m \times ( n - m ) }$. Let | |
− | + | \begin{equation*} \operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { m } a _ { i } \lambda ^ { i } ( a _ { m } = 1 ). \end{equation*} | |
− | A | + | Then the matrix $A \in C ^ { m \times n }$ ($n > m$) satisfies the equation [[#References|[a8]]] |
− | + | \begin{equation*} \sum _ { i = 0 } ^ { m } a _ { m - i } [ A _ { 1 } ^ { m - i } , A _ { 1 } ^ { n - i - 1 } A _ { 2 } ] = 0. \end{equation*} | |
+ | |||
+ | A matrix $A \in C ^ { m \times n }$ ($m > n$) may be written as | ||
+ | |||
+ | \begin{equation*} A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] , \quad A _ { 1 } \in C ^ { n \times n } , A _ { 2 } \in C ^ { ( m - n ) \times n }. \end{equation*} | ||
Let | Let | ||
− | + | \begin{equation*} \operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 ). \end{equation*} | |
− | Then the matrix | + | Then the matrix $A \in C ^ { m \times n }$ ($m > n$) satisfies the equation [[#References|[a8]]] |
− | + | \begin{equation*} \sum _ { i = 0 } ^ { n } a _ { n - 1 } \left[ \begin{array} { c } { A _ { 1 } ^ { m - i } } \\ { A _ { 2 } A _ { 1 } ^ { m - i - 1 } } \end{array} \right] = 0 _ { m n }. \end{equation*} | |
The Cayley–Hamilton theorem can be also extended to block matrices ([[#References|[a4]]], [[#References|[a13]]], [[#References|[a15]]]). Let | The Cayley–Hamilton theorem can be also extended to block matrices ([[#References|[a4]]], [[#References|[a13]]], [[#References|[a15]]]). Let | ||
− | + | \begin{equation} \tag{a1} A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }, \end{equation} | |
− | where | + | where $A _ {i j } \in C ^ { n \times n }$ are commutative, i.e. $A _ { i j } A _ { k l } = A _ { k l } A _ { i j }$ for all $i , j , k = 1 , \dots , m$. Let |
− | + | \begin{equation*} \Delta ( \Lambda ) = \operatorname { Det } [ I _ { m } \bigotimes \Lambda - A _ { 1 } ] = \end{equation*} | |
− | + | \begin{equation*} = \Lambda ^ { m } + D _ { 1 } \Lambda ^ { m - 1 } + \ldots + D _ { m - 1 } \Lambda + D _ { m } , D _ { k } \in C ^ { n \times n } , k = 1 , \ldots , m, \end{equation*} | |
− | be the matrix characteristic polynomial and let | + | be the matrix characteristic polynomial and let $\Delta \in C ^ { n \times n }$ be the matrix (block) eigenvalue of $A _ { 1 }$, where $\otimes$ denotes the Kronecker product. The matrix $\Delta ( \Lambda )$ is obtained by developing the determinant of $[ l _ { m } \otimes \Lambda - A _ { 1 } ]$, considering its commuting blocks as elements [[#References|[a15]]]. |
The block matrix (a1) satisfies the equation [[#References|[a15]]] | The block matrix (a1) satisfies the equation [[#References|[a15]]] | ||
− | + | \begin{equation*} \Delta ( A _ { 1 } ) = \sum _ { i = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ). \end{equation*} | |
− | Consider now a rectangular block matrix | + | Consider now a rectangular block matrix $A = [ A_{l} , A _ { 2 } ] \in C ^ { mn \times ( m n + p )}$, where $A _ { 1 }$ has the form (a1) and $A _ { 2 } \in C ^ { m n \times p }$ ($p > 0$). The matrix $A$ satisfies the equation [[#References|[a4]]] |
− | + | \begin{equation*} \sum _ { l = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) [ A _ { 1 } ^ { i + 1 } , A _ { 1 } ^ { i } A _ { 2 } ] = 0 ( D _ { 0 } = I _ { n } ). \end{equation*} | |
− | If | + | If $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] \in C ^ { ( m n + p ) \times m }$, where $A _ { 1 }$ has the form (a1) and $A _ { 2 } \in C ^ { p \times m n }$, then |
− | + | \begin{equation*} \sum _ { i = 0 } ^ { m } \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ). \end{equation*} | |
− | A pair of matrices | + | A pair of matrices $E , A \in C ^ { n \times n }$ is called regular if $\operatorname { det } [ E \lambda - A ] \neq 0$ for some $\lambda \in \mathbf{C}$ [[#References|[a10]]], [[#References|[a11]]], [[#References|[a12]]]. The pair is called standard if there exist scalars $\alpha , \beta \in \bf{C}$ such that $E \alpha + A \beta = I _ { n }$. If the pair $E , A \in C ^ { n \times n }$ is regular, then the pair |
− | + | \begin{equation} \tag{a2} \overline{E} = [ E \lambda - A ] ^ { - 1 } E , \overline{A} = [ E \lambda - A ] ^ { - 1 } A \end{equation} | |
− | is standard. If the pair | + | is standard. If the pair $E , A \in C ^ { n \times n }$ is standard, then it is also commutative ($E A = A E$). Let a pair $E , A \in C ^ { n \times n }$ be standard (commutative) and |
− | + | \begin{equation*} \Delta ( \lambda , \mu ) = \operatorname { det } [ E \lambda - A \mu ] = \sum _ { i = 0 } ^ { n } a _ { i , n - i } \lambda ^ { i } \mu ^ { n - i }. \end{equation*} | |
Then the pair satisfies the equation [[#References|[a1]]] | Then the pair satisfies the equation [[#References|[a1]]] | ||
− | + | \begin{equation*} \Delta ( A , E ) = \sum _ { i = 0 } ^ { n } a _ { i , n - i }A ^ { i } E ^ { n - i } = 0. \end{equation*} | |
− | In a particular case, with | + | In a particular case, with $\operatorname { det } [ E \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } s ^ { i }$, it follows that $\sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } E ^ { n - i } = 0$. |
− | Let | + | Let $P _ { n } ( C )$ be the set of $n$-order square complex matrices that commute in pairs and let $M _ { m } ( P _ { n } )$ be the set of square matrices partitioned in $m ^ { 2 }$ blocks belonging to $P _ { n } ( C )$. |
− | Consider a standard pair of block matrices | + | Consider a standard pair of block matrices $E,A \in M _ { m } ( P _ { n } )$ and let the matrix polynomial |
− | + | \begin{equation*} \Delta ( \Lambda , M ) = \text { Det } [ E \bigotimes \Lambda - A \bigotimes M ] = \end{equation*} | |
− | + | \begin{equation*} = \sum _ { i = 0 } ^ { m } D _ { i , m - i } \Lambda ^ { i } M ^ { m - i } , D _ { i j } \in C ^ { n \times n }, \end{equation*} | |
− | be its matrix characteristic polynomial. The pair | + | be its matrix characteristic polynomial. The pair $( \Lambda , M )$ is called the block-eigenvalue pair of the pair $E , A$. |
Then [[#References|[a6]]] | Then [[#References|[a6]]] | ||
− | + | \begin{equation*} \Delta ( A , E ) = \sum _ { i = 0 } ^ { m } I \bigotimes D _ { i , n - i } A ^ { i } E ^ { m - i } = 0. \end{equation*} | |
The Cayley–Hamilton theorem can be also extended to singular two-dimensional linear systems described by Roesser-type or Fomasini–Marchesini-type models [[#References|[a3]]], [[#References|[a14]]]. The singular two-dimensional Roesser model is given by | The Cayley–Hamilton theorem can be also extended to singular two-dimensional linear systems described by Roesser-type or Fomasini–Marchesini-type models [[#References|[a3]]], [[#References|[a14]]]. The singular two-dimensional Roesser model is given by | ||
− | + | \begin{equation*} \left[ \begin{array} { c c } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i + 1} ^ { h } , j } \\ { x _ { i ,\, j + 1 } ^ { \nu } } \end{array} \right] = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i j } ^ { h } } \\ { x _ { i j } ^ { \nu } } \end{array} \right] + \left[ \begin{array} { c } { B _ { 1 } } \\ { B _ { 2 } } \end{array} \right] u _ { ij }, \end{equation*} | |
− | + | \begin{equation*} i , j, \in \mathbf{Z}_+ . \end{equation*} | |
− | Here, | + | Here, ${\bf Z}_+$ is the set of non-negative integers; $x _ { i j } ^ { h } \in \mathbf{R} ^ { n _ { 1 } }$, respectively $x _ { i j } ^ { v } \in \mathbf{R} ^ { n _ { 2 } }$, are the horizontal, respectively vertical, semi-state vector at the point $( i , j )$; $u _ { ij } \in \mathbf{R} ^ { m }$ is the input vector; $E _ { k }$, $A _ { k }$ ($k = 1 , \dots , 4$) and $B _ { i }$ ($i = 1,2$) have dimensions compatible with $x _ { i j } ^ { h }$ and $x _ { i j } ^ { \nu }$; and |
− | + | \begin{equation*} \left[ \begin{array} { l l } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \end{equation*} | |
may be singular. The characteristic polynomial has the form | may be singular. The characteristic polynomial has the form | ||
− | + | \begin{equation*} \Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A_4 } \end{array} \right] = \end{equation*} | |
− | + | \begin{equation*} = \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } z _ { 1 } ^ { i } z _ { 2 } ^ { j } \end{equation*} | |
− | and the transition matrices | + | and the transition matrices $T _ { p , q }$, $p , q \in \mathbf{Z} _ { + }$, are defined by |
− | + | \begin{equation*} \left[ \begin{array} { l l } { E _ { l } } & { 0 } \\ { E _ { 3 } } & { 0 } \end{array} \right] T _ { p , q - 1 } + \left[ \begin{array} { l l } { 0 } & { E _ { 2 } } \\ { 0 } & { E _ { 4 } } \end{array} \right] T _ { p - 1 , q } + \end{equation*} | |
− | + | \begin{equation*} + \left[ \begin{array} { l l } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } 4 } \end{array} \right] T _ { p - l , q - 1 } = \end{equation*} | |
− | + | \begin{equation*} = \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0, } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0. } \end{array} \right. \end{equation*} | |
− | If | + | If $E = I _ { n }$, $n = n_l+ n_2$ (the standard Roesser model), then the transition matrices $T _ { p q }$ may be computed recursively, using the formula $T _ { p q } = T _ { 10 } T _ { p - 1 , q } + T _ { 01 } T _ { p , q - 1 }$, where $T _ { 00 } = I _ { n }$, |
− | + | \begin{equation*} T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] ,\; T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right]. \end{equation*} | |
− | The matrices | + | The matrices $T _ { p q }$ satisfy the equation [[#References|[a3]]] |
− | + | \begin{equation*} \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0 \end{equation*} | |
The singular two-dimensional Fornasini–Marchesini model is given by | The singular two-dimensional Fornasini–Marchesini model is given by | ||
− | + | \begin{equation*} E x _ { i + 1 ,\, j + 1 } = A _ { 0} x _ {i j } + A _ { 1 } x _ { i + 1 ,\, j } + A _ { 2 } x _ { i ,\, j + 1 } + B u _ { i j }, \end{equation*} | |
− | + | \begin{equation*} i , j \in \mathbf Z _ { + }, \end{equation*} | |
− | where | + | where $x _ { i j } \in \mathbf{R} ^ { n }$ is the local semi-vector at the point $( i , j )$, $u _ { ij } \in \mathbf{R} ^ { m }$ is the input vector, $E , A _ { k } \in \mathbf{R} ^ { n \times m }$ and $E$ is possibly singular. The characteristic polynomial has the form |
− | + | \begin{equation*} \Delta ( z _ { l } , z _ { 2 } ) = \operatorname { det } [ E z _ { 1 } z _ { 2 } - A _ { 1 } z _ { 1 } - A _ { 2 } z _ { 2 } - A _ { 0 } ] = \end{equation*} | |
− | + | \begin{equation*} = \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } z_{1}^ {i} z _ { 2 } ^ { j } \end{equation*} | |
− | and the transition matrices | + | and the transition matrices $T _ { p , q }$, $p , q \in \mathbf{Z} _ { + }$, are defined by |
− | + | \begin{equation*} E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } = \end{equation*} | |
− | + | \begin{equation*} = \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0, } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0. } \end{array} \right. \end{equation*} | |
− | The matrices | + | The matrices $T _ { p q }$ satisfy the equation |
− | + | \begin{equation*} \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0 \end{equation*} | |
The theorems may be also extended to two-dimensional continuous-discrete linear systems [[#References|[a5]]]. | The theorems may be also extended to two-dimensional continuous-discrete linear systems [[#References|[a5]]]. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> F.R. Chang, C.N. Chen, "The generalized Cayley–Hamilton theorem for standard pencils" ''Systems and Control Lett.'' , '''18''' (1992) pp. 179–182</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> F.R. Gantmacher, "The theory of matrices" , '''2''' , Chelsea (1974)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> T. Kaczorek, "Linear control systems" , '''I–II''' , Research Studies Press (1992/93)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> T. Kaczorek, "An extension of the Cayley–Hamilton theorem for non-square blocks matrices and computation of the left and right inverses of matrices" ''Bull. Polon. Acad. Sci. Techn.'' , '''43''' : 1 (1995) pp. 49–56</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> T. Kaczorek, "Extensions of the Cayley Hamilton theorem for $2$-D continuous discrete linear systems" ''Appl. Math. and Comput. Sci.'' , '''4''' : 4 (1994) pp. 507–515</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> T. Kaczorek, "An extension of the Cayley–Hamilton theorem for a standard pair of block matrices" ''Appl. Math. and Comput. Sci.'' , '''8''' : 3 (1998) pp. 511–516</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> T. Kaczorek, "An extension of Cayley–Hamillon theorem for singular $2$-D linear systems with non-square matrices" ''Bull. Polon. Acad. Sci. Techn.'' , '''43''' : 1 (1995) pp. 39–48</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> T. Kaczorek, "Generalizations of the Cayley–Hamilton theorem for nonsquare matrices" ''Prace Sem. Podstaw Elektrotechnik. i Teor. Obwodów'' , '''XVIII–SPETO''' (1995) pp. 77–83</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> P. Lancaster, "Theory of matrices" , Acad. Press (1969)</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> F.L. Lewis, "Cayley--Hamilton theorem and Fadeev's method for the matrix pencil $[ s E - A ]$" , ''Proc. 22nd IEEE Conf Decision Control'' (1982) pp. 1282–1288</td></tr><tr><td valign="top">[a11]</td> <td valign="top"> F.L. Lewis, "Further remarks on the Cayley–Hamilton theorem and Leverrie's method for the matrix pencil $[ s E - A ]$" ''IEEE Trans. Automat. Control'' , '''31''' (1986) pp. 869–870</td></tr><tr><td valign="top">[a12]</td> <td valign="top"> B.G. Mertzios, M.A. Christodoulous, "On the generalized Cayley–Hamilton theorem" ''IEEE Trans. Automat. Control'' , '''31''' (1986) pp. 156–157</td></tr><tr><td valign="top">[a13]</td> <td valign="top"> N.M. Smart, S. Barnett, "The algebra of matrices in $n$-dimensional systems" ''Math. Control Inform.'' , '''6''' (1989) pp. 121–133</td></tr><tr><td valign="top">[a14]</td> <td valign="top"> N.J. Theodoru, "A Hamilton theorem" ''IEEE Trans. Automat. Control'' , '''AC–34''' : 5 (1989) pp. 563–565</td></tr><tr><td valign="top">[a15]</td> <td valign="top"> J. Victoria, "A block-Cayley–Hamilton theorem" ''Bull. Math. Soc. Sci. Math. Roum.'' , '''26''' : 1 (1982) pp. 93–97</td></tr></table> |
Latest revision as of 17:01, 1 July 2020
Let $C ^ { n \times m}$ be the set of complex $( n \times m )$-matrices and $A \in C ^ { n \times n }$. Let
\begin{equation*} \varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 ) \end{equation*}
be the characteristic polynomial of $A$, where $ { I } _ { n }$ is the $( n \times n )$ identity matrix. The Cayley–Hamilton theorem says [a2], [a9] that every square matrix satisfies its own characteristic equation, i.e.
\begin{equation*} \varphi ( A ) = \sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } = 0, \end{equation*}
where $0$ is the zero-matrix.
The classical Cayley–Hamilton theorem can be extended to rectangle matrices. A matrix $A \in C ^ { m \times n }$ for $n > m$ may be written as $A = [ A _ { 1 } , A _ { 2 } ]$, $A _ { 1 } \in C ^ { m \times m }$, $A _ { 2 } \in C ^ { m \times ( n - m ) }$. Let
\begin{equation*} \operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { m } a _ { i } \lambda ^ { i } ( a _ { m } = 1 ). \end{equation*}
Then the matrix $A \in C ^ { m \times n }$ ($n > m$) satisfies the equation [a8]
\begin{equation*} \sum _ { i = 0 } ^ { m } a _ { m - i } [ A _ { 1 } ^ { m - i } , A _ { 1 } ^ { n - i - 1 } A _ { 2 } ] = 0. \end{equation*}
A matrix $A \in C ^ { m \times n }$ ($m > n$) may be written as
\begin{equation*} A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] , \quad A _ { 1 } \in C ^ { n \times n } , A _ { 2 } \in C ^ { ( m - n ) \times n }. \end{equation*}
Let
\begin{equation*} \operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 ). \end{equation*}
Then the matrix $A \in C ^ { m \times n }$ ($m > n$) satisfies the equation [a8]
\begin{equation*} \sum _ { i = 0 } ^ { n } a _ { n - 1 } \left[ \begin{array} { c } { A _ { 1 } ^ { m - i } } \\ { A _ { 2 } A _ { 1 } ^ { m - i - 1 } } \end{array} \right] = 0 _ { m n }. \end{equation*}
The Cayley–Hamilton theorem can be also extended to block matrices ([a4], [a13], [a15]). Let
\begin{equation} \tag{a1} A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }, \end{equation}
where $A _ {i j } \in C ^ { n \times n }$ are commutative, i.e. $A _ { i j } A _ { k l } = A _ { k l } A _ { i j }$ for all $i , j , k = 1 , \dots , m$. Let
\begin{equation*} \Delta ( \Lambda ) = \operatorname { Det } [ I _ { m } \bigotimes \Lambda - A _ { 1 } ] = \end{equation*}
\begin{equation*} = \Lambda ^ { m } + D _ { 1 } \Lambda ^ { m - 1 } + \ldots + D _ { m - 1 } \Lambda + D _ { m } , D _ { k } \in C ^ { n \times n } , k = 1 , \ldots , m, \end{equation*}
be the matrix characteristic polynomial and let $\Delta \in C ^ { n \times n }$ be the matrix (block) eigenvalue of $A _ { 1 }$, where $\otimes$ denotes the Kronecker product. The matrix $\Delta ( \Lambda )$ is obtained by developing the determinant of $[ l _ { m } \otimes \Lambda - A _ { 1 } ]$, considering its commuting blocks as elements [a15].
The block matrix (a1) satisfies the equation [a15]
\begin{equation*} \Delta ( A _ { 1 } ) = \sum _ { i = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ). \end{equation*}
Consider now a rectangular block matrix $A = [ A_{l} , A _ { 2 } ] \in C ^ { mn \times ( m n + p )}$, where $A _ { 1 }$ has the form (a1) and $A _ { 2 } \in C ^ { m n \times p }$ ($p > 0$). The matrix $A$ satisfies the equation [a4]
\begin{equation*} \sum _ { l = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) [ A _ { 1 } ^ { i + 1 } , A _ { 1 } ^ { i } A _ { 2 } ] = 0 ( D _ { 0 } = I _ { n } ). \end{equation*}
If $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] \in C ^ { ( m n + p ) \times m }$, where $A _ { 1 }$ has the form (a1) and $A _ { 2 } \in C ^ { p \times m n }$, then
\begin{equation*} \sum _ { i = 0 } ^ { m } \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ). \end{equation*}
A pair of matrices $E , A \in C ^ { n \times n }$ is called regular if $\operatorname { det } [ E \lambda - A ] \neq 0$ for some $\lambda \in \mathbf{C}$ [a10], [a11], [a12]. The pair is called standard if there exist scalars $\alpha , \beta \in \bf{C}$ such that $E \alpha + A \beta = I _ { n }$. If the pair $E , A \in C ^ { n \times n }$ is regular, then the pair
\begin{equation} \tag{a2} \overline{E} = [ E \lambda - A ] ^ { - 1 } E , \overline{A} = [ E \lambda - A ] ^ { - 1 } A \end{equation}
is standard. If the pair $E , A \in C ^ { n \times n }$ is standard, then it is also commutative ($E A = A E$). Let a pair $E , A \in C ^ { n \times n }$ be standard (commutative) and
\begin{equation*} \Delta ( \lambda , \mu ) = \operatorname { det } [ E \lambda - A \mu ] = \sum _ { i = 0 } ^ { n } a _ { i , n - i } \lambda ^ { i } \mu ^ { n - i }. \end{equation*}
Then the pair satisfies the equation [a1]
\begin{equation*} \Delta ( A , E ) = \sum _ { i = 0 } ^ { n } a _ { i , n - i }A ^ { i } E ^ { n - i } = 0. \end{equation*}
In a particular case, with $\operatorname { det } [ E \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } s ^ { i }$, it follows that $\sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } E ^ { n - i } = 0$.
Let $P _ { n } ( C )$ be the set of $n$-order square complex matrices that commute in pairs and let $M _ { m } ( P _ { n } )$ be the set of square matrices partitioned in $m ^ { 2 }$ blocks belonging to $P _ { n } ( C )$.
Consider a standard pair of block matrices $E,A \in M _ { m } ( P _ { n } )$ and let the matrix polynomial
\begin{equation*} \Delta ( \Lambda , M ) = \text { Det } [ E \bigotimes \Lambda - A \bigotimes M ] = \end{equation*}
\begin{equation*} = \sum _ { i = 0 } ^ { m } D _ { i , m - i } \Lambda ^ { i } M ^ { m - i } , D _ { i j } \in C ^ { n \times n }, \end{equation*}
be its matrix characteristic polynomial. The pair $( \Lambda , M )$ is called the block-eigenvalue pair of the pair $E , A$.
Then [a6]
\begin{equation*} \Delta ( A , E ) = \sum _ { i = 0 } ^ { m } I \bigotimes D _ { i , n - i } A ^ { i } E ^ { m - i } = 0. \end{equation*}
The Cayley–Hamilton theorem can be also extended to singular two-dimensional linear systems described by Roesser-type or Fomasini–Marchesini-type models [a3], [a14]. The singular two-dimensional Roesser model is given by
\begin{equation*} \left[ \begin{array} { c c } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i + 1} ^ { h } , j } \\ { x _ { i ,\, j + 1 } ^ { \nu } } \end{array} \right] = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i j } ^ { h } } \\ { x _ { i j } ^ { \nu } } \end{array} \right] + \left[ \begin{array} { c } { B _ { 1 } } \\ { B _ { 2 } } \end{array} \right] u _ { ij }, \end{equation*}
\begin{equation*} i , j, \in \mathbf{Z}_+ . \end{equation*}
Here, ${\bf Z}_+$ is the set of non-negative integers; $x _ { i j } ^ { h } \in \mathbf{R} ^ { n _ { 1 } }$, respectively $x _ { i j } ^ { v } \in \mathbf{R} ^ { n _ { 2 } }$, are the horizontal, respectively vertical, semi-state vector at the point $( i , j )$; $u _ { ij } \in \mathbf{R} ^ { m }$ is the input vector; $E _ { k }$, $A _ { k }$ ($k = 1 , \dots , 4$) and $B _ { i }$ ($i = 1,2$) have dimensions compatible with $x _ { i j } ^ { h }$ and $x _ { i j } ^ { \nu }$; and
\begin{equation*} \left[ \begin{array} { l l } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \end{equation*}
may be singular. The characteristic polynomial has the form
\begin{equation*} \Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A_4 } \end{array} \right] = \end{equation*}
\begin{equation*} = \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } z _ { 1 } ^ { i } z _ { 2 } ^ { j } \end{equation*}
and the transition matrices $T _ { p , q }$, $p , q \in \mathbf{Z} _ { + }$, are defined by
\begin{equation*} \left[ \begin{array} { l l } { E _ { l } } & { 0 } \\ { E _ { 3 } } & { 0 } \end{array} \right] T _ { p , q - 1 } + \left[ \begin{array} { l l } { 0 } & { E _ { 2 } } \\ { 0 } & { E _ { 4 } } \end{array} \right] T _ { p - 1 , q } + \end{equation*}
\begin{equation*} + \left[ \begin{array} { l l } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } 4 } \end{array} \right] T _ { p - l , q - 1 } = \end{equation*}
\begin{equation*} = \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0, } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0. } \end{array} \right. \end{equation*}
If $E = I _ { n }$, $n = n_l+ n_2$ (the standard Roesser model), then the transition matrices $T _ { p q }$ may be computed recursively, using the formula $T _ { p q } = T _ { 10 } T _ { p - 1 , q } + T _ { 01 } T _ { p , q - 1 }$, where $T _ { 00 } = I _ { n }$,
\begin{equation*} T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] ,\; T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right]. \end{equation*}
The matrices $T _ { p q }$ satisfy the equation [a3]
\begin{equation*} \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0 \end{equation*}
The singular two-dimensional Fornasini–Marchesini model is given by
\begin{equation*} E x _ { i + 1 ,\, j + 1 } = A _ { 0} x _ {i j } + A _ { 1 } x _ { i + 1 ,\, j } + A _ { 2 } x _ { i ,\, j + 1 } + B u _ { i j }, \end{equation*}
\begin{equation*} i , j \in \mathbf Z _ { + }, \end{equation*}
where $x _ { i j } \in \mathbf{R} ^ { n }$ is the local semi-vector at the point $( i , j )$, $u _ { ij } \in \mathbf{R} ^ { m }$ is the input vector, $E , A _ { k } \in \mathbf{R} ^ { n \times m }$ and $E$ is possibly singular. The characteristic polynomial has the form
\begin{equation*} \Delta ( z _ { l } , z _ { 2 } ) = \operatorname { det } [ E z _ { 1 } z _ { 2 } - A _ { 1 } z _ { 1 } - A _ { 2 } z _ { 2 } - A _ { 0 } ] = \end{equation*}
\begin{equation*} = \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } z_{1}^ {i} z _ { 2 } ^ { j } \end{equation*}
and the transition matrices $T _ { p , q }$, $p , q \in \mathbf{Z} _ { + }$, are defined by
\begin{equation*} E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } = \end{equation*}
\begin{equation*} = \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0, } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0. } \end{array} \right. \end{equation*}
The matrices $T _ { p q }$ satisfy the equation
\begin{equation*} \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0 \end{equation*}
The theorems may be also extended to two-dimensional continuous-discrete linear systems [a5].
References
[a1] | F.R. Chang, C.N. Chen, "The generalized Cayley–Hamilton theorem for standard pencils" Systems and Control Lett. , 18 (1992) pp. 179–182 |
[a2] | F.R. Gantmacher, "The theory of matrices" , 2 , Chelsea (1974) |
[a3] | T. Kaczorek, "Linear control systems" , I–II , Research Studies Press (1992/93) |
[a4] | T. Kaczorek, "An extension of the Cayley–Hamilton theorem for non-square blocks matrices and computation of the left and right inverses of matrices" Bull. Polon. Acad. Sci. Techn. , 43 : 1 (1995) pp. 49–56 |
[a5] | T. Kaczorek, "Extensions of the Cayley Hamilton theorem for $2$-D continuous discrete linear systems" Appl. Math. and Comput. Sci. , 4 : 4 (1994) pp. 507–515 |
[a6] | T. Kaczorek, "An extension of the Cayley–Hamilton theorem for a standard pair of block matrices" Appl. Math. and Comput. Sci. , 8 : 3 (1998) pp. 511–516 |
[a7] | T. Kaczorek, "An extension of Cayley–Hamillon theorem for singular $2$-D linear systems with non-square matrices" Bull. Polon. Acad. Sci. Techn. , 43 : 1 (1995) pp. 39–48 |
[a8] | T. Kaczorek, "Generalizations of the Cayley–Hamilton theorem for nonsquare matrices" Prace Sem. Podstaw Elektrotechnik. i Teor. Obwodów , XVIII–SPETO (1995) pp. 77–83 |
[a9] | P. Lancaster, "Theory of matrices" , Acad. Press (1969) |
[a10] | F.L. Lewis, "Cayley--Hamilton theorem and Fadeev's method for the matrix pencil $[ s E - A ]$" , Proc. 22nd IEEE Conf Decision Control (1982) pp. 1282–1288 |
[a11] | F.L. Lewis, "Further remarks on the Cayley–Hamilton theorem and Leverrie's method for the matrix pencil $[ s E - A ]$" IEEE Trans. Automat. Control , 31 (1986) pp. 869–870 |
[a12] | B.G. Mertzios, M.A. Christodoulous, "On the generalized Cayley–Hamilton theorem" IEEE Trans. Automat. Control , 31 (1986) pp. 156–157 |
[a13] | N.M. Smart, S. Barnett, "The algebra of matrices in $n$-dimensional systems" Math. Control Inform. , 6 (1989) pp. 121–133 |
[a14] | N.J. Theodoru, "A Hamilton theorem" IEEE Trans. Automat. Control , AC–34 : 5 (1989) pp. 563–565 |
[a15] | J. Victoria, "A block-Cayley–Hamilton theorem" Bull. Math. Soc. Sci. Math. Roum. , 26 : 1 (1982) pp. 93–97 |
Cayley-Hamilton theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cayley-Hamilton_theorem&oldid=22271