Namespaces
Variants
Actions

Difference between revisions of "Berezin transform"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 85 formulas out of 85 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 85 formulas, 85 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''Berezin transformation''
 
''Berezin transformation''
  
The Berezin transform associates smooth functions with operators on Hilbert spaces of analytic functions. The usual setting involves an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301001.png" /> and a [[Hilbert space|Hilbert space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301002.png" /> of analytic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301003.png" /> (cf. also [[Analytic function|Analytic function]]). It is assumed that, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301004.png" />, the point evaluation at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301005.png" /> is a continuous [[Linear functional|linear functional]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301006.png" />. Thus, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301007.png" />, there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301008.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301009.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010010.png" />. Because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010011.png" /> reproduces the value of functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010012.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010013.png" />, it is called the reproducing kernel. The normalized reproducing kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010014.png" /> is defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010015.png" />.
+
The Berezin transform associates smooth functions with operators on Hilbert spaces of analytic functions. The usual setting involves an open set $\Omega \subset {\bf C} ^ { n }$ and a [[Hilbert space|Hilbert space]] $H$ of analytic functions on $\Omega$ (cf. also [[Analytic function|Analytic function]]). It is assumed that, for each $z \in \Omega$, the point evaluation at $z$ is a continuous [[Linear functional|linear functional]] on $H$. Thus, for each $z \in \Omega$, there exists a $K _ { Z } \in H$ such that $f ( z ) = \langle f , K _ { z } \rangle$ for every $f \in H$. Because $K _ { z }$ reproduces the value of functions in $H$ at $z$, it is called the reproducing kernel. The normalized reproducing kernel $k _ { z }$ is defined by $k _ { z } = K _ { z } / \| K _ { z } \|$.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010016.png" /> a bounded operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010017.png" />, the Berezin transform of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010018.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010019.png" />, is the complex-valued function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010020.png" /> defined by
+
For $T$ a bounded operator on $H$, the Berezin transform of $T$, denoted by $\tilde{T}$, is the complex-valued function on $\Omega$ defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010021.png" /></td> </tr></table>
+
\begin{equation*} \widetilde{T} ( z ) = \langle T k _ { z } , k _ { z } \rangle. \end{equation*}
  
For each bounded operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010023.png" />, the Berezin transform <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010024.png" /> is a bounded real-analytic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010025.png" />. Properties of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010026.png" /> are often reflected in properties of the Berezin transform <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010027.png" />.
+
For each bounded operator $T$ on $H$, the Berezin transform $\tilde{T}$ is a bounded real-analytic function on $\Omega$. Properties of the operator $T$ are often reflected in properties of the Berezin transform $\tilde{T}$.
  
 
The Berezin transform is named in honour of F. Berezin, who introduced this concept in [[#References|[a4]]].
 
The Berezin transform is named in honour of F. Berezin, who introduced this concept in [[#References|[a4]]].
Line 13: Line 21:
 
The Berezin transform has been useful in several contexts, ranging from the Hardy space (see, for example, [[#References|[a8]]]) to the Bargmann–Segal space (see, for example, [[#References|[a5]]]), with major connections to the Bloch space and functions of bounded mean oscillation (see, for example, [[#References|[a9]]]). However, the Berezin transform has been most successful as a tool to study operators on the Bergman space. For concreteness and simplicity, attention below is restricted to the latter setting.
 
The Berezin transform has been useful in several contexts, ranging from the Hardy space (see, for example, [[#References|[a8]]]) to the Bargmann–Segal space (see, for example, [[#References|[a5]]]), with major connections to the Bloch space and functions of bounded mean oscillation (see, for example, [[#References|[a9]]]). However, the Berezin transform has been most successful as a tool to study operators on the Bergman space. For concreteness and simplicity, attention below is restricted to the latter setting.
  
The Bergman space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010028.png" /> (cf. also [[Bergman spaces|Bergman spaces]]) consists of the analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010029.png" /> on the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010030.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010031.png" /> (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010032.png" /> denotes area measure, normalized so that the area of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010033.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010034.png" />). The normalized reproducing kernel is then given by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010035.png" />.
+
The Bergman space $L _ { a } ^ { 2 } ( D )$ (cf. also [[Bergman spaces|Bergman spaces]]) consists of the analytic functions $f$ on the unit disc $D \subset \mathbf{C}$ such that $\int _ { D } | f | ^ { 2 } d A &lt; \infty$ (here, $d A$ denotes area measure, normalized so that the area of $D$ equals $1$). The normalized reproducing kernel is then given by the formula $k _ { \overline{z} } ( w ) = ( 1 - | z | ^ { 2 } ) / ( 1 - \overline{z} w ) ^ { 2 }$.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010036.png" />, the Toeplitz operator with symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010037.png" /> is the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010038.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010039.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010040.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010041.png" /> is the orthogonal projection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010042.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010043.png" /> (cf. also [[Toeplitz operator|Toeplitz operator]]). The Berezin transform of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010044.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010045.png" />, is defined to be the Berezin transform of the Toeplitz operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010046.png" />. This definition easily leads to the formula
+
For $\varphi \in L ^ { \infty } ( D , d A )$, the Toeplitz operator with symbol $\varphi$ is the operator $T _ { \varphi }$ on $L _ { a } ^ { 2 } ( D )$ defined by $T _ { \varphi } f = P ( \varphi f )$, where $P$ is the orthogonal projection of $L ^ { 2 } ( D , d A )$ onto $L _ { a } ^ { 2 } ( D )$ (cf. also [[Toeplitz operator|Toeplitz operator]]). The Berezin transform of the function $\varphi$, denoted by $\tilde { \varphi }$, is defined to be the Berezin transform of the Toeplitz operator $T _ { \varphi }$. This definition easily leads to the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010047.png" /></td> </tr></table>
+
\begin{equation*} \tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w ). \end{equation*}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010048.png" /> is a bounded [[Harmonic function|harmonic function]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010049.png" />, then the mean-value property can be used to show that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010050.png" />. The converse was proved by M. Engliš [[#References|[a6]]]: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010052.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010053.png" /> is harmonic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010054.png" />. P. Ahern, M. Flores and W. Rudin [[#References|[a1]]] extended this result to functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010055.png" /> (the formula above for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010056.png" /> makes sense in this case) and showed that the higher-dimensional analogue is valid up to dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010057.png" /> but fails in dimensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010058.png" /> and beyond.
+
If $\varphi$ is a bounded [[Harmonic function|harmonic function]] on $D$, then the mean-value property can be used to show that $\tilde { \varphi } = \varphi$. The converse was proved by M. Engliš [[#References|[a6]]]: if $\varphi \in L ^ { \infty } ( D , d A )$ and $\tilde { \varphi } = \varphi$, then $\varphi$ is harmonic on $D$. P. Ahern, M. Flores and W. Rudin [[#References|[a1]]] extended this result to functions $\varphi \in L ^ { 1 } ( D , d A )$ (the formula above for $\tilde { \varphi }$ makes sense in this case) and showed that the higher-dimensional analogue is valid up to dimension $11$ but fails in dimensions $12$ and beyond.
  
The normalized reproducing kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010059.png" /> tends weakly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010060.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010061.png" />. This implies that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010062.png" /> is a [[Compact operator|compact operator]] on the Bergman space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010063.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010064.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010065.png" />. Unfortunately, the converse fails. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010066.png" /> is the operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010067.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010068.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010069.png" />. Thus, in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010070.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010071.png" />, but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010072.png" /> is not compact (in fact, this operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010073.png" /> is unitary, cf. also [[Unitary operator|Unitary operator]]).
+
The normalized reproducing kernel $k _ { z }$ tends weakly to $0$ as $z \rightarrow \partial D$. This implies that if $T$ is a [[Compact operator|compact operator]] on the Bergman space $L_a^2$, then $\widetilde{T} ( z ) \rightarrow 0 $ as $z \rightarrow \partial D$. Unfortunately, the converse fails. For example, if $T$ is the operator on $L_a^2$ defined by $( T f ) ( z ) = f ( - z )$, then $\widetilde{T} ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } / ( 1 + | z | ^ { 2 } ) ^ { 2 }$. Thus, in this case $\widetilde{T} ( z ) \rightarrow 0 $ as $z \rightarrow \partial D$, but $T$ is not compact (in fact, this operator $T$ is unitary, cf. also [[Unitary operator|Unitary operator]]).
  
However, the situation is much nicer for Toeplitz operators, and even, more generally, for finite sums of finite products of Toeplitz operators. S. Axler and D. Zheng [[#References|[a2]]] proved that such an operator is compact if and only if its Berezin transform tends to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010074.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010075.png" />.
+
However, the situation is much nicer for Toeplitz operators, and even, more generally, for finite sums of finite products of Toeplitz operators. S. Axler and D. Zheng [[#References|[a2]]] proved that such an operator is compact if and only if its Berezin transform tends to $0$ at $\partial D$.
  
The Berezin transform also makes an appearance in the decomposition of the Toeplitz algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010076.png" /> generated by the Toeplitz operators with analytic symbol. Specifically, G. McDonald and C. Sundberg [[#References|[a7]]] proved that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010077.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010078.png" /> can be written in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010079.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010080.png" /> is in the closed algebra generated by the bounded harmonic functions on the unit disc and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010081.png" /> is in the commutator ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010082.png" />. The choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010083.png" /> is not unique, but taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010084.png" /> to be the Berezin transform of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010085.png" /> always works (see [[#References|[a3]]]).
+
The Berezin transform also makes an appearance in the decomposition of the Toeplitz algebra $\mathcal{T}$ generated by the Toeplitz operators with analytic symbol. Specifically, G. McDonald and C. Sundberg [[#References|[a7]]] proved that if $T \in \mathcal{T}$, then $T$ can be written in the form $T = T _ { \varphi } + C$, where $\varphi$ is in the closed algebra generated by the bounded harmonic functions on the unit disc and $C$ is in the commutator ideal of $\mathcal{T}$. The choice of $\varphi$ is not unique, but taking $\varphi$ to be the Berezin transform of $T$ always works (see [[#References|[a3]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Ahern,  M. Flores,  W. Rudin,  "An invariant volume-mean-value property"  ''J. Funct. Anal.'' , '''111'''  (1993)  pp. 380–397</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Axler,  D. Zheng,  "Compact operators via the Berezin transform"  ''Indiana Univ. Math. J.'' , '''47'''  (1998)  pp. 387–400</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Axler,  D. Zheng,  "The Berezin transform on the Toeplitz algebra"  ''Studia Math.'' , '''127'''  (1998)  pp. 113–136</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  F. Berezin,  "Covariant and contravariant symbols of operators"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''36'''  (1972)  pp. 1134–1167  (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  C. Berger,  L. Coburn,  "Toeplitz operators and quantum mechanics"  ''J. Funct. Anal.'' , '''68'''  (1986)  pp. 273–299</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  M. Engliš,  "Functions invariant under the Berezin transform"  ''J. Funct. Anal.'' , '''121'''  (1994)  pp. 233–254</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  G. McDonald,  C. Sundberg,  "Toeplitz operators on the disc"  ''Indiana Univ. Math. J.'' , '''28'''  (1979)  pp. 595–611</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  K. Stroethoff,  "Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform" , ''Function Spaces (Edwardsville, IL, 1998)'' , ''Contemp. Math. 232'' , Amer. Math. Soc.  (1999)  pp. 313–319</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  K. Zhu,  "VMO, ESV, and Toeplitz operators on the Bergman space"  ''Trans. Amer. Math. Soc.'' , '''302'''  (1987)  pp. 617–646</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  P. Ahern,  M. Flores,  W. Rudin,  "An invariant volume-mean-value property"  ''J. Funct. Anal.'' , '''111'''  (1993)  pp. 380–397</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  S. Axler,  D. Zheng,  "Compact operators via the Berezin transform"  ''Indiana Univ. Math. J.'' , '''47'''  (1998)  pp. 387–400</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  S. Axler,  D. Zheng,  "The Berezin transform on the Toeplitz algebra"  ''Studia Math.'' , '''127'''  (1998)  pp. 113–136</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  F. Berezin,  "Covariant and contravariant symbols of operators"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''36'''  (1972)  pp. 1134–1167  (In Russian)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  C. Berger,  L. Coburn,  "Toeplitz operators and quantum mechanics"  ''J. Funct. Anal.'' , '''68'''  (1986)  pp. 273–299</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  M. Engliš,  "Functions invariant under the Berezin transform"  ''J. Funct. Anal.'' , '''121'''  (1994)  pp. 233–254</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  G. McDonald,  C. Sundberg,  "Toeplitz operators on the disc"  ''Indiana Univ. Math. J.'' , '''28'''  (1979)  pp. 595–611</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  K. Stroethoff,  "Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform" , ''Function Spaces (Edwardsville, IL, 1998)'' , ''Contemp. Math. 232'' , Amer. Math. Soc.  (1999)  pp. 313–319</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  K. Zhu,  "VMO, ESV, and Toeplitz operators on the Bergman space"  ''Trans. Amer. Math. Soc.'' , '''302'''  (1987)  pp. 617–646</td></tr></table>

Latest revision as of 17:01, 1 July 2020

Berezin transformation

The Berezin transform associates smooth functions with operators on Hilbert spaces of analytic functions. The usual setting involves an open set $\Omega \subset {\bf C} ^ { n }$ and a Hilbert space $H$ of analytic functions on $\Omega$ (cf. also Analytic function). It is assumed that, for each $z \in \Omega$, the point evaluation at $z$ is a continuous linear functional on $H$. Thus, for each $z \in \Omega$, there exists a $K _ { Z } \in H$ such that $f ( z ) = \langle f , K _ { z } \rangle$ for every $f \in H$. Because $K _ { z }$ reproduces the value of functions in $H$ at $z$, it is called the reproducing kernel. The normalized reproducing kernel $k _ { z }$ is defined by $k _ { z } = K _ { z } / \| K _ { z } \|$.

For $T$ a bounded operator on $H$, the Berezin transform of $T$, denoted by $\tilde{T}$, is the complex-valued function on $\Omega$ defined by

\begin{equation*} \widetilde{T} ( z ) = \langle T k _ { z } , k _ { z } \rangle. \end{equation*}

For each bounded operator $T$ on $H$, the Berezin transform $\tilde{T}$ is a bounded real-analytic function on $\Omega$. Properties of the operator $T$ are often reflected in properties of the Berezin transform $\tilde{T}$.

The Berezin transform is named in honour of F. Berezin, who introduced this concept in [a4].

The Berezin transform has been useful in several contexts, ranging from the Hardy space (see, for example, [a8]) to the Bargmann–Segal space (see, for example, [a5]), with major connections to the Bloch space and functions of bounded mean oscillation (see, for example, [a9]). However, the Berezin transform has been most successful as a tool to study operators on the Bergman space. For concreteness and simplicity, attention below is restricted to the latter setting.

The Bergman space $L _ { a } ^ { 2 } ( D )$ (cf. also Bergman spaces) consists of the analytic functions $f$ on the unit disc $D \subset \mathbf{C}$ such that $\int _ { D } | f | ^ { 2 } d A < \infty$ (here, $d A$ denotes area measure, normalized so that the area of $D$ equals $1$). The normalized reproducing kernel is then given by the formula $k _ { \overline{z} } ( w ) = ( 1 - | z | ^ { 2 } ) / ( 1 - \overline{z} w ) ^ { 2 }$.

For $\varphi \in L ^ { \infty } ( D , d A )$, the Toeplitz operator with symbol $\varphi$ is the operator $T _ { \varphi }$ on $L _ { a } ^ { 2 } ( D )$ defined by $T _ { \varphi } f = P ( \varphi f )$, where $P$ is the orthogonal projection of $L ^ { 2 } ( D , d A )$ onto $L _ { a } ^ { 2 } ( D )$ (cf. also Toeplitz operator). The Berezin transform of the function $\varphi$, denoted by $\tilde { \varphi }$, is defined to be the Berezin transform of the Toeplitz operator $T _ { \varphi }$. This definition easily leads to the formula

\begin{equation*} \tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w ). \end{equation*}

If $\varphi$ is a bounded harmonic function on $D$, then the mean-value property can be used to show that $\tilde { \varphi } = \varphi$. The converse was proved by M. Engliš [a6]: if $\varphi \in L ^ { \infty } ( D , d A )$ and $\tilde { \varphi } = \varphi$, then $\varphi$ is harmonic on $D$. P. Ahern, M. Flores and W. Rudin [a1] extended this result to functions $\varphi \in L ^ { 1 } ( D , d A )$ (the formula above for $\tilde { \varphi }$ makes sense in this case) and showed that the higher-dimensional analogue is valid up to dimension $11$ but fails in dimensions $12$ and beyond.

The normalized reproducing kernel $k _ { z }$ tends weakly to $0$ as $z \rightarrow \partial D$. This implies that if $T$ is a compact operator on the Bergman space $L_a^2$, then $\widetilde{T} ( z ) \rightarrow 0 $ as $z \rightarrow \partial D$. Unfortunately, the converse fails. For example, if $T$ is the operator on $L_a^2$ defined by $( T f ) ( z ) = f ( - z )$, then $\widetilde{T} ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } / ( 1 + | z | ^ { 2 } ) ^ { 2 }$. Thus, in this case $\widetilde{T} ( z ) \rightarrow 0 $ as $z \rightarrow \partial D$, but $T$ is not compact (in fact, this operator $T$ is unitary, cf. also Unitary operator).

However, the situation is much nicer for Toeplitz operators, and even, more generally, for finite sums of finite products of Toeplitz operators. S. Axler and D. Zheng [a2] proved that such an operator is compact if and only if its Berezin transform tends to $0$ at $\partial D$.

The Berezin transform also makes an appearance in the decomposition of the Toeplitz algebra $\mathcal{T}$ generated by the Toeplitz operators with analytic symbol. Specifically, G. McDonald and C. Sundberg [a7] proved that if $T \in \mathcal{T}$, then $T$ can be written in the form $T = T _ { \varphi } + C$, where $\varphi$ is in the closed algebra generated by the bounded harmonic functions on the unit disc and $C$ is in the commutator ideal of $\mathcal{T}$. The choice of $\varphi$ is not unique, but taking $\varphi$ to be the Berezin transform of $T$ always works (see [a3]).

References

[a1] P. Ahern, M. Flores, W. Rudin, "An invariant volume-mean-value property" J. Funct. Anal. , 111 (1993) pp. 380–397
[a2] S. Axler, D. Zheng, "Compact operators via the Berezin transform" Indiana Univ. Math. J. , 47 (1998) pp. 387–400
[a3] S. Axler, D. Zheng, "The Berezin transform on the Toeplitz algebra" Studia Math. , 127 (1998) pp. 113–136
[a4] F. Berezin, "Covariant and contravariant symbols of operators" Izv. Akad. Nauk. SSSR Ser. Mat. , 36 (1972) pp. 1134–1167 (In Russian)
[a5] C. Berger, L. Coburn, "Toeplitz operators and quantum mechanics" J. Funct. Anal. , 68 (1986) pp. 273–299
[a6] M. Engliš, "Functions invariant under the Berezin transform" J. Funct. Anal. , 121 (1994) pp. 233–254
[a7] G. McDonald, C. Sundberg, "Toeplitz operators on the disc" Indiana Univ. Math. J. , 28 (1979) pp. 595–611
[a8] K. Stroethoff, "Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform" , Function Spaces (Edwardsville, IL, 1998) , Contemp. Math. 232 , Amer. Math. Soc. (1999) pp. 313–319
[a9] K. Zhu, "VMO, ESV, and Toeplitz operators on the Bergman space" Trans. Amer. Math. Soc. , 302 (1987) pp. 617–646
How to Cite This Entry:
Berezin transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Berezin_transform&oldid=12000
This article was adapted from an original article by Sheldon Axler (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article