Difference between revisions of "Carathéodory conditions"
Ulf Rehmann (talk | contribs) m (moved Caratheodory conditions to Carathéodory conditions over redirect: accented title) |
m (AUTOMATIC EDIT (latexlist): Replaced 44 formulas out of 44 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 44 formulas, 44 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | If one wants to relax the continuity assumption on a function $f$ while preserving the natural equivalence between the [[Cauchy problem|Cauchy problem]] for the differential equation $x ^ { \prime } = f ( t , x )$ and the integral equation which can be obtained by integrating the Cauchy problem, one can follow ideas of C. Carathéodory [[#References|[a1]]] and make the following definition. | ||
− | + | Let $G \subset {\bf R} ^ { n }$ be an open set and $J = [ a, b ] \subset \mathbf{R}$, $a < b$. One says that $f : J \times G \rightarrow \mathbf{R} ^ { m }$ satisfies the Carathéodory conditions on $J \times G$, written as $f \in \operatorname { Car } ( J \times G )$, if | |
− | + | 1) $f (. , x ) : J \rightarrow {\bf R} ^ { m }$ is measurable for every $x \in G$ (cf. also [[Measurable function|Measurable function]]); | |
− | + | 2) $f ( t , . ) : G \rightarrow \mathbf{R} ^ { m }$ is continuous for almost every $t \in J$; | |
− | + | 3) for each compact set $K \subset G$ the function | |
− | + | \begin{equation*} h _ { K } ( t ) = \operatorname { sup } \{ \| f ( t , x ) \| : x \in K \} \end{equation*} | |
− | + | is Lebesgue integrable (cf. also [[Lebesgue integral|Lebesgue integral]]) on $J$, where $\| .\|$ is the norm in $\mathbf{R} ^ { m }$. | |
− | + | If $I \subset \mathbf{R}$ is a non-compact interval, one says that $f : I \times G \rightarrow \mathbf{R} ^ { m }$ satisfies the local Carathéodory conditions on $I \times G$ if $f \in \operatorname { Car } ( J \times G )$ for every compact interval $J \subset I$. This is written as $f \in \operatorname { Car } _ { \text{loc} } ( I \times G )$. | |
− | + | Note that any function $g : I \rightarrow {\bf R} ^ { m }$ which is the composition of $f \in \operatorname { Car } _ { \text{loc} } ( I \times G )$ and a measurable function $u : I \rightarrow G$, i.e. $g ( t ) = f ( t , u ( t ) )$ (cf. also [[Composite function|Composite function]]), is measurable on $I$. | |
− | + | To specify the space of the majorant $h _ { K }$ more precisely, one says that $f$ is $L ^ { p }$-Carathéodory, $1 \leq p \leq \infty$, if $f$ satisfies 1)–3) above with $h _ { K } \in L ^ { p } ( J )$. | |
+ | |||
+ | One can see that any function continuous on $J \times G$ is $L ^ { p }$-Carathéodory for any $p$. | ||
+ | |||
+ | Similarly, one says that $f$ is locally $L ^ { p }$-Carathéodory on $I \times G$ if $f$ restricted to $J \times G$ is $L ^ { p }$-Carathéodory for every compact interval $J \subset I$. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> C. Carathéodory, "Vorlesungen über reelle Funktionen" , Dover, reprint (1948)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> E. Coddington, N. Levinson, "The theory of ordinary differential equations" , McGraw-Hill (1955)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M.A. Krasnoselskij, "Topological methods in the theory of nonlinear integral equations" , Pergamon (1964)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> J. Kurzweil, "Ordinary differential equations" , Elsevier (1986)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> A.F. Filippov, "Differential equations with discontinuous right hand sides" , Kluwer Acad. Publ. (1988)</td></tr></table> |
Revision as of 16:57, 1 July 2020
If one wants to relax the continuity assumption on a function $f$ while preserving the natural equivalence between the Cauchy problem for the differential equation $x ^ { \prime } = f ( t , x )$ and the integral equation which can be obtained by integrating the Cauchy problem, one can follow ideas of C. Carathéodory [a1] and make the following definition.
Let $G \subset {\bf R} ^ { n }$ be an open set and $J = [ a, b ] \subset \mathbf{R}$, $a < b$. One says that $f : J \times G \rightarrow \mathbf{R} ^ { m }$ satisfies the Carathéodory conditions on $J \times G$, written as $f \in \operatorname { Car } ( J \times G )$, if
1) $f (. , x ) : J \rightarrow {\bf R} ^ { m }$ is measurable for every $x \in G$ (cf. also Measurable function);
2) $f ( t , . ) : G \rightarrow \mathbf{R} ^ { m }$ is continuous for almost every $t \in J$;
3) for each compact set $K \subset G$ the function
\begin{equation*} h _ { K } ( t ) = \operatorname { sup } \{ \| f ( t , x ) \| : x \in K \} \end{equation*}
is Lebesgue integrable (cf. also Lebesgue integral) on $J$, where $\| .\|$ is the norm in $\mathbf{R} ^ { m }$.
If $I \subset \mathbf{R}$ is a non-compact interval, one says that $f : I \times G \rightarrow \mathbf{R} ^ { m }$ satisfies the local Carathéodory conditions on $I \times G$ if $f \in \operatorname { Car } ( J \times G )$ for every compact interval $J \subset I$. This is written as $f \in \operatorname { Car } _ { \text{loc} } ( I \times G )$.
Note that any function $g : I \rightarrow {\bf R} ^ { m }$ which is the composition of $f \in \operatorname { Car } _ { \text{loc} } ( I \times G )$ and a measurable function $u : I \rightarrow G$, i.e. $g ( t ) = f ( t , u ( t ) )$ (cf. also Composite function), is measurable on $I$.
To specify the space of the majorant $h _ { K }$ more precisely, one says that $f$ is $L ^ { p }$-Carathéodory, $1 \leq p \leq \infty$, if $f$ satisfies 1)–3) above with $h _ { K } \in L ^ { p } ( J )$.
One can see that any function continuous on $J \times G$ is $L ^ { p }$-Carathéodory for any $p$.
Similarly, one says that $f$ is locally $L ^ { p }$-Carathéodory on $I \times G$ if $f$ restricted to $J \times G$ is $L ^ { p }$-Carathéodory for every compact interval $J \subset I$.
References
[a1] | C. Carathéodory, "Vorlesungen über reelle Funktionen" , Dover, reprint (1948) |
[a2] | E. Coddington, N. Levinson, "The theory of ordinary differential equations" , McGraw-Hill (1955) |
[a3] | M.A. Krasnoselskij, "Topological methods in the theory of nonlinear integral equations" , Pergamon (1964) |
[a4] | J. Kurzweil, "Ordinary differential equations" , Elsevier (1986) |
[a5] | A.F. Filippov, "Differential equations with discontinuous right hand sides" , Kluwer Acad. Publ. (1988) |
Carathéodory conditions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carath%C3%A9odory_conditions&oldid=23214