Namespaces
Variants
Actions

Difference between revisions of "Benjamin-Bona-Mahony equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 41 formulas out of 41 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 41 formulas, 41 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''BBM equation, regularized long wave equation''
 
''BBM equation, regularized long wave equation''
  
 
The model equation
 
The model equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300901.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} u _ { t } + u _ { x } + u u _ { x } - u _ { xxt } = 0, \end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300902.png" /> and the subscripts denote partial derivatives with respect to time <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300903.png" /> and the position coordinate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300904.png" />. The Benjamin–Bona–Mahony equation serves as an approximate model in studying the dynamics of small-amplitude surface water waves propagating unidirectionally, while suffering non-linear and dispersive effects. (a1) was introduced in [[#References|[a5]]] as an alternative of the famous [[Korteweg–de Vries equation|Korteweg–de Vries equation]]
+
where $u ( x , t ) : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ and the subscripts denote partial derivatives with respect to time $t$ and the position coordinate $x$. The Benjamin–Bona–Mahony equation serves as an approximate model in studying the dynamics of small-amplitude surface water waves propagating unidirectionally, while suffering non-linear and dispersive effects. (a1) was introduced in [[#References|[a5]]] as an alternative of the famous [[Korteweg–de Vries equation|Korteweg–de Vries equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300905.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} u _ { t } + u _ { x } + u u _ { x } + u _ { xxx } = 0. \end{equation}
  
 
Unlike the Korteweg–de Vries equation, the Benjamin–Bona–Mahony equation is not integrable by the inverse scattering method [[#References|[a10]]], [[#References|[a12]]]. As indicated by several numerical experiments, (a1) has no multi-soliton solutions. It has been proved by A.C. Bryan and A.E.G. Stuart [[#References|[a8]]] that (a1) has no analytic two-soliton solution. The equation has three independent invariants (conservation laws):
 
Unlike the Korteweg–de Vries equation, the Benjamin–Bona–Mahony equation is not integrable by the inverse scattering method [[#References|[a10]]], [[#References|[a12]]]. As indicated by several numerical experiments, (a1) has no multi-soliton solutions. It has been proved by A.C. Bryan and A.E.G. Stuart [[#References|[a8]]] that (a1) has no analytic two-soliton solution. The equation has three independent invariants (conservation laws):
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300906.png" />;
+
$D ( u ) = \int _ { \mathbf{R} } u d x $;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300907.png" />; and
+
$E ( u ) = \int _ { \mathbf{R} } ( u ^ { 2 } + u _ { x } ^ { 2 } ) d x$; and
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300908.png" />. These quantities are time-independent during the time evolution of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300909.png" />. The correctness of the initial value problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009010.png" /> (the [[Cauchy problem|Cauchy problem]]) for (a1) in Sobolev spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009012.png" /> (cf. also [[Sobolev space|Sobolev space]]), was investigated in [[#References|[a5]]].
+
$F ( u ) = \int _ { \mathbf{R} } \left( u ^ { 2 } + \frac { 1 } { 3 } u ^ { 3 } \right) d x$. These quantities are time-independent during the time evolution of the solution $u$. The correctness of the initial value problem $u ( x , 0 ) = g ( x )$ (the [[Cauchy problem|Cauchy problem]]) for (a1) in Sobolev spaces $W _ { 2 } ^ { s } ( \mathbf R _ { x } ) = H ^ { s } ( \mathbf R _ { x } )$, $s \geq 1$ (cf. also [[Sobolev space|Sobolev space]]), was investigated in [[#References|[a5]]].
  
Equation (a1) has a solitary wave solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009014.png" /> (cf. also [[Soliton|Soliton]]), provided that the wave velocity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009015.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009016.png" />. The non-linear stability of the wave <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009017.png" /> with respect to the [[Pseudo-metric|pseudo-metric]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009018.png" /> was established in [[#References|[a3]]] and [[#References|[a7]]] by a clever modification of Lyapunov's direct method in combination with a spectral decomposition technique. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009019.png" /> is the norm in the Sobolev space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009020.png" />. This means that the form of the solitary wave is stable under small perturbations in the form of the initial wave.
+
Equation (a1) has a solitary wave solution $u ( x , t ) = \phi ( x - v t - c )$, where $\phi ( \overline{x} ) = 3 ( v - 1 ) \operatorname { sech } ^ { 2 } \{ \overline{x} \sqrt { ( v - 1 ) / ( 4 v ) } \}$ (cf. also [[Soliton|Soliton]]), provided that the wave velocity $v$ satisfies $v \notin [ 0,1]$. The non-linear stability of the wave $\phi$ with respect to the [[Pseudo-metric|pseudo-metric]] $d ( u , \phi ) ( t ) = \operatorname { inf } \{ \| u - \phi ( x - v t - c ) \| _ { 1 } : c \in \mathbf{R} \}$ was established in [[#References|[a3]]] and [[#References|[a7]]] by a clever modification of Lyapunov's direct method in combination with a spectral decomposition technique. Here, $\| . \| _ { 1 }$ is the norm in the Sobolev space $H ^ { 1 } ( {\bf R} _ { x } )$. This means that the form of the solitary wave is stable under small perturbations in the form of the initial wave.
  
 
==Generalizations.==
 
==Generalizations.==
 
The generalized Benjamin–Bona–Mahony equation is an equation of the form
 
The generalized Benjamin–Bona–Mahony equation is an equation of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
\begin{equation} \tag{a3} u _ { t } + a ( u ) _ { x } - u _ { x x t } = 0, \end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009022.png" /> is a differentiable function. (a3) allows two types of solitary waves: kink-shaped and bell-shaped ones. Depending on the concrete form of the non-linearity, these solitary waves can be stable or unstable with respect to the metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009023.png" />. For more concrete results concerning (a3), see [[#References|[a11]]], Chap. 4. The generalized Benjamin–Bona–Mahony equation in higher dimensions reads
+
where $a : \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function. (a3) allows two types of solitary waves: kink-shaped and bell-shaped ones. Depending on the concrete form of the non-linearity, these solitary waves can be stable or unstable with respect to the metric $d ( u , \phi )$. For more concrete results concerning (a3), see [[#References|[a11]]], Chap. 4. The generalized Benjamin–Bona–Mahony equation in higher dimensions reads
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009024.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation} \tag{a4} u _ { t } - \Delta u _ { t } + \operatorname { div } \varphi ( u ) = 0, \end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009025.png" /> is the [[Laplace operator|Laplace operator]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009027.png" />. The uniqueness and global existence of a solution in Sobolev spaces to the initial boundary value problem for (a4) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009028.png" />, with Dirichlet (or more general) boundary conditions, was proved in [[#References|[a2]]], [[#References|[a9]]]. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009029.png" /> is a bounded domain with smooth boundary. The Cauchy problem for (a4) is studied in [[#References|[a1]]].
+
where $\Delta$ is the [[Laplace operator|Laplace operator]] in ${\bf R} ^ { n }$ and $\varphi \in C ^ { 1 } ( \mathbf{R} ; \mathbf{R} ^ { n } )$. The uniqueness and global existence of a solution in Sobolev spaces to the initial boundary value problem for (a4) in $\Omega \times [ 0 , T]$, with Dirichlet (or more general) boundary conditions, was proved in [[#References|[a2]]], [[#References|[a9]]]. Here, $\Omega \subset \mathbf{R} ^ { n }$ is a bounded domain with smooth boundary. The Cauchy problem for (a4) is studied in [[#References|[a1]]].
  
 
Non-local generalizations of the Benjamin–Bona–Mahony equation can be obtained after one writes (a1) in the form
 
Non-local generalizations of the Benjamin–Bona–Mahony equation can be obtained after one writes (a1) in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009030.png" /></td> </tr></table>
+
\begin{equation*} M u _ { t } + u _ { x } + u u _ { x } = 0. \end{equation*}
  
Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009031.png" /> is a [[Pseudo-differential operator|pseudo-differential operator]] (in fact, a Fourier multiplier operator), acting as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009033.png" /> denotes the [[Fourier transform|Fourier transform]] in the space variable. For the original Benjamin–Bona–Mahony equation one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009034.png" />. In general, one takes for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009035.png" /> a positive even function such that its negative power <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009036.png" /> is monotone decreasing on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009037.png" /> and belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009038.png" />. See [[#References|[a4]]], [[#References|[a5]]] and the references therein for more details.
+
Here, $M$ is a [[Pseudo-differential operator|pseudo-differential operator]] (in fact, a Fourier multiplier operator), acting as $\widehat { M u } ( \xi ) = m ( \xi ) \hat { u } ( \xi )$, where $\widehat{\square}$ denotes the [[Fourier transform|Fourier transform]] in the space variable. For the original Benjamin–Bona–Mahony equation one has $m ( \xi ) = 1 + \xi ^ { 2 }$. In general, one takes for $m ( \xi )$ a positive even function such that its negative power $m ( \xi ) ^ { - 1 }$ is monotone decreasing on $( 0 , \infty )$ and belongs to $L ^ { 1 } ( \mathbf{R} )$. See [[#References|[a4]]], [[#References|[a5]]] and the references therein for more details.
  
 
The variable-coefficient Benjamin–Bona–Mahony equation
 
The variable-coefficient Benjamin–Bona–Mahony equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009039.png" /></td> </tr></table>
+
\begin{equation*} u _ { t } + a ( t ) u _ { x } + b ( t ) u ^ { p } u _ { x } - u _ { xxt } = 0 \end{equation*}
  
 
describes the propagation of long weakly non-linear water waves in a channel of variable depth. This equation was studied in [[#References|[a6]]].
 
describes the propagation of long weakly non-linear water waves in a channel of variable depth. This equation was studied in [[#References|[a6]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Avrin,  "The generalized Benjamin–Bona–Mahony equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009040.png" /> with singular initial data"  ''Nonlin. Anal. Th. Meth. Appl.'' , '''11'''  (1987)  pp. 139–147</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Avrin,  J.A. Goldstein,  "Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions"  ''Nonlin. Anal. Th. Meth. Appl.'' , '''9'''  (1985)  pp. 861–865</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  T.B. Benjamin,  "The stability of solitary waves"  ''Proc. Royal Soc. London A'' , '''328'''  (1972)  pp. 153–183</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  T.B. Benjamin,  "Lectures on nonlinear wave motion"  A.C. Newell (ed.) , ''Nonlinear Wave Motion'' , ''Lectures in Applied Math.'' , '''15''' , Amer. Math. Soc.  (1974)  pp. 3–47</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  T.B. Benjamin,  J.L. Bona,  J.J. Mahony,  "Model equations for long waves in nonlinear dispersive systems"  ''Philos. Trans. Royal Soc. London A'' , '''272'''  (1972)  pp. 47–78</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  V. Bisognin,  G. Perla Menzala,  "Asymptotic behaviour of nonlinear dispersive models with variable coefficients"  ''Ann. Mat. Pura Appl.'' , '''168'''  (1995)  pp. 219–235</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  J.L. Bona,  "On the stability theory of solitary waves"  ''Proc. Royal Soc. London A'' , '''344'''  (1975)  pp. 363–374</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  A.C. Bryan,  A.E.G. Stuart,  "Solitons and the regularized long wave equation: a nonexistence theorem"  ''Chaos, Solitons, Fractals'' , '''7'''  (1996)  pp. 1881–1886</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  B. Calvert,  "The equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009041.png" />"  ''Math. Proc. Cambridge Philos. Soc.'' , '''79'''  (1976)  pp. 545–561</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  C.S. Gardner,  J.M. Greene,  M.D. Kruskal,  R.M. Miura,  "Method for solving the Korteweg–de Vries equation"  ''Phys. Rev. Lett.'' , '''19'''  (1967)  pp. 1095–1097</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  I.D. Iliev,  E. Khristov,  K.P. Kirchev,  "Spectral methods in soliton equations" , ''Pitman Monographs and Surveys Pure Appl. Math.'' , '''73''' , Longman  (1994)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  P.D. Lax,  "Integrals of nonlinear equations of evolution and solitary waves"  ''Commun. Pure Appl. Math.'' , '''21'''  (1968)  pp. 467–490</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  J. Avrin,  "The generalized Benjamin–Bona–Mahony equation in ${\bf R} ^ { n }$ with singular initial data"  ''Nonlin. Anal. Th. Meth. Appl.'' , '''11'''  (1987)  pp. 139–147</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Avrin,  J.A. Goldstein,  "Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions"  ''Nonlin. Anal. Th. Meth. Appl.'' , '''9'''  (1985)  pp. 861–865</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  T.B. Benjamin,  "The stability of solitary waves"  ''Proc. Royal Soc. London A'' , '''328'''  (1972)  pp. 153–183</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  T.B. Benjamin,  "Lectures on nonlinear wave motion"  A.C. Newell (ed.) , ''Nonlinear Wave Motion'' , ''Lectures in Applied Math.'' , '''15''' , Amer. Math. Soc.  (1974)  pp. 3–47</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  T.B. Benjamin,  J.L. Bona,  J.J. Mahony,  "Model equations for long waves in nonlinear dispersive systems"  ''Philos. Trans. Royal Soc. London A'' , '''272'''  (1972)  pp. 47–78</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  V. Bisognin,  G. Perla Menzala,  "Asymptotic behaviour of nonlinear dispersive models with variable coefficients"  ''Ann. Mat. Pura Appl.'' , '''168'''  (1995)  pp. 219–235</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  J.L. Bona,  "On the stability theory of solitary waves"  ''Proc. Royal Soc. London A'' , '''344'''  (1975)  pp. 363–374</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  A.C. Bryan,  A.E.G. Stuart,  "Solitons and the regularized long wave equation: a nonexistence theorem"  ''Chaos, Solitons, Fractals'' , '''7'''  (1996)  pp. 1881–1886</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  B. Calvert,  "The equation $A ( t , u ( t ) ) ^ { \prime } + B ( t , u ( t ) ) = 0$"  ''Math. Proc. Cambridge Philos. Soc.'' , '''79'''  (1976)  pp. 545–561</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  C.S. Gardner,  J.M. Greene,  M.D. Kruskal,  R.M. Miura,  "Method for solving the Korteweg–de Vries equation"  ''Phys. Rev. Lett.'' , '''19'''  (1967)  pp. 1095–1097</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  I.D. Iliev,  E. Khristov,  K.P. Kirchev,  "Spectral methods in soliton equations" , ''Pitman Monographs and Surveys Pure Appl. Math.'' , '''73''' , Longman  (1994)</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  P.D. Lax,  "Integrals of nonlinear equations of evolution and solitary waves"  ''Commun. Pure Appl. Math.'' , '''21'''  (1968)  pp. 467–490</td></tr></table>

Latest revision as of 16:57, 1 July 2020

BBM equation, regularized long wave equation

The model equation

\begin{equation} \tag{a1} u _ { t } + u _ { x } + u u _ { x } - u _ { xxt } = 0, \end{equation}

where $u ( x , t ) : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ and the subscripts denote partial derivatives with respect to time $t$ and the position coordinate $x$. The Benjamin–Bona–Mahony equation serves as an approximate model in studying the dynamics of small-amplitude surface water waves propagating unidirectionally, while suffering non-linear and dispersive effects. (a1) was introduced in [a5] as an alternative of the famous Korteweg–de Vries equation

\begin{equation} \tag{a2} u _ { t } + u _ { x } + u u _ { x } + u _ { xxx } = 0. \end{equation}

Unlike the Korteweg–de Vries equation, the Benjamin–Bona–Mahony equation is not integrable by the inverse scattering method [a10], [a12]. As indicated by several numerical experiments, (a1) has no multi-soliton solutions. It has been proved by A.C. Bryan and A.E.G. Stuart [a8] that (a1) has no analytic two-soliton solution. The equation has three independent invariants (conservation laws):

$D ( u ) = \int _ { \mathbf{R} } u d x $;

$E ( u ) = \int _ { \mathbf{R} } ( u ^ { 2 } + u _ { x } ^ { 2 } ) d x$; and

$F ( u ) = \int _ { \mathbf{R} } \left( u ^ { 2 } + \frac { 1 } { 3 } u ^ { 3 } \right) d x$. These quantities are time-independent during the time evolution of the solution $u$. The correctness of the initial value problem $u ( x , 0 ) = g ( x )$ (the Cauchy problem) for (a1) in Sobolev spaces $W _ { 2 } ^ { s } ( \mathbf R _ { x } ) = H ^ { s } ( \mathbf R _ { x } )$, $s \geq 1$ (cf. also Sobolev space), was investigated in [a5].

Equation (a1) has a solitary wave solution $u ( x , t ) = \phi ( x - v t - c )$, where $\phi ( \overline{x} ) = 3 ( v - 1 ) \operatorname { sech } ^ { 2 } \{ \overline{x} \sqrt { ( v - 1 ) / ( 4 v ) } \}$ (cf. also Soliton), provided that the wave velocity $v$ satisfies $v \notin [ 0,1]$. The non-linear stability of the wave $\phi$ with respect to the pseudo-metric $d ( u , \phi ) ( t ) = \operatorname { inf } \{ \| u - \phi ( x - v t - c ) \| _ { 1 } : c \in \mathbf{R} \}$ was established in [a3] and [a7] by a clever modification of Lyapunov's direct method in combination with a spectral decomposition technique. Here, $\| . \| _ { 1 }$ is the norm in the Sobolev space $H ^ { 1 } ( {\bf R} _ { x } )$. This means that the form of the solitary wave is stable under small perturbations in the form of the initial wave.

Generalizations.

The generalized Benjamin–Bona–Mahony equation is an equation of the form

\begin{equation} \tag{a3} u _ { t } + a ( u ) _ { x } - u _ { x x t } = 0, \end{equation}

where $a : \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function. (a3) allows two types of solitary waves: kink-shaped and bell-shaped ones. Depending on the concrete form of the non-linearity, these solitary waves can be stable or unstable with respect to the metric $d ( u , \phi )$. For more concrete results concerning (a3), see [a11], Chap. 4. The generalized Benjamin–Bona–Mahony equation in higher dimensions reads

\begin{equation} \tag{a4} u _ { t } - \Delta u _ { t } + \operatorname { div } \varphi ( u ) = 0, \end{equation}

where $\Delta$ is the Laplace operator in ${\bf R} ^ { n }$ and $\varphi \in C ^ { 1 } ( \mathbf{R} ; \mathbf{R} ^ { n } )$. The uniqueness and global existence of a solution in Sobolev spaces to the initial boundary value problem for (a4) in $\Omega \times [ 0 , T]$, with Dirichlet (or more general) boundary conditions, was proved in [a2], [a9]. Here, $\Omega \subset \mathbf{R} ^ { n }$ is a bounded domain with smooth boundary. The Cauchy problem for (a4) is studied in [a1].

Non-local generalizations of the Benjamin–Bona–Mahony equation can be obtained after one writes (a1) in the form

\begin{equation*} M u _ { t } + u _ { x } + u u _ { x } = 0. \end{equation*}

Here, $M$ is a pseudo-differential operator (in fact, a Fourier multiplier operator), acting as $\widehat { M u } ( \xi ) = m ( \xi ) \hat { u } ( \xi )$, where $\widehat{\square}$ denotes the Fourier transform in the space variable. For the original Benjamin–Bona–Mahony equation one has $m ( \xi ) = 1 + \xi ^ { 2 }$. In general, one takes for $m ( \xi )$ a positive even function such that its negative power $m ( \xi ) ^ { - 1 }$ is monotone decreasing on $( 0 , \infty )$ and belongs to $L ^ { 1 } ( \mathbf{R} )$. See [a4], [a5] and the references therein for more details.

The variable-coefficient Benjamin–Bona–Mahony equation

\begin{equation*} u _ { t } + a ( t ) u _ { x } + b ( t ) u ^ { p } u _ { x } - u _ { xxt } = 0 \end{equation*}

describes the propagation of long weakly non-linear water waves in a channel of variable depth. This equation was studied in [a6].

References

[a1] J. Avrin, "The generalized Benjamin–Bona–Mahony equation in ${\bf R} ^ { n }$ with singular initial data" Nonlin. Anal. Th. Meth. Appl. , 11 (1987) pp. 139–147
[a2] J. Avrin, J.A. Goldstein, "Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions" Nonlin. Anal. Th. Meth. Appl. , 9 (1985) pp. 861–865
[a3] T.B. Benjamin, "The stability of solitary waves" Proc. Royal Soc. London A , 328 (1972) pp. 153–183
[a4] T.B. Benjamin, "Lectures on nonlinear wave motion" A.C. Newell (ed.) , Nonlinear Wave Motion , Lectures in Applied Math. , 15 , Amer. Math. Soc. (1974) pp. 3–47
[a5] T.B. Benjamin, J.L. Bona, J.J. Mahony, "Model equations for long waves in nonlinear dispersive systems" Philos. Trans. Royal Soc. London A , 272 (1972) pp. 47–78
[a6] V. Bisognin, G. Perla Menzala, "Asymptotic behaviour of nonlinear dispersive models with variable coefficients" Ann. Mat. Pura Appl. , 168 (1995) pp. 219–235
[a7] J.L. Bona, "On the stability theory of solitary waves" Proc. Royal Soc. London A , 344 (1975) pp. 363–374
[a8] A.C. Bryan, A.E.G. Stuart, "Solitons and the regularized long wave equation: a nonexistence theorem" Chaos, Solitons, Fractals , 7 (1996) pp. 1881–1886
[a9] B. Calvert, "The equation $A ( t , u ( t ) ) ^ { \prime } + B ( t , u ( t ) ) = 0$" Math. Proc. Cambridge Philos. Soc. , 79 (1976) pp. 545–561
[a10] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, "Method for solving the Korteweg–de Vries equation" Phys. Rev. Lett. , 19 (1967) pp. 1095–1097
[a11] I.D. Iliev, E. Khristov, K.P. Kirchev, "Spectral methods in soliton equations" , Pitman Monographs and Surveys Pure Appl. Math. , 73 , Longman (1994)
[a12] P.D. Lax, "Integrals of nonlinear equations of evolution and solitary waves" Commun. Pure Appl. Math. , 21 (1968) pp. 467–490
How to Cite This Entry:
Benjamin-Bona-Mahony equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Benjamin-Bona-Mahony_equation&oldid=15681
This article was adapted from an original article by Iliya D. Iliev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article