Difference between revisions of "Integrability of trigonometric series"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 42 formulas out of 42 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 42 formulas, 42 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
Given a [[Trigonometric series|trigonometric series]] | Given a [[Trigonometric series|trigonometric series]] | ||
− | + | \begin{equation} \tag{a1} \frac { a _ { 0 } } { 2 } + \sum _ { k = 1 } ^ { \infty } ( a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x ), \end{equation} | |
− | the problem of its integrability asks under which assumptions on its coefficients this series is the [[Fourier series|Fourier series]] of an integrable function (i.e., belonging to | + | the problem of its integrability asks under which assumptions on its coefficients this series is the [[Fourier series|Fourier series]] of an integrable function (i.e., belonging to $\widehat{L^1}$). Frequently, the series |
− | + | \begin{equation} \tag{a2} \frac { a_0 } { 2 } + \sum _ { k = 1 } ^ { \infty } a _ { k } \operatorname { cos } k x \end{equation} | |
and | and | ||
− | + | \begin{equation} \tag{a3} \sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x \end{equation} | |
are investigated separately, since there is a difference in their behaviour, and usually integrability of (a3) requires additional assumptions. Of course, one may also consider trigonometric series in complex form. | are investigated separately, since there is a difference in their behaviour, and usually integrability of (a3) requires additional assumptions. Of course, one may also consider trigonometric series in complex form. | ||
− | There exists no convenient description of | + | There exists no convenient description of $\widehat{L^1}$ in terms of a given sequence alone. Hence, subspaces of $\widehat{L^1}$ are studied. In view of the Riemann–Lebesgue lemma (cf. [[Fourier series|Fourier series]]) $\widehat{L^1}$ is a subspace of the space of null sequences, while the space of sequences of bounded variation |
− | + | \begin{equation*} \operatorname{bv} = \left\{ d = \{ d _ { k } \} : \| d \| _ { \operatorname{bv} } = \sum _ { k = 0 } ^ { \infty } | \Delta d _ { k } | < \infty \right\} \end{equation*} | |
− | is not a subspace of | + | is not a subspace of $\widehat{L^1}$. Here $\Delta d_k = d_k - d_{k + 1}$. Having a null sequence of bounded variation as its Fourier coefficients, the series (a2) converges for every $x \neq 0 ( \operatorname { mod } 2 \pi )$, while (a3) converges everywhere. |
− | In 1913, W.H. Young [[#References|[a20]]] proved that if | + | In 1913, W.H. Young [[#References|[a20]]] proved that if $\{ a _ { k } \}$ is a convex null sequence, that is, $\Delta ^ { 2 } a _ { k } = \Delta ( \Delta a _ { k } ) \geq 0$ for $k = 0,1 , \ldots$, then (a1) is the Fourier series of an integrable function (cf. also [[Trigonometric series|Trigonometric series]]). In 1923, A.N. Kolmogorov [[#References|[a12]]] extended this result to the class of quasi-convex sequences $\{ a _ { k } \}$, namely, those satisfying |
− | + | \begin{equation*} \sum _ { k = 0 } ^ { \infty } ( k + 1 ) \left| \Delta ^ { 2 } \alpha _ { k } \right| < \infty. \end{equation*} | |
− | Such a sequence is the difference of two convex sequences. In 1956, R.P. Boas generalized all previous results [[#References|[a6]]]. Subsequently, more general subspaces of | + | Such a sequence is the difference of two convex sequences. In 1956, R.P. Boas generalized all previous results [[#References|[a6]]]. Subsequently, more general subspaces of $\widehat{L^1}$ were considered: |
− | 1) The so-called Boas–Telyakovskii space | + | 1) The so-called Boas–Telyakovskii space $\operatorname{ bt}$ (see, e.g., [[#References|[a16]]]): |
− | + | \begin{equation*} \| d \| _ { b t } = \| d \| _ { \operatorname {bv} } + \sum _ { n = 2 } ^ { \infty } \left| \sum _ { k = 1 } ^ { n / 2 } \frac { \Delta d _ { n - k } - \Delta d _ { n + k } } { k }\right|. \end{equation*} | |
− | 2) The Fomin space | + | 2) The Fomin space $a _{p}$ [[#References|[a7]]] for $1 < p < \infty$, $1 / p + 1 / p ^ { \prime } = 1$: |
− | + | \begin{equation*} \| d \| _ { a _ { p } } = \sum _ { n = 0 } ^ { \infty } 2 ^ { n / p ^ { \prime } } \left\{ \sum _ { k = 2 ^ { n } } ^ { 2 ^ { n + 1 } - 1 } | \Delta d _ { k } | ^ { p } \right\} ^ { 1 / p } < \infty . \end{equation*} | |
3) The Sidon–Telyakovskii space [[#References|[a17]]]: | 3) The Sidon–Telyakovskii space [[#References|[a17]]]: | ||
− | + | \begin{equation*} A _ { k } \downarrow 0 ( k \rightarrow \infty ) , \sum _ { k = 0 } ^ { \infty } A _ { k } < \infty , | \Delta d _ { k } | < A _ { k }. \end{equation*} | |
4) The Buntinas–Tanovic–Miller spaces (see, e.g., [[#References|[a2]]]). | 4) The Buntinas–Tanovic–Miller spaces (see, e.g., [[#References|[a2]]]). | ||
Line 41: | Line 49: | ||
5) The amalgam space [[#References|[a1]]], [[#References|[a3]]]: | 5) The amalgam space [[#References|[a1]]], [[#References|[a3]]]: | ||
− | + | \begin{equation*} \sum _ { n = 0 } ^ { \infty } \left\{ \sum _ { m = 1 } ^ { \infty } \left[ \sum _ { k = m 2 ^ { n } } ^ { ( m + 1 ) 2 ^ { n } - 1 } | \Delta d _ { k } | \right] ^ { 2 } \right\} ^ { 1 / 2 } < \infty. \end{equation*} | |
A classical way to prove such results is by using Sidon-type inequalities (see, e.g., [[#References|[a8]]]), a typical example of which is the one obtained by S. Sidon [[#References|[a15]]]: | A classical way to prove such results is by using Sidon-type inequalities (see, e.g., [[#References|[a8]]]), a typical example of which is the one obtained by S. Sidon [[#References|[a15]]]: | ||
− | + | \begin{equation*} ( N + 1 ) ^ { - 1 } \left\| \sum _ { k = 0 } ^ { N } c _ { k } D _ { k } \right\| _ { L^{1} } \leq \operatorname { max } _ { 0 \leq k \leq N } | c _ { k } |, \end{equation*} | |
− | where | + | where $D _ { k }$ is the [[Dirichlet kernel|Dirichlet kernel]] of order $k$. |
− | In [[#References|[a13]]] a new approach to these problems was suggested. First, a locally absolutely continuous function | + | In [[#References|[a13]]] a new approach to these problems was suggested. First, a locally absolutely continuous function $f$ on $[ 0 , \infty )$ is considered such that $\operatorname { lim } _ { x \rightarrow \infty } f ( x ) = 0$ (cf. also [[Absolute continuity|Absolute continuity]]) and $f \in X$, where $X$ is a subspace of the space of functions of bounded variation $\operatorname{BV}$ and is a generalization of a known space of sequences; e.g., 1)–3) above. Then the asymptotic behaviour of the Fourier transform of a function from $X$ is investigated. Using the following result from [[#References|[a19]]] (an earlier version for functions with compact support can be found in [[#References|[a5]]]), |
− | + | \begin{equation*} \operatorname { sup } _ { 0 < | y | < \pi } \left| \int _ { - \infty } ^ { \infty } \varphi ( x ) e ^ { - i y x } d x - \sum _ { - \infty } ^ { \infty } \varphi ( k ) e ^ { - i k x } \right| \leq C \| \varphi \| _ { \operatorname{BV} }, \end{equation*} | |
one obtains even stronger results than those known earlier (for early results, see [[#References|[a18]]], [[#References|[a19]]]). | one obtains even stronger results than those known earlier (for early results, see [[#References|[a18]]], [[#References|[a19]]]). | ||
Line 60: | Line 68: | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> B. Aubertin, J.J.F. Fournier, "Integrability theorems for trigonometric series" ''Studia Math.'' , '''107''' (1993) pp. 33–59</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> M. Buntinas, N. Tanović-Miller, "Integrability classes and summability" ''Israel Math. Conf. Proc.'' , '''4''' (1991) pp. 75–88</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M. Buntinas, N. Tanović-Miller, "New integrability and $L^1$-convergence classes for even trigonometric series II" J. Szabados (ed.) K Tandori (ed.) , ''Approximation Theory'' , ''Colloq. Math. Soc. János Bolyai'' , '''58''' , North-Holland (1991) pp. 103–125</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> L. Bausov, "On linear methods for the summation of Fourier series" ''Mat. Sb.'' , '''68''' (1965) pp. 313–327 (In Russian)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> E. Belinskii, "On asymptotic behavior of integral norms of trigonometric polynomials" , ''Metric Questions of the Theory of Functions and Mappings'' , '''6''' , Nauk. Dumka, Kiev (1975) pp. 15–24 (In Russian)</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> R.P. Boas, "Absolute convergence and integrability of trigonometric series" ''J. Rat. Mech. Anal.'' , '''5''' (1956) pp. 621–632</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> G.A. Fomin, "A class of trigonometric series" ''Math. Notes'' , '''23''' (1978) pp. 117–123 ''Mat. Zametki'' , '''23''' (1978) pp. 213–222</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> S. Fridli, "Integrability and $L^1$ convergence of trigonometric and Walsh series" ''Ann. Univ. Sci. Budapest, Sect. Comput.'' , '''16''' (1996) pp. 149–172</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> M. Ganzburg, "Best approximation of functions like $| x | ^ { \lambda } \operatorname { exp } ( - A | x | ^ { - \alpha } )$" ''J. Approx. Th.'' , '''92''' (1998) pp. 379–410</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> M. Ganzburg, E. Liflyand, "Estimates of best approximation and Fourier transforms in integral metrics" ''J. Approx. Th.'' , '''83''' (1995) pp. 347–370</td></tr><tr><td valign="top">[a11]</td> <td valign="top"> D.V. Giang, F. Móricz, "Multipliers of Fourier transforms and series on $L^1$" ''Archiv Math.'' , '''62''' (1994) pp. 230–238</td></tr><tr><td valign="top">[a12]</td> <td valign="top"> A.N. Kolmogorov, "Sur l'ordre de grandeur des coefficients de la série de Fourier–Lebesgue" ''Bull. Acad. Polon.'' (1923) pp. 83–86</td></tr><tr><td valign="top">[a13]</td> <td valign="top"> E.R. Liflyand, "On asymptotics of Fourier transform for functions of certain classes" ''Anal. Math.'' , '''19''' : 2 (1993) pp. 151–168</td></tr><tr><td valign="top">[a14]</td> <td valign="top"> E.R. Liflyand, "A family of function spaces and multipliers" ''Israel Math. Conf. Proc.'' , '''13''' (1999) pp. 141–149</td></tr><tr><td valign="top">[a15]</td> <td valign="top"> S. Sidon, "Hinreichende Bedingungen für den Fourier–Charakter einer trigonometrischen Reihe" ''J. London Math. Soc.'' , '''14''' (1939) pp. 158–160</td></tr><tr><td valign="top">[a16]</td> <td valign="top"> S.A. Telyakovskii, "An estimate, useful in problems of approximation theory, of the norm of a function by means of its Fourier coefficients" ''Proc. Steklov Inst. Math.'' , '''109''' (1971) pp. 73–109 (In Russian)</td></tr><tr><td valign="top">[a17]</td> <td valign="top"> S.A. Telyakovskii, "Concerning a sufficient condition of Sidon for the integrability of trigonometric series" ''Math. Notes'' , '''14''' (1973) pp. 742–748 ''Mat. Zametki'' , '''14''' (1973) pp. 317–328</td></tr><tr><td valign="top">[a18]</td> <td valign="top"> R.M. Trigub, "On integral norms of polynomials" ''Math. USSR Sb.'' , '''30''' (1976) pp. 279–295 ''Mat. Sb.'' , '''101 (143)''' (1976) pp. 315–333</td></tr><tr><td valign="top">[a19]</td> <td valign="top"> R.M. Trigub, "Multipliers of Fourier series and approximation of functions by polynomials in spaces $C$ and $L$" ''Soviet Math. Dokl.'' , '''39''' : 3 (1989) pp. 494–498 ''Dokl. Akad. Nauk SSSR'' , '''306''' (1989) pp. 292–296</td></tr><tr><td valign="top">[a20]</td> <td valign="top"> W.H. Young, "On the Fourier series of bounded functions" ''Proc. London Math. Soc.'' , '''12''' : 2 (1913) pp. 41–70</td></tr></table> |
Revision as of 16:56, 1 July 2020
Given a trigonometric series
\begin{equation} \tag{a1} \frac { a _ { 0 } } { 2 } + \sum _ { k = 1 } ^ { \infty } ( a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x ), \end{equation}
the problem of its integrability asks under which assumptions on its coefficients this series is the Fourier series of an integrable function (i.e., belonging to $\widehat{L^1}$). Frequently, the series
\begin{equation} \tag{a2} \frac { a_0 } { 2 } + \sum _ { k = 1 } ^ { \infty } a _ { k } \operatorname { cos } k x \end{equation}
and
\begin{equation} \tag{a3} \sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x \end{equation}
are investigated separately, since there is a difference in their behaviour, and usually integrability of (a3) requires additional assumptions. Of course, one may also consider trigonometric series in complex form.
There exists no convenient description of $\widehat{L^1}$ in terms of a given sequence alone. Hence, subspaces of $\widehat{L^1}$ are studied. In view of the Riemann–Lebesgue lemma (cf. Fourier series) $\widehat{L^1}$ is a subspace of the space of null sequences, while the space of sequences of bounded variation
\begin{equation*} \operatorname{bv} = \left\{ d = \{ d _ { k } \} : \| d \| _ { \operatorname{bv} } = \sum _ { k = 0 } ^ { \infty } | \Delta d _ { k } | < \infty \right\} \end{equation*}
is not a subspace of $\widehat{L^1}$. Here $\Delta d_k = d_k - d_{k + 1}$. Having a null sequence of bounded variation as its Fourier coefficients, the series (a2) converges for every $x \neq 0 ( \operatorname { mod } 2 \pi )$, while (a3) converges everywhere.
In 1913, W.H. Young [a20] proved that if $\{ a _ { k } \}$ is a convex null sequence, that is, $\Delta ^ { 2 } a _ { k } = \Delta ( \Delta a _ { k } ) \geq 0$ for $k = 0,1 , \ldots$, then (a1) is the Fourier series of an integrable function (cf. also Trigonometric series). In 1923, A.N. Kolmogorov [a12] extended this result to the class of quasi-convex sequences $\{ a _ { k } \}$, namely, those satisfying
\begin{equation*} \sum _ { k = 0 } ^ { \infty } ( k + 1 ) \left| \Delta ^ { 2 } \alpha _ { k } \right| < \infty. \end{equation*}
Such a sequence is the difference of two convex sequences. In 1956, R.P. Boas generalized all previous results [a6]. Subsequently, more general subspaces of $\widehat{L^1}$ were considered:
1) The so-called Boas–Telyakovskii space $\operatorname{ bt}$ (see, e.g., [a16]):
\begin{equation*} \| d \| _ { b t } = \| d \| _ { \operatorname {bv} } + \sum _ { n = 2 } ^ { \infty } \left| \sum _ { k = 1 } ^ { n / 2 } \frac { \Delta d _ { n - k } - \Delta d _ { n + k } } { k }\right|. \end{equation*}
2) The Fomin space $a _{p}$ [a7] for $1 < p < \infty$, $1 / p + 1 / p ^ { \prime } = 1$:
\begin{equation*} \| d \| _ { a _ { p } } = \sum _ { n = 0 } ^ { \infty } 2 ^ { n / p ^ { \prime } } \left\{ \sum _ { k = 2 ^ { n } } ^ { 2 ^ { n + 1 } - 1 } | \Delta d _ { k } | ^ { p } \right\} ^ { 1 / p } < \infty . \end{equation*}
3) The Sidon–Telyakovskii space [a17]:
\begin{equation*} A _ { k } \downarrow 0 ( k \rightarrow \infty ) , \sum _ { k = 0 } ^ { \infty } A _ { k } < \infty , | \Delta d _ { k } | < A _ { k }. \end{equation*}
4) The Buntinas–Tanovic–Miller spaces (see, e.g., [a2]).
5) The amalgam space [a1], [a3]:
\begin{equation*} \sum _ { n = 0 } ^ { \infty } \left\{ \sum _ { m = 1 } ^ { \infty } \left[ \sum _ { k = m 2 ^ { n } } ^ { ( m + 1 ) 2 ^ { n } - 1 } | \Delta d _ { k } | \right] ^ { 2 } \right\} ^ { 1 / 2 } < \infty. \end{equation*}
A classical way to prove such results is by using Sidon-type inequalities (see, e.g., [a8]), a typical example of which is the one obtained by S. Sidon [a15]:
\begin{equation*} ( N + 1 ) ^ { - 1 } \left\| \sum _ { k = 0 } ^ { N } c _ { k } D _ { k } \right\| _ { L^{1} } \leq \operatorname { max } _ { 0 \leq k \leq N } | c _ { k } |, \end{equation*}
where $D _ { k }$ is the Dirichlet kernel of order $k$.
In [a13] a new approach to these problems was suggested. First, a locally absolutely continuous function $f$ on $[ 0 , \infty )$ is considered such that $\operatorname { lim } _ { x \rightarrow \infty } f ( x ) = 0$ (cf. also Absolute continuity) and $f \in X$, where $X$ is a subspace of the space of functions of bounded variation $\operatorname{BV}$ and is a generalization of a known space of sequences; e.g., 1)–3) above. Then the asymptotic behaviour of the Fourier transform of a function from $X$ is investigated. Using the following result from [a19] (an earlier version for functions with compact support can be found in [a5]),
\begin{equation*} \operatorname { sup } _ { 0 < | y | < \pi } \left| \int _ { - \infty } ^ { \infty } \varphi ( x ) e ^ { - i y x } d x - \sum _ { - \infty } ^ { \infty } \varphi ( k ) e ^ { - i k x } \right| \leq C \| \varphi \| _ { \operatorname{BV} }, \end{equation*}
one obtains even stronger results than those known earlier (for early results, see [a18], [a19]).
Results on integrability of trigonometric series have numerous applications to approximation problems. The Lebesgue constants of linear means of Fourier series can be efficiently estimated in this way (see, e.g., [a16]). For applications to multiplier problems, see [a11] and [a14]. Other integrability conditions (see, e.g., [a4] and [a16]) were surprisingly applied to the approximation of infinitely differentiable functions in [a10] and [a9].
There exist various extensions of integrability conditions for trigonometric series to the multi-dimensional case (see, e.g., [a13]).
References
[a1] | B. Aubertin, J.J.F. Fournier, "Integrability theorems for trigonometric series" Studia Math. , 107 (1993) pp. 33–59 |
[a2] | M. Buntinas, N. Tanović-Miller, "Integrability classes and summability" Israel Math. Conf. Proc. , 4 (1991) pp. 75–88 |
[a3] | M. Buntinas, N. Tanović-Miller, "New integrability and $L^1$-convergence classes for even trigonometric series II" J. Szabados (ed.) K Tandori (ed.) , Approximation Theory , Colloq. Math. Soc. János Bolyai , 58 , North-Holland (1991) pp. 103–125 |
[a4] | L. Bausov, "On linear methods for the summation of Fourier series" Mat. Sb. , 68 (1965) pp. 313–327 (In Russian) |
[a5] | E. Belinskii, "On asymptotic behavior of integral norms of trigonometric polynomials" , Metric Questions of the Theory of Functions and Mappings , 6 , Nauk. Dumka, Kiev (1975) pp. 15–24 (In Russian) |
[a6] | R.P. Boas, "Absolute convergence and integrability of trigonometric series" J. Rat. Mech. Anal. , 5 (1956) pp. 621–632 |
[a7] | G.A. Fomin, "A class of trigonometric series" Math. Notes , 23 (1978) pp. 117–123 Mat. Zametki , 23 (1978) pp. 213–222 |
[a8] | S. Fridli, "Integrability and $L^1$ convergence of trigonometric and Walsh series" Ann. Univ. Sci. Budapest, Sect. Comput. , 16 (1996) pp. 149–172 |
[a9] | M. Ganzburg, "Best approximation of functions like $| x | ^ { \lambda } \operatorname { exp } ( - A | x | ^ { - \alpha } )$" J. Approx. Th. , 92 (1998) pp. 379–410 |
[a10] | M. Ganzburg, E. Liflyand, "Estimates of best approximation and Fourier transforms in integral metrics" J. Approx. Th. , 83 (1995) pp. 347–370 |
[a11] | D.V. Giang, F. Móricz, "Multipliers of Fourier transforms and series on $L^1$" Archiv Math. , 62 (1994) pp. 230–238 |
[a12] | A.N. Kolmogorov, "Sur l'ordre de grandeur des coefficients de la série de Fourier–Lebesgue" Bull. Acad. Polon. (1923) pp. 83–86 |
[a13] | E.R. Liflyand, "On asymptotics of Fourier transform for functions of certain classes" Anal. Math. , 19 : 2 (1993) pp. 151–168 |
[a14] | E.R. Liflyand, "A family of function spaces and multipliers" Israel Math. Conf. Proc. , 13 (1999) pp. 141–149 |
[a15] | S. Sidon, "Hinreichende Bedingungen für den Fourier–Charakter einer trigonometrischen Reihe" J. London Math. Soc. , 14 (1939) pp. 158–160 |
[a16] | S.A. Telyakovskii, "An estimate, useful in problems of approximation theory, of the norm of a function by means of its Fourier coefficients" Proc. Steklov Inst. Math. , 109 (1971) pp. 73–109 (In Russian) |
[a17] | S.A. Telyakovskii, "Concerning a sufficient condition of Sidon for the integrability of trigonometric series" Math. Notes , 14 (1973) pp. 742–748 Mat. Zametki , 14 (1973) pp. 317–328 |
[a18] | R.M. Trigub, "On integral norms of polynomials" Math. USSR Sb. , 30 (1976) pp. 279–295 Mat. Sb. , 101 (143) (1976) pp. 315–333 |
[a19] | R.M. Trigub, "Multipliers of Fourier series and approximation of functions by polynomials in spaces $C$ and $L$" Soviet Math. Dokl. , 39 : 3 (1989) pp. 494–498 Dokl. Akad. Nauk SSSR , 306 (1989) pp. 292–296 |
[a20] | W.H. Young, "On the Fourier series of bounded functions" Proc. London Math. Soc. , 12 : 2 (1913) pp. 41–70 |
Integrability of trigonometric series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integrability_of_trigonometric_series&oldid=17312